![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspun | Structured version Visualization version GIF version |
Description: The span of union is the span of the union of spans. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspss.v | ⊢ 𝑉 = (Base‘𝑊) |
lspss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspun | ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) = (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑊 ∈ LMod) | |
2 | simp2 1137 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑇 ⊆ 𝑉) | |
3 | simp3 1138 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ 𝑉) | |
4 | 2, 3 | unssd 4215 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑇 ∪ 𝑈) ⊆ 𝑉) |
5 | ssun1 4201 | . . . . . . 7 ⊢ 𝑇 ⊆ (𝑇 ∪ 𝑈) | |
6 | 5 | a1i 11 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑇 ⊆ (𝑇 ∪ 𝑈)) |
7 | lspss.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
8 | lspss.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
9 | 7, 8 | lspss 21005 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ 𝑉 ∧ 𝑇 ⊆ (𝑇 ∪ 𝑈)) → (𝑁‘𝑇) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
10 | 1, 4, 6, 9 | syl3anc 1371 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑇) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
11 | ssun2 4202 | . . . . . . 7 ⊢ 𝑈 ⊆ (𝑇 ∪ 𝑈) | |
12 | 11 | a1i 11 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝑇 ∪ 𝑈)) |
13 | 7, 8 | lspss 21005 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ 𝑉 ∧ 𝑈 ⊆ (𝑇 ∪ 𝑈)) → (𝑁‘𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
14 | 1, 4, 12, 13 | syl3anc 1371 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
15 | 10, 14 | unssd 4215 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → ((𝑁‘𝑇) ∪ (𝑁‘𝑈)) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
16 | 7, 8 | lspssv 21004 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ 𝑉) |
17 | 1, 4, 16 | syl2anc 583 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ 𝑉) |
18 | 15, 17 | sstrd 4019 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → ((𝑁‘𝑇) ∪ (𝑁‘𝑈)) ⊆ 𝑉) |
19 | 7, 8 | lspssid 21006 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉) → 𝑇 ⊆ (𝑁‘𝑇)) |
20 | 1, 2, 19 | syl2anc 583 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑇 ⊆ (𝑁‘𝑇)) |
21 | 7, 8 | lspssid 21006 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝑁‘𝑈)) |
22 | unss12 4211 | . . . 4 ⊢ ((𝑇 ⊆ (𝑁‘𝑇) ∧ 𝑈 ⊆ (𝑁‘𝑈)) → (𝑇 ∪ 𝑈) ⊆ ((𝑁‘𝑇) ∪ (𝑁‘𝑈))) | |
23 | 20, 21, 22 | 3imp3i2an 1345 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑇 ∪ 𝑈) ⊆ ((𝑁‘𝑇) ∪ (𝑁‘𝑈))) |
24 | 7, 8 | lspss 21005 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ ((𝑁‘𝑇) ∪ (𝑁‘𝑈)) ⊆ 𝑉 ∧ (𝑇 ∪ 𝑈) ⊆ ((𝑁‘𝑇) ∪ (𝑁‘𝑈))) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
25 | 1, 18, 23, 24 | syl3anc 1371 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
26 | 7, 8 | lspss 21005 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘(𝑇 ∪ 𝑈)) ⊆ 𝑉 ∧ ((𝑁‘𝑇) ∪ (𝑁‘𝑈)) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) → (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈))) ⊆ (𝑁‘(𝑁‘(𝑇 ∪ 𝑈)))) |
27 | 1, 17, 15, 26 | syl3anc 1371 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈))) ⊆ (𝑁‘(𝑁‘(𝑇 ∪ 𝑈)))) |
28 | 7, 8 | lspidm 21007 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ 𝑉) → (𝑁‘(𝑁‘(𝑇 ∪ 𝑈))) = (𝑁‘(𝑇 ∪ 𝑈))) |
29 | 1, 4, 28 | syl2anc 583 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑁‘(𝑇 ∪ 𝑈))) = (𝑁‘(𝑇 ∪ 𝑈))) |
30 | 27, 29 | sseqtrd 4049 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈))) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
31 | 25, 30 | eqssd 4026 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) = (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 ‘cfv 6573 Basecbs 17258 LModclmod 20880 LSpanclspn 20992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mgp 20162 df-ur 20209 df-ring 20262 df-lmod 20882 df-lss 20953 df-lsp 20993 |
This theorem is referenced by: lspun0 21032 lsmsp2 21109 lsmpr 21111 lsppr 21115 islshpsm 38936 lshpnel2N 38941 lkrlsp3 39060 dochsatshp 41408 |
Copyright terms: Public domain | W3C validator |