| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspun | Structured version Visualization version GIF version | ||
| Description: The span of union is the span of the union of spans. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lspss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspun | ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) = (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑊 ∈ LMod) | |
| 2 | simp2 1137 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑇 ⊆ 𝑉) | |
| 3 | simp3 1138 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ 𝑉) | |
| 4 | 2, 3 | unssd 4145 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑇 ∪ 𝑈) ⊆ 𝑉) |
| 5 | ssun1 4131 | . . . . . . 7 ⊢ 𝑇 ⊆ (𝑇 ∪ 𝑈) | |
| 6 | 5 | a1i 11 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑇 ⊆ (𝑇 ∪ 𝑈)) |
| 7 | lspss.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 8 | lspss.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 9 | 7, 8 | lspss 20905 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ 𝑉 ∧ 𝑇 ⊆ (𝑇 ∪ 𝑈)) → (𝑁‘𝑇) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 10 | 1, 4, 6, 9 | syl3anc 1373 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑇) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 11 | ssun2 4132 | . . . . . . 7 ⊢ 𝑈 ⊆ (𝑇 ∪ 𝑈) | |
| 12 | 11 | a1i 11 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝑇 ∪ 𝑈)) |
| 13 | 7, 8 | lspss 20905 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ 𝑉 ∧ 𝑈 ⊆ (𝑇 ∪ 𝑈)) → (𝑁‘𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 14 | 1, 4, 12, 13 | syl3anc 1373 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 15 | 10, 14 | unssd 4145 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → ((𝑁‘𝑇) ∪ (𝑁‘𝑈)) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 16 | 7, 8 | lspssv 20904 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ 𝑉) |
| 17 | 1, 4, 16 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ 𝑉) |
| 18 | 15, 17 | sstrd 3948 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → ((𝑁‘𝑇) ∪ (𝑁‘𝑈)) ⊆ 𝑉) |
| 19 | 7, 8 | lspssid 20906 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉) → 𝑇 ⊆ (𝑁‘𝑇)) |
| 20 | 1, 2, 19 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑇 ⊆ (𝑁‘𝑇)) |
| 21 | 7, 8 | lspssid 20906 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝑁‘𝑈)) |
| 22 | unss12 4141 | . . . 4 ⊢ ((𝑇 ⊆ (𝑁‘𝑇) ∧ 𝑈 ⊆ (𝑁‘𝑈)) → (𝑇 ∪ 𝑈) ⊆ ((𝑁‘𝑇) ∪ (𝑁‘𝑈))) | |
| 23 | 20, 21, 22 | 3imp3i2an 1346 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑇 ∪ 𝑈) ⊆ ((𝑁‘𝑇) ∪ (𝑁‘𝑈))) |
| 24 | 7, 8 | lspss 20905 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ ((𝑁‘𝑇) ∪ (𝑁‘𝑈)) ⊆ 𝑉 ∧ (𝑇 ∪ 𝑈) ⊆ ((𝑁‘𝑇) ∪ (𝑁‘𝑈))) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
| 25 | 1, 18, 23, 24 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
| 26 | 7, 8 | lspss 20905 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘(𝑇 ∪ 𝑈)) ⊆ 𝑉 ∧ ((𝑁‘𝑇) ∪ (𝑁‘𝑈)) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) → (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈))) ⊆ (𝑁‘(𝑁‘(𝑇 ∪ 𝑈)))) |
| 27 | 1, 17, 15, 26 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈))) ⊆ (𝑁‘(𝑁‘(𝑇 ∪ 𝑈)))) |
| 28 | 7, 8 | lspidm 20907 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ 𝑉) → (𝑁‘(𝑁‘(𝑇 ∪ 𝑈))) = (𝑁‘(𝑇 ∪ 𝑈))) |
| 29 | 1, 4, 28 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑁‘(𝑇 ∪ 𝑈))) = (𝑁‘(𝑇 ∪ 𝑈))) |
| 30 | 27, 29 | sseqtrd 3974 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈))) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 31 | 25, 30 | eqssd 3955 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) = (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3903 ⊆ wss 3905 ‘cfv 6486 Basecbs 17138 LModclmod 20781 LSpanclspn 20892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mgp 20044 df-ur 20085 df-ring 20138 df-lmod 20783 df-lss 20853 df-lsp 20893 |
| This theorem is referenced by: lspun0 20932 lsmsp2 21009 lsmpr 21011 lsppr 21015 islshpsm 38958 lshpnel2N 38963 lkrlsp3 39082 dochsatshp 41430 |
| Copyright terms: Public domain | W3C validator |