![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qussub | Structured version Visualization version GIF version |
Description: Value of the group subtraction operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) |
Ref | Expression |
---|---|
qusgrp.h | ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) |
qusinv.v | ⊢ 𝑉 = (Base‘𝐺) |
qussub.p | ⊢ − = (-g‘𝐺) |
qussub.a | ⊢ 𝑁 = (-g‘𝐻) |
Ref | Expression |
---|---|
qussub | ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = [(𝑋 − 𝑌)](𝐺 ~QG 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusgrp.h | . . . . 5 ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) | |
2 | qusinv.v | . . . . 5 ⊢ 𝑉 = (Base‘𝐺) | |
3 | eqid 2732 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
4 | 1, 2, 3 | quseccl 19060 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
5 | 4 | 3adant3 1132 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
6 | 1, 2, 3 | quseccl 19060 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ 𝑉) → [𝑌](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
7 | eqid 2732 | . . . 4 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
8 | eqid 2732 | . . . 4 ⊢ (invg‘𝐻) = (invg‘𝐻) | |
9 | qussub.a | . . . 4 ⊢ 𝑁 = (-g‘𝐻) | |
10 | 3, 7, 8, 9 | grpsubval 18866 | . . 3 ⊢ (([𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻) ∧ [𝑌](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)((invg‘𝐻)‘[𝑌](𝐺 ~QG 𝑆)))) |
11 | 5, 6, 10 | 3imp3i2an 1345 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)((invg‘𝐻)‘[𝑌](𝐺 ~QG 𝑆)))) |
12 | eqid 2732 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
13 | 1, 2, 12, 8 | qusinv 19063 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ 𝑉) → ((invg‘𝐻)‘[𝑌](𝐺 ~QG 𝑆)) = [((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆)) |
14 | 13 | 3adant2 1131 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((invg‘𝐻)‘[𝑌](𝐺 ~QG 𝑆)) = [((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆)) |
15 | 14 | oveq2d 7421 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)((invg‘𝐻)‘[𝑌](𝐺 ~QG 𝑆))) = ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆))) |
16 | nsgsubg 19032 | . . . . . . 7 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
17 | subgrcl 19005 | . . . . . . 7 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
18 | 16, 17 | syl 17 | . . . . . 6 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp) |
19 | 2, 12 | grpinvcl 18868 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝑉) → ((invg‘𝐺)‘𝑌) ∈ 𝑉) |
20 | 18, 19 | sylan 580 | . . . . 5 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ 𝑉) → ((invg‘𝐺)‘𝑌) ∈ 𝑉) |
21 | 20 | 3adant2 1131 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((invg‘𝐺)‘𝑌) ∈ 𝑉) |
22 | eqid 2732 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
23 | 1, 2, 22, 7 | qusadd 19061 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ ((invg‘𝐺)‘𝑌) ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))](𝐺 ~QG 𝑆)) |
24 | 21, 23 | syld3an3 1409 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))](𝐺 ~QG 𝑆)) |
25 | qussub.p | . . . . . 6 ⊢ − = (-g‘𝐺) | |
26 | 2, 22, 12, 25 | grpsubval 18866 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
27 | 26 | 3adant1 1130 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
28 | 27 | eceq1d 8738 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → [(𝑋 − 𝑌)](𝐺 ~QG 𝑆) = [(𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))](𝐺 ~QG 𝑆)) |
29 | 24, 28 | eqtr4d 2775 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋 − 𝑌)](𝐺 ~QG 𝑆)) |
30 | 11, 15, 29 | 3eqtrd 2776 | 1 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = [(𝑋 − 𝑌)](𝐺 ~QG 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ‘cfv 6540 (class class class)co 7405 [cec 8697 Basecbs 17140 +gcplusg 17193 /s cqus 17447 Grpcgrp 18815 invgcminusg 18816 -gcsg 18817 SubGrpcsubg 18994 NrmSGrpcnsg 18995 ~QG cqg 18996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-ec 8701 df-qs 8705 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-0g 17383 df-imas 17450 df-qus 17451 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-sbg 18820 df-subg 18997 df-nsg 18998 df-eqg 18999 |
This theorem is referenced by: qustgplem 23616 |
Copyright terms: Public domain | W3C validator |