MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcgcd Structured version   Visualization version   GIF version

Theorem pcgcd 16776
Description: The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcgcd ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (𝐴 gcd 𝐵)) = if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)))

Proof of Theorem pcgcd
StepHypRef Expression
1 pcgcd1 16775 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴))
2 iftrue 4512 . . . 4 ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) → if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)) = (𝑃 pCnt 𝐴))
32adantl 482 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)) = (𝑃 pCnt 𝐴))
41, 3eqtr4d 2774 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)))
5 gcdcom 16419 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
653adant1 1130 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
76adantr 481 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
87oveq2d 7393 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt (𝐵 gcd 𝐴)))
9 iffalse 4515 . . . . 5 (¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) → if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)) = (𝑃 pCnt 𝐵))
109adantl 482 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)) = (𝑃 pCnt 𝐵))
11 zq 12903 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
12 pcxcl 16759 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt 𝐴) ∈ ℝ*)
1311, 12sylan2 593 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt 𝐴) ∈ ℝ*)
14133adant3 1132 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt 𝐴) ∈ ℝ*)
15 zq 12903 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℚ)
16 pcxcl 16759 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ) → (𝑃 pCnt 𝐵) ∈ ℝ*)
1715, 16sylan2 593 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt 𝐵) ∈ ℝ*)
18 xrletri 13097 . . . . . . 7 (((𝑃 pCnt 𝐴) ∈ ℝ* ∧ (𝑃 pCnt 𝐵) ∈ ℝ*) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∨ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
1914, 17, 183imp3i2an 1345 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∨ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
2019orcanai 1001 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴))
21 3ancomb 1099 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ))
22 pcgcd1 16775 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐵 gcd 𝐴)) = (𝑃 pCnt 𝐵))
2321, 22sylanb 581 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐵 gcd 𝐴)) = (𝑃 pCnt 𝐵))
2420, 23syldan 591 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐵 gcd 𝐴)) = (𝑃 pCnt 𝐵))
2510, 24eqtr4d 2774 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)) = (𝑃 pCnt (𝐵 gcd 𝐴)))
268, 25eqtr4d 2774 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)))
274, 26pm2.61dan 811 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (𝐴 gcd 𝐵)) = if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  ifcif 4506   class class class wbr 5125  (class class class)co 7377  *cxr 11212  cle 11214  cz 12523  cq 12897   gcd cgcd 16400  cprime 16573   pCnt cpc 16734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5276  ax-nul 5283  ax-pow 5340  ax-pr 5404  ax-un 7692  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3364  df-reu 3365  df-rab 3419  df-v 3461  df-sbc 3758  df-csb 3874  df-dif 3931  df-un 3933  df-in 3935  df-ss 3945  df-pss 3947  df-nul 4303  df-if 4507  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4886  df-iun 4976  df-br 5126  df-opab 5188  df-mpt 5209  df-tr 5243  df-id 5551  df-eprel 5557  df-po 5565  df-so 5566  df-fr 5608  df-we 5610  df-xp 5659  df-rel 5660  df-cnv 5661  df-co 5662  df-dm 5663  df-rn 5664  df-res 5665  df-ima 5666  df-pred 6273  df-ord 6340  df-on 6341  df-lim 6342  df-suc 6343  df-iota 6468  df-fun 6518  df-fn 6519  df-f 6520  df-f1 6521  df-fo 6522  df-f1o 6523  df-fv 6524  df-riota 7333  df-ov 7380  df-oprab 7381  df-mpo 7382  df-om 7823  df-1st 7941  df-2nd 7942  df-frecs 8232  df-wrecs 8263  df-recs 8337  df-rdg 8376  df-1o 8432  df-2o 8433  df-er 8670  df-en 8906  df-dom 8907  df-sdom 8908  df-fin 8909  df-sup 9402  df-inf 9403  df-pnf 11215  df-mnf 11216  df-xr 11217  df-ltxr 11218  df-le 11219  df-sub 11411  df-neg 11412  df-div 11837  df-nn 12178  df-2 12240  df-3 12241  df-n0 12438  df-z 12524  df-uz 12788  df-q 12898  df-rp 12940  df-fl 13722  df-mod 13800  df-seq 13932  df-exp 13993  df-cj 15011  df-re 15012  df-im 15013  df-sqrt 15147  df-abs 15148  df-dvds 16163  df-gcd 16401  df-prm 16574  df-pc 16735
This theorem is referenced by:  pc2dvds  16777  mumullem2  26581
  Copyright terms: Public domain W3C validator