MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspun Structured version   Visualization version   GIF version

Theorem lspun 20247
Description: The span of union is the span of the union of spans. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspss.v 𝑉 = (Base‘𝑊)
lspss.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspun ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑇𝑈)) = (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))))

Proof of Theorem lspun
StepHypRef Expression
1 simp1 1135 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑊 ∈ LMod)
2 simp2 1136 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑇𝑉)
3 simp3 1137 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑈𝑉)
42, 3unssd 4125 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑇𝑈) ⊆ 𝑉)
5 ssun1 4111 . . . . . . 7 𝑇 ⊆ (𝑇𝑈)
65a1i 11 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑇 ⊆ (𝑇𝑈))
7 lspss.v . . . . . . 7 𝑉 = (Base‘𝑊)
8 lspss.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
97, 8lspss 20244 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ 𝑉𝑇 ⊆ (𝑇𝑈)) → (𝑁𝑇) ⊆ (𝑁‘(𝑇𝑈)))
101, 4, 6, 9syl3anc 1370 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁𝑇) ⊆ (𝑁‘(𝑇𝑈)))
11 ssun2 4112 . . . . . . 7 𝑈 ⊆ (𝑇𝑈)
1211a1i 11 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑈 ⊆ (𝑇𝑈))
137, 8lspss 20244 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ 𝑉𝑈 ⊆ (𝑇𝑈)) → (𝑁𝑈) ⊆ (𝑁‘(𝑇𝑈)))
141, 4, 12, 13syl3anc 1370 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁𝑈) ⊆ (𝑁‘(𝑇𝑈)))
1510, 14unssd 4125 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → ((𝑁𝑇) ∪ (𝑁𝑈)) ⊆ (𝑁‘(𝑇𝑈)))
167, 8lspssv 20243 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ 𝑉) → (𝑁‘(𝑇𝑈)) ⊆ 𝑉)
171, 4, 16syl2anc 584 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑇𝑈)) ⊆ 𝑉)
1815, 17sstrd 3936 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → ((𝑁𝑇) ∪ (𝑁𝑈)) ⊆ 𝑉)
197, 8lspssid 20245 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑉) → 𝑇 ⊆ (𝑁𝑇))
201, 2, 19syl2anc 584 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑇 ⊆ (𝑁𝑇))
217, 8lspssid 20245 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 ⊆ (𝑁𝑈))
22 unss12 4121 . . . 4 ((𝑇 ⊆ (𝑁𝑇) ∧ 𝑈 ⊆ (𝑁𝑈)) → (𝑇𝑈) ⊆ ((𝑁𝑇) ∪ (𝑁𝑈)))
2320, 21, 223imp3i2an 1344 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑇𝑈) ⊆ ((𝑁𝑇) ∪ (𝑁𝑈)))
247, 8lspss 20244 . . 3 ((𝑊 ∈ LMod ∧ ((𝑁𝑇) ∪ (𝑁𝑈)) ⊆ 𝑉 ∧ (𝑇𝑈) ⊆ ((𝑁𝑇) ∪ (𝑁𝑈))) → (𝑁‘(𝑇𝑈)) ⊆ (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))))
251, 18, 23, 24syl3anc 1370 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑇𝑈)) ⊆ (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))))
267, 8lspss 20244 . . . 4 ((𝑊 ∈ LMod ∧ (𝑁‘(𝑇𝑈)) ⊆ 𝑉 ∧ ((𝑁𝑇) ∪ (𝑁𝑈)) ⊆ (𝑁‘(𝑇𝑈))) → (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))) ⊆ (𝑁‘(𝑁‘(𝑇𝑈))))
271, 17, 15, 26syl3anc 1370 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))) ⊆ (𝑁‘(𝑁‘(𝑇𝑈))))
287, 8lspidm 20246 . . . 4 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ 𝑉) → (𝑁‘(𝑁‘(𝑇𝑈))) = (𝑁‘(𝑇𝑈)))
291, 4, 28syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑁‘(𝑇𝑈))) = (𝑁‘(𝑇𝑈)))
3027, 29sseqtrd 3966 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))) ⊆ (𝑁‘(𝑇𝑈)))
3125, 30eqssd 3943 1 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑇𝑈)) = (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1542  wcel 2110  cun 3890  wss 3892  cfv 6432  Basecbs 16910  LModclmod 20121  LSpanclspn 20231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-plusg 16973  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-grp 18578  df-minusg 18579  df-sbg 18580  df-mgp 19719  df-ur 19736  df-ring 19783  df-lmod 20123  df-lss 20192  df-lsp 20232
This theorem is referenced by:  lspun0  20271  lsmsp2  20347  lsmpr  20349  lsppr  20353  islshpsm  36990  lshpnel2N  36995  lkrlsp3  37114  dochsatshp  39461
  Copyright terms: Public domain W3C validator