Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspun Structured version   Visualization version   GIF version

Theorem lspun 19751
 Description: The span of union is the span of the union of spans. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspss.v 𝑉 = (Base‘𝑊)
lspss.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspun ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑇𝑈)) = (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))))

Proof of Theorem lspun
StepHypRef Expression
1 simp1 1131 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑊 ∈ LMod)
2 simp2 1132 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑇𝑉)
3 simp3 1133 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑈𝑉)
42, 3unssd 4160 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑇𝑈) ⊆ 𝑉)
5 ssun1 4146 . . . . . . 7 𝑇 ⊆ (𝑇𝑈)
65a1i 11 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑇 ⊆ (𝑇𝑈))
7 lspss.v . . . . . . 7 𝑉 = (Base‘𝑊)
8 lspss.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
97, 8lspss 19748 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ 𝑉𝑇 ⊆ (𝑇𝑈)) → (𝑁𝑇) ⊆ (𝑁‘(𝑇𝑈)))
101, 4, 6, 9syl3anc 1366 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁𝑇) ⊆ (𝑁‘(𝑇𝑈)))
11 ssun2 4147 . . . . . . 7 𝑈 ⊆ (𝑇𝑈)
1211a1i 11 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑈 ⊆ (𝑇𝑈))
137, 8lspss 19748 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ 𝑉𝑈 ⊆ (𝑇𝑈)) → (𝑁𝑈) ⊆ (𝑁‘(𝑇𝑈)))
141, 4, 12, 13syl3anc 1366 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁𝑈) ⊆ (𝑁‘(𝑇𝑈)))
1510, 14unssd 4160 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → ((𝑁𝑇) ∪ (𝑁𝑈)) ⊆ (𝑁‘(𝑇𝑈)))
167, 8lspssv 19747 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ 𝑉) → (𝑁‘(𝑇𝑈)) ⊆ 𝑉)
171, 4, 16syl2anc 586 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑇𝑈)) ⊆ 𝑉)
1815, 17sstrd 3975 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → ((𝑁𝑇) ∪ (𝑁𝑈)) ⊆ 𝑉)
197, 8lspssid 19749 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑉) → 𝑇 ⊆ (𝑁𝑇))
201, 2, 19syl2anc 586 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑇 ⊆ (𝑁𝑇))
217, 8lspssid 19749 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 ⊆ (𝑁𝑈))
22 unss12 4156 . . . 4 ((𝑇 ⊆ (𝑁𝑇) ∧ 𝑈 ⊆ (𝑁𝑈)) → (𝑇𝑈) ⊆ ((𝑁𝑇) ∪ (𝑁𝑈)))
2320, 21, 223imp3i2an 1340 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑇𝑈) ⊆ ((𝑁𝑇) ∪ (𝑁𝑈)))
247, 8lspss 19748 . . 3 ((𝑊 ∈ LMod ∧ ((𝑁𝑇) ∪ (𝑁𝑈)) ⊆ 𝑉 ∧ (𝑇𝑈) ⊆ ((𝑁𝑇) ∪ (𝑁𝑈))) → (𝑁‘(𝑇𝑈)) ⊆ (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))))
251, 18, 23, 24syl3anc 1366 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑇𝑈)) ⊆ (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))))
267, 8lspss 19748 . . . 4 ((𝑊 ∈ LMod ∧ (𝑁‘(𝑇𝑈)) ⊆ 𝑉 ∧ ((𝑁𝑇) ∪ (𝑁𝑈)) ⊆ (𝑁‘(𝑇𝑈))) → (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))) ⊆ (𝑁‘(𝑁‘(𝑇𝑈))))
271, 17, 15, 26syl3anc 1366 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))) ⊆ (𝑁‘(𝑁‘(𝑇𝑈))))
287, 8lspidm 19750 . . . 4 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ 𝑉) → (𝑁‘(𝑁‘(𝑇𝑈))) = (𝑁‘(𝑇𝑈)))
291, 4, 28syl2anc 586 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑁‘(𝑇𝑈))) = (𝑁‘(𝑇𝑈)))
3027, 29sseqtrd 4005 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))) ⊆ (𝑁‘(𝑇𝑈)))
3125, 30eqssd 3982 1 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑇𝑈)) = (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1082   = wceq 1531   ∈ wcel 2108   ∪ cun 3932   ⊆ wss 3934  ‘cfv 6348  Basecbs 16475  LModclmod 19626  LSpanclspn 19735 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mgp 19232  df-ur 19244  df-ring 19291  df-lmod 19628  df-lss 19696  df-lsp 19736 This theorem is referenced by:  lspun0  19775  lsmsp2  19851  lsmpr  19853  lsppr  19857  islshpsm  36108  lshpnel2N  36113  lkrlsp3  36232  dochsatshp  38579
 Copyright terms: Public domain W3C validator