![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qussub | Structured version Visualization version GIF version |
Description: Value of the group subtraction operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) |
Ref | Expression |
---|---|
qusgrp.h | ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) |
qusinv.v | ⊢ 𝑉 = (Base‘𝐺) |
qussub.p | ⊢ − = (-g‘𝐺) |
qussub.a | ⊢ 𝑁 = (-g‘𝐻) |
Ref | Expression |
---|---|
qussub | ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = [(𝑋 − 𝑌)](𝐺 ~QG 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusgrp.h | . . . . 5 ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) | |
2 | qusinv.v | . . . . 5 ⊢ 𝑉 = (Base‘𝐺) | |
3 | eqid 2735 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
4 | 1, 2, 3 | quseccl 19218 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
5 | 4 | 3adant3 1131 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
6 | 1, 2, 3 | quseccl 19218 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ 𝑉) → [𝑌](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
7 | eqid 2735 | . . . 4 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
8 | eqid 2735 | . . . 4 ⊢ (invg‘𝐻) = (invg‘𝐻) | |
9 | qussub.a | . . . 4 ⊢ 𝑁 = (-g‘𝐻) | |
10 | 3, 7, 8, 9 | grpsubval 19016 | . . 3 ⊢ (([𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻) ∧ [𝑌](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)((invg‘𝐻)‘[𝑌](𝐺 ~QG 𝑆)))) |
11 | 5, 6, 10 | 3imp3i2an 1344 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)((invg‘𝐻)‘[𝑌](𝐺 ~QG 𝑆)))) |
12 | eqid 2735 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
13 | 1, 2, 12, 8 | qusinv 19221 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ 𝑉) → ((invg‘𝐻)‘[𝑌](𝐺 ~QG 𝑆)) = [((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆)) |
14 | 13 | 3adant2 1130 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((invg‘𝐻)‘[𝑌](𝐺 ~QG 𝑆)) = [((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆)) |
15 | 14 | oveq2d 7447 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)((invg‘𝐻)‘[𝑌](𝐺 ~QG 𝑆))) = ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆))) |
16 | nsgsubg 19189 | . . . . . . 7 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
17 | subgrcl 19162 | . . . . . . 7 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
18 | 16, 17 | syl 17 | . . . . . 6 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp) |
19 | 2, 12 | grpinvcl 19018 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝑉) → ((invg‘𝐺)‘𝑌) ∈ 𝑉) |
20 | 18, 19 | sylan 580 | . . . . 5 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ 𝑉) → ((invg‘𝐺)‘𝑌) ∈ 𝑉) |
21 | 20 | 3adant2 1130 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((invg‘𝐺)‘𝑌) ∈ 𝑉) |
22 | eqid 2735 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
23 | 1, 2, 22, 7 | qusadd 19219 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ ((invg‘𝐺)‘𝑌) ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))](𝐺 ~QG 𝑆)) |
24 | 21, 23 | syld3an3 1408 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))](𝐺 ~QG 𝑆)) |
25 | qussub.p | . . . . . 6 ⊢ − = (-g‘𝐺) | |
26 | 2, 22, 12, 25 | grpsubval 19016 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
27 | 26 | 3adant1 1129 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
28 | 27 | eceq1d 8784 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → [(𝑋 − 𝑌)](𝐺 ~QG 𝑆) = [(𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))](𝐺 ~QG 𝑆)) |
29 | 24, 28 | eqtr4d 2778 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋 − 𝑌)](𝐺 ~QG 𝑆)) |
30 | 11, 15, 29 | 3eqtrd 2779 | 1 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = [(𝑋 − 𝑌)](𝐺 ~QG 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 [cec 8742 Basecbs 17245 +gcplusg 17298 /s cqus 17552 Grpcgrp 18964 invgcminusg 18965 -gcsg 18966 SubGrpcsubg 19151 NrmSGrpcnsg 19152 ~QG cqg 19153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-ec 8746 df-qs 8750 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-0g 17488 df-imas 17555 df-qus 17556 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-nsg 19155 df-eqg 19156 |
This theorem is referenced by: qustgplem 24145 |
Copyright terms: Public domain | W3C validator |