MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qussub Structured version   Visualization version   GIF version

Theorem qussub 19111
Description: Value of the group subtraction operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusgrp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
qusinv.v 𝑉 = (Base‘𝐺)
qussub.p = (-g𝐺)
qussub.a 𝑁 = (-g𝐻)
Assertion
Ref Expression
qussub ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = [(𝑋 𝑌)](𝐺 ~QG 𝑆))

Proof of Theorem qussub
StepHypRef Expression
1 qusgrp.h . . . . 5 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
2 qusinv.v . . . . 5 𝑉 = (Base‘𝐺)
3 eqid 2733 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
41, 2, 3quseccl 19107 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
543adant3 1132 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
61, 2, 3quseccl 19107 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌𝑉) → [𝑌](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
7 eqid 2733 . . . 4 (+g𝐻) = (+g𝐻)
8 eqid 2733 . . . 4 (invg𝐻) = (invg𝐻)
9 qussub.a . . . 4 𝑁 = (-g𝐻)
103, 7, 8, 9grpsubval 18906 . . 3 (([𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻) ∧ [𝑌](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)((invg𝐻)‘[𝑌](𝐺 ~QG 𝑆))))
115, 6, 103imp3i2an 1346 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)((invg𝐻)‘[𝑌](𝐺 ~QG 𝑆))))
12 eqid 2733 . . . . 5 (invg𝐺) = (invg𝐺)
131, 2, 12, 8qusinv 19110 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌𝑉) → ((invg𝐻)‘[𝑌](𝐺 ~QG 𝑆)) = [((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆))
14133adant2 1131 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ((invg𝐻)‘[𝑌](𝐺 ~QG 𝑆)) = [((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆))
1514oveq2d 7371 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)((invg𝐻)‘[𝑌](𝐺 ~QG 𝑆))) = ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆)))
16 nsgsubg 19078 . . . . . . 7 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
17 subgrcl 19052 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1816, 17syl 17 . . . . . 6 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
192, 12grpinvcl 18908 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝑉) → ((invg𝐺)‘𝑌) ∈ 𝑉)
2018, 19sylan 580 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌𝑉) → ((invg𝐺)‘𝑌) ∈ 𝑉)
21203adant2 1131 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ((invg𝐺)‘𝑌) ∈ 𝑉)
22 eqid 2733 . . . . 5 (+g𝐺) = (+g𝐺)
231, 2, 22, 7qusadd 19108 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉 ∧ ((invg𝐺)‘𝑌) ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋(+g𝐺)((invg𝐺)‘𝑌))](𝐺 ~QG 𝑆))
2421, 23syld3an3 1411 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋(+g𝐺)((invg𝐺)‘𝑌))](𝐺 ~QG 𝑆))
25 qussub.p . . . . . 6 = (-g𝐺)
262, 22, 12, 25grpsubval 18906 . . . . 5 ((𝑋𝑉𝑌𝑉) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
27263adant1 1130 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
2827eceq1d 8671 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → [(𝑋 𝑌)](𝐺 ~QG 𝑆) = [(𝑋(+g𝐺)((invg𝐺)‘𝑌))](𝐺 ~QG 𝑆))
2924, 28eqtr4d 2771 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋 𝑌)](𝐺 ~QG 𝑆))
3011, 15, 293eqtrd 2772 1 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = [(𝑋 𝑌)](𝐺 ~QG 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  cfv 6489  (class class class)co 7355  [cec 8629  Basecbs 17127  +gcplusg 17168   /s cqus 17417  Grpcgrp 18854  invgcminusg 18855  -gcsg 18856  SubGrpcsubg 19041  NrmSGrpcnsg 19042   ~QG cqg 19043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-ec 8633  df-qs 8637  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-0g 17352  df-imas 17420  df-qus 17421  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-minusg 18858  df-sbg 18859  df-subg 19044  df-nsg 19045  df-eqg 19046
This theorem is referenced by:  qustgplem  24056
  Copyright terms: Public domain W3C validator