MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qussub Structured version   Visualization version   GIF version

Theorem qussub 18278
Description: Value of the group subtraction operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusgrp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
qusinv.v 𝑉 = (Base‘𝐺)
qussub.p = (-g𝐺)
qussub.a 𝑁 = (-g𝐻)
Assertion
Ref Expression
qussub ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = [(𝑋 𝑌)](𝐺 ~QG 𝑆))

Proof of Theorem qussub
StepHypRef Expression
1 qusgrp.h . . . . 5 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
2 qusinv.v . . . . 5 𝑉 = (Base‘𝐺)
3 eqid 2818 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
41, 2, 3quseccl 18274 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
543adant3 1124 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
61, 2, 3quseccl 18274 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌𝑉) → [𝑌](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
7 eqid 2818 . . . 4 (+g𝐻) = (+g𝐻)
8 eqid 2818 . . . 4 (invg𝐻) = (invg𝐻)
9 qussub.a . . . 4 𝑁 = (-g𝐻)
103, 7, 8, 9grpsubval 18087 . . 3 (([𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻) ∧ [𝑌](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)((invg𝐻)‘[𝑌](𝐺 ~QG 𝑆))))
115, 6, 103imp3i2an 1337 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)((invg𝐻)‘[𝑌](𝐺 ~QG 𝑆))))
12 eqid 2818 . . . . 5 (invg𝐺) = (invg𝐺)
131, 2, 12, 8qusinv 18277 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌𝑉) → ((invg𝐻)‘[𝑌](𝐺 ~QG 𝑆)) = [((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆))
14133adant2 1123 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ((invg𝐻)‘[𝑌](𝐺 ~QG 𝑆)) = [((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆))
1514oveq2d 7161 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)((invg𝐻)‘[𝑌](𝐺 ~QG 𝑆))) = ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆)))
16 nsgsubg 18248 . . . . . . 7 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
17 subgrcl 18222 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1816, 17syl 17 . . . . . 6 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
192, 12grpinvcl 18089 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝑉) → ((invg𝐺)‘𝑌) ∈ 𝑉)
2018, 19sylan 580 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌𝑉) → ((invg𝐺)‘𝑌) ∈ 𝑉)
21203adant2 1123 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ((invg𝐺)‘𝑌) ∈ 𝑉)
22 eqid 2818 . . . . 5 (+g𝐺) = (+g𝐺)
231, 2, 22, 7qusadd 18275 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉 ∧ ((invg𝐺)‘𝑌) ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋(+g𝐺)((invg𝐺)‘𝑌))](𝐺 ~QG 𝑆))
2421, 23syld3an3 1401 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋(+g𝐺)((invg𝐺)‘𝑌))](𝐺 ~QG 𝑆))
25 qussub.p . . . . . 6 = (-g𝐺)
262, 22, 12, 25grpsubval 18087 . . . . 5 ((𝑋𝑉𝑌𝑉) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
27263adant1 1122 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
2827eceq1d 8317 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → [(𝑋 𝑌)](𝐺 ~QG 𝑆) = [(𝑋(+g𝐺)((invg𝐺)‘𝑌))](𝐺 ~QG 𝑆))
2924, 28eqtr4d 2856 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋 𝑌)](𝐺 ~QG 𝑆))
3011, 15, 293eqtrd 2857 1 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = [(𝑋 𝑌)](𝐺 ~QG 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1079   = wceq 1528  wcel 2105  cfv 6348  (class class class)co 7145  [cec 8276  Basecbs 16471  +gcplusg 16553   /s cqus 16766  Grpcgrp 18041  invgcminusg 18042  -gcsg 18043  SubGrpcsubg 18211  NrmSGrpcnsg 18212   ~QG cqg 18213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-ec 8280  df-qs 8284  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-0g 16703  df-imas 16769  df-qus 16770  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-sbg 18046  df-subg 18214  df-nsg 18215  df-eqg 18216
This theorem is referenced by:  qustgplem  22656
  Copyright terms: Public domain W3C validator