MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspun Structured version   Visualization version   GIF version

Theorem lspun 20893
Description: The span of union is the span of the union of spans. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspss.v 𝑉 = (Base‘𝑊)
lspss.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspun ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑇𝑈)) = (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))))

Proof of Theorem lspun
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑊 ∈ LMod)
2 simp2 1137 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑇𝑉)
3 simp3 1138 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑈𝑉)
42, 3unssd 4155 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑇𝑈) ⊆ 𝑉)
5 ssun1 4141 . . . . . . 7 𝑇 ⊆ (𝑇𝑈)
65a1i 11 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑇 ⊆ (𝑇𝑈))
7 lspss.v . . . . . . 7 𝑉 = (Base‘𝑊)
8 lspss.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
97, 8lspss 20890 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ 𝑉𝑇 ⊆ (𝑇𝑈)) → (𝑁𝑇) ⊆ (𝑁‘(𝑇𝑈)))
101, 4, 6, 9syl3anc 1373 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁𝑇) ⊆ (𝑁‘(𝑇𝑈)))
11 ssun2 4142 . . . . . . 7 𝑈 ⊆ (𝑇𝑈)
1211a1i 11 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑈 ⊆ (𝑇𝑈))
137, 8lspss 20890 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ 𝑉𝑈 ⊆ (𝑇𝑈)) → (𝑁𝑈) ⊆ (𝑁‘(𝑇𝑈)))
141, 4, 12, 13syl3anc 1373 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁𝑈) ⊆ (𝑁‘(𝑇𝑈)))
1510, 14unssd 4155 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → ((𝑁𝑇) ∪ (𝑁𝑈)) ⊆ (𝑁‘(𝑇𝑈)))
167, 8lspssv 20889 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ 𝑉) → (𝑁‘(𝑇𝑈)) ⊆ 𝑉)
171, 4, 16syl2anc 584 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑇𝑈)) ⊆ 𝑉)
1815, 17sstrd 3957 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → ((𝑁𝑇) ∪ (𝑁𝑈)) ⊆ 𝑉)
197, 8lspssid 20891 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑉) → 𝑇 ⊆ (𝑁𝑇))
201, 2, 19syl2anc 584 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑇 ⊆ (𝑁𝑇))
217, 8lspssid 20891 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 ⊆ (𝑁𝑈))
22 unss12 4151 . . . 4 ((𝑇 ⊆ (𝑁𝑇) ∧ 𝑈 ⊆ (𝑁𝑈)) → (𝑇𝑈) ⊆ ((𝑁𝑇) ∪ (𝑁𝑈)))
2320, 21, 223imp3i2an 1346 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑇𝑈) ⊆ ((𝑁𝑇) ∪ (𝑁𝑈)))
247, 8lspss 20890 . . 3 ((𝑊 ∈ LMod ∧ ((𝑁𝑇) ∪ (𝑁𝑈)) ⊆ 𝑉 ∧ (𝑇𝑈) ⊆ ((𝑁𝑇) ∪ (𝑁𝑈))) → (𝑁‘(𝑇𝑈)) ⊆ (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))))
251, 18, 23, 24syl3anc 1373 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑇𝑈)) ⊆ (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))))
267, 8lspss 20890 . . . 4 ((𝑊 ∈ LMod ∧ (𝑁‘(𝑇𝑈)) ⊆ 𝑉 ∧ ((𝑁𝑇) ∪ (𝑁𝑈)) ⊆ (𝑁‘(𝑇𝑈))) → (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))) ⊆ (𝑁‘(𝑁‘(𝑇𝑈))))
271, 17, 15, 26syl3anc 1373 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))) ⊆ (𝑁‘(𝑁‘(𝑇𝑈))))
287, 8lspidm 20892 . . . 4 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ 𝑉) → (𝑁‘(𝑁‘(𝑇𝑈))) = (𝑁‘(𝑇𝑈)))
291, 4, 28syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑁‘(𝑇𝑈))) = (𝑁‘(𝑇𝑈)))
3027, 29sseqtrd 3983 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))) ⊆ (𝑁‘(𝑇𝑈)))
3125, 30eqssd 3964 1 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑇𝑈)) = (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cun 3912  wss 3914  cfv 6511  Basecbs 17179  LModclmod 20766  LSpanclspn 20877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mgp 20050  df-ur 20091  df-ring 20144  df-lmod 20768  df-lss 20838  df-lsp 20878
This theorem is referenced by:  lspun0  20917  lsmsp2  20994  lsmpr  20996  lsppr  21000  islshpsm  38973  lshpnel2N  38978  lkrlsp3  39097  dochsatshp  41445
  Copyright terms: Public domain W3C validator