Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjinfi Structured version   Visualization version   GIF version

Theorem disjinfi 41443
Description: Only a finite number of disjoint sets can have a nonempty intersection with a finite set 𝐶 (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
disjinfi.b ((𝜑𝑥𝐴) → 𝐵𝑉)
disjinfi.d (𝜑Disj 𝑥𝐴 𝐵)
disjinfi.c (𝜑𝐶 ∈ Fin)
Assertion
Ref Expression
disjinfi (𝜑 → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ∈ Fin)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝑉   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjinfi
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjinfi.c . . 3 (𝜑𝐶 ∈ Fin)
2 inss2 4204 . . . 4 ( ran (𝑥𝐴𝐵) ∩ 𝐶) ⊆ 𝐶
32a1i 11 . . 3 (𝐶 ∈ Fin → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ⊆ 𝐶)
4 ssfi 8730 . . 3 ((𝐶 ∈ Fin ∧ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ⊆ 𝐶) → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ Fin)
51, 3, 4syl2anc2 587 . 2 (𝜑 → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ Fin)
62a1i 11 . . . . 5 (𝜑 → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ⊆ 𝐶)
76, 1jca 514 . . . 4 (𝜑 → (( ran (𝑥𝐴𝐵) ∩ 𝐶) ⊆ 𝐶𝐶 ∈ Fin))
8 ssexg 5218 . . . 4 ((( ran (𝑥𝐴𝐵) ∩ 𝐶) ⊆ 𝐶𝐶 ∈ Fin) → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ V)
97, 8syl 17 . . 3 (𝜑 → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ V)
10 elinel1 4170 . . . . . . . . . . . . 13 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) → 𝑦 ran (𝑥𝐴𝐵))
11 eluni2 4834 . . . . . . . . . . . . . . 15 (𝑦 ran (𝑥𝐴𝐵) ↔ ∃𝑤 ∈ ran (𝑥𝐴𝐵)𝑦𝑤)
1211biimpi 218 . . . . . . . . . . . . . 14 (𝑦 ran (𝑥𝐴𝐵) → ∃𝑤 ∈ ran (𝑥𝐴𝐵)𝑦𝑤)
13 vex 3496 . . . . . . . . . . . . . . . . . . . . 21 𝑤 ∈ V
14 eqid 2819 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1514elrnmpt 5821 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ V → (𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑤 = 𝐵))
1613, 15ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑤 = 𝐵)
1716biimpi 218 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑤 = 𝐵)
1817adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤) → ∃𝑥𝐴 𝑤 = 𝐵)
19 nfcv 2975 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑤
20 nfmpt1 5155 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥𝐴𝐵)
2120nfrn 5817 . . . . . . . . . . . . . . . . . . . . 21 𝑥ran (𝑥𝐴𝐵)
2219, 21nfel 2990 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑤 ∈ ran (𝑥𝐴𝐵)
23 nfv 1908 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑦𝑤
2422, 23nfan 1893 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤)
25 simpl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝑤𝑤 = 𝐵) → 𝑦𝑤)
26 simpr 487 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝑤𝑤 = 𝐵) → 𝑤 = 𝐵)
2725, 26eleqtrd 2913 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝑤𝑤 = 𝐵) → 𝑦𝐵)
2827ex 415 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝑤 → (𝑤 = 𝐵𝑦𝐵))
2928a1d 25 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑤 → (𝑥𝐴 → (𝑤 = 𝐵𝑦𝐵)))
3029adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤) → (𝑥𝐴 → (𝑤 = 𝐵𝑦𝐵)))
3124, 30reximdai 3309 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤) → (∃𝑥𝐴 𝑤 = 𝐵 → ∃𝑥𝐴 𝑦𝐵))
3218, 31mpd 15 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤) → ∃𝑥𝐴 𝑦𝐵)
3332ex 415 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ran (𝑥𝐴𝐵) → (𝑦𝑤 → ∃𝑥𝐴 𝑦𝐵))
3433a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ran (𝑥𝐴𝐵) → (𝑤 ∈ ran (𝑥𝐴𝐵) → (𝑦𝑤 → ∃𝑥𝐴 𝑦𝐵)))
3534rexlimdv 3281 . . . . . . . . . . . . . 14 (𝑦 ran (𝑥𝐴𝐵) → (∃𝑤 ∈ ran (𝑥𝐴𝐵)𝑦𝑤 → ∃𝑥𝐴 𝑦𝐵))
3612, 35mpd 15 . . . . . . . . . . . . 13 (𝑦 ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑦𝐵)
3710, 36syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) → ∃𝑥𝐴 𝑦𝐵)
3837adantl 484 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∃𝑥𝐴 𝑦𝐵)
39 nfv 1908 . . . . . . . . . . . . 13 𝑥𝜑
40 nfcv 2975 . . . . . . . . . . . . . 14 𝑥𝑦
4121nfuni 4837 . . . . . . . . . . . . . . 15 𝑥 ran (𝑥𝐴𝐵)
42 nfcv 2975 . . . . . . . . . . . . . . 15 𝑥𝐶
4341, 42nfin 4191 . . . . . . . . . . . . . 14 𝑥( ran (𝑥𝐴𝐵) ∩ 𝐶)
4440, 43nfel 2990 . . . . . . . . . . . . 13 𝑥 𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)
4539, 44nfan 1893 . . . . . . . . . . . 12 𝑥(𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶))
46 nfre1 3304 . . . . . . . . . . . 12 𝑥𝑥𝐴 𝑦 ∈ (𝐵𝐶)
472sseli 3961 . . . . . . . . . . . . . 14 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) → 𝑦𝐶)
48 simp2 1131 . . . . . . . . . . . . . . . 16 ((𝑦𝐶𝑥𝐴𝑦𝐵) → 𝑥𝐴)
49 simpr 487 . . . . . . . . . . . . . . . . . 18 ((𝑦𝐶𝑦𝐵) → 𝑦𝐵)
50 simpl 485 . . . . . . . . . . . . . . . . . 18 ((𝑦𝐶𝑦𝐵) → 𝑦𝐶)
5149, 50elind 4169 . . . . . . . . . . . . . . . . 17 ((𝑦𝐶𝑦𝐵) → 𝑦 ∈ (𝐵𝐶))
52513adant2 1125 . . . . . . . . . . . . . . . 16 ((𝑦𝐶𝑥𝐴𝑦𝐵) → 𝑦 ∈ (𝐵𝐶))
53 rspe 3302 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝑦 ∈ (𝐵𝐶)) → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
5448, 52, 53syl2anc 586 . . . . . . . . . . . . . . 15 ((𝑦𝐶𝑥𝐴𝑦𝐵) → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
55543exp 1113 . . . . . . . . . . . . . 14 (𝑦𝐶 → (𝑥𝐴 → (𝑦𝐵 → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
5647, 55syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) → (𝑥𝐴 → (𝑦𝐵 → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
5756adantl 484 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → (𝑥𝐴 → (𝑦𝐵 → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
5845, 46, 57rexlimd 3315 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → (∃𝑥𝐴 𝑦𝐵 → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
5938, 58mpd 15 . . . . . . . . . 10 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
60 disjinfi.d . . . . . . . . . . . . . . . . . . . . 21 (𝜑Disj 𝑥𝐴 𝐵)
61 disjors 5038 . . . . . . . . . . . . . . . . . . . . 21 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑧𝐴𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅))
6260, 61sylib 220 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑧𝐴𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅))
63 nfv 1908 . . . . . . . . . . . . . . . . . . . . 21 𝑧𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅)
64 nfcv 2975 . . . . . . . . . . . . . . . . . . . . . 22 𝑥𝐴
65 nfv 1908 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥 𝑧 = 𝑤
66 nfcsb1v 3905 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥𝑧 / 𝑥𝐵
6719nfcsb1 3904 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥𝑤 / 𝑥𝐵
6866, 67nfin 4191 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥(𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵)
69 nfcv 2975 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥
7068, 69nfeq 2989 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥(𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅
7165, 70nfor 1898 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅)
7264, 71nfralw 3223 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅)
73 equequ1 2025 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (𝑥 = 𝑤𝑧 = 𝑤))
74 csbeq1a 3895 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
7574ineq1d 4186 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑧 → (𝐵𝑤 / 𝑥𝐵) = (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵))
7675eqeq1d 2821 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → ((𝐵𝑤 / 𝑥𝐵) = ∅ ↔ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅))
7773, 76orbi12d 914 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → ((𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ↔ (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅)))
7877ralbidv 3195 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → (∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ↔ ∀𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅)))
7963, 72, 78cbvralw 3440 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥𝐴𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ↔ ∀𝑧𝐴𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅))
8062, 79sylibr 236 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝐴𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅))
81 rspa 3204 . . . . . . . . . . . . . . . . . . 19 ((∀𝑥𝐴𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ∧ 𝑥𝐴) → ∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅))
8280, 81sylan 582 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → ∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅))
8382adantr 483 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ 𝑤𝐴) → ∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅))
84 simpr 487 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ 𝑤𝐴) → 𝑤𝐴)
85 rspa 3204 . . . . . . . . . . . . . . . . . 18 ((∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ∧ 𝑤𝐴) → (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅))
8685orcomd 867 . . . . . . . . . . . . . . . . 17 ((∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ∧ 𝑤𝐴) → ((𝐵𝑤 / 𝑥𝐵) = ∅ ∨ 𝑥 = 𝑤))
8783, 84, 86syl2anc 586 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑤𝐴) → ((𝐵𝑤 / 𝑥𝐵) = ∅ ∨ 𝑥 = 𝑤))
8887adantr 483 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑤𝐴) ∧ (𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶))) → ((𝐵𝑤 / 𝑥𝐵) = ∅ ∨ 𝑥 = 𝑤))
89 elinel1 4170 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐵𝐶) → 𝑦𝐵)
9089adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑦𝐵)
91 sbsbc 3774 . . . . . . . . . . . . . . . . . . . . . 22 ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶))
92 sbcel2 4365 . . . . . . . . . . . . . . . . . . . . . 22 ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦𝑤 / 𝑥(𝐵𝐶))
93 csbin 4389 . . . . . . . . . . . . . . . . . . . . . . 23 𝑤 / 𝑥(𝐵𝐶) = (𝑤 / 𝑥𝐵𝑤 / 𝑥𝐶)
9493eleq2i 2902 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝑤 / 𝑥(𝐵𝐶) ↔ 𝑦 ∈ (𝑤 / 𝑥𝐵𝑤 / 𝑥𝐶))
9591, 92, 943bitri 299 . . . . . . . . . . . . . . . . . . . . 21 ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑤 / 𝑥𝐵𝑤 / 𝑥𝐶))
9695biimpi 218 . . . . . . . . . . . . . . . . . . . 20 ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) → 𝑦 ∈ (𝑤 / 𝑥𝐵𝑤 / 𝑥𝐶))
97 elinel1 4170 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑤 / 𝑥𝐵𝑤 / 𝑥𝐶) → 𝑦𝑤 / 𝑥𝐵)
9896, 97syl 17 . . . . . . . . . . . . . . . . . . 19 ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) → 𝑦𝑤 / 𝑥𝐵)
9998adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑦𝑤 / 𝑥𝐵)
10090, 99jca 514 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → (𝑦𝐵𝑦𝑤 / 𝑥𝐵))
101 inelcm 4412 . . . . . . . . . . . . . . . . . 18 ((𝑦𝐵𝑦𝑤 / 𝑥𝐵) → (𝐵𝑤 / 𝑥𝐵) ≠ ∅)
102101neneqd 3019 . . . . . . . . . . . . . . . . 17 ((𝑦𝐵𝑦𝑤 / 𝑥𝐵) → ¬ (𝐵𝑤 / 𝑥𝐵) = ∅)
103100, 102syl 17 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → ¬ (𝐵𝑤 / 𝑥𝐵) = ∅)
104103adantl 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑤𝐴) ∧ (𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶))) → ¬ (𝐵𝑤 / 𝑥𝐵) = ∅)
105 pm2.53 847 . . . . . . . . . . . . . . 15 (((𝐵𝑤 / 𝑥𝐵) = ∅ ∨ 𝑥 = 𝑤) → (¬ (𝐵𝑤 / 𝑥𝐵) = ∅ → 𝑥 = 𝑤))
10688, 104, 105sylc 65 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐴) ∧ 𝑤𝐴) ∧ (𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶))) → 𝑥 = 𝑤)
107106ex 415 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑤𝐴) → ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤))
108107ralrimiva 3180 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ∀𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤))
109108ralrimiva 3180 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤))
110109adantr 483 . . . . . . . . . 10 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤))
11159, 110jca 514 . . . . . . . . 9 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ∧ ∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤)))
112 reu2 3714 . . . . . . . . 9 (∃!𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ∧ ∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤)))
113111, 112sylibr 236 . . . . . . . 8 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∃!𝑥𝐴 𝑦 ∈ (𝐵𝐶))
114 riotacl2 7122 . . . . . . . 8 (∃!𝑥𝐴 𝑦 ∈ (𝐵𝐶) → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)})
115113, 114syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)})
116 nfriota1 7113 . . . . . . . . . . . 12 𝑥(𝑥𝐴 𝑦 ∈ (𝐵𝐶))
117116nfcsb1 3904 . . . . . . . . . . . . . 14 𝑥(𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵
118117, 42nfin 4191 . . . . . . . . . . . . 13 𝑥((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶)
11940, 118nfel 2990 . . . . . . . . . . . 12 𝑥 𝑦 ∈ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶)
120 csbeq1a 3895 . . . . . . . . . . . . . 14 (𝑥 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) → 𝐵 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵)
121120ineq1d 4186 . . . . . . . . . . . . 13 (𝑥 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) → (𝐵𝐶) = ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶))
122121eleq2d 2896 . . . . . . . . . . . 12 (𝑥 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) → (𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶)))
123116, 64, 119, 122elrabf 3674 . . . . . . . . . . 11 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} ↔ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ 𝐴𝑦 ∈ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶)))
124123biimpi 218 . . . . . . . . . 10 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ 𝐴𝑦 ∈ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶)))
125124simpld 497 . . . . . . . . 9 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ 𝐴)
126124simprd 498 . . . . . . . . . 10 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → 𝑦 ∈ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶))
127126ne0d 4299 . . . . . . . . 9 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) ≠ ∅)
128125, 127jca 514 . . . . . . . 8 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ 𝐴 ∧ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) ≠ ∅))
129118, 69nfne 3117 . . . . . . . . 9 𝑥((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) ≠ ∅
130121neeq1d 3073 . . . . . . . . 9 (𝑥 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) → ((𝐵𝐶) ≠ ∅ ↔ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) ≠ ∅))
131116, 64, 129, 130elrabf 3674 . . . . . . . 8 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ↔ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ 𝐴 ∧ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) ≠ ∅))
132128, 131sylibr 236 . . . . . . 7 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅})
133115, 132syl 17 . . . . . 6 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅})
134133ralrimiva 3180 . . . . 5 (𝜑 → ∀𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)(𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅})
13567, 42nfin 4191 . . . . . . . . . . . . 13 𝑥(𝑤 / 𝑥𝐵𝐶)
136135, 69nfne 3117 . . . . . . . . . . . 12 𝑥(𝑤 / 𝑥𝐵𝐶) ≠ ∅
137 csbeq1a 3895 . . . . . . . . . . . . . 14 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
138137ineq1d 4186 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝐵𝐶) = (𝑤 / 𝑥𝐵𝐶))
139138neeq1d 3073 . . . . . . . . . . . 12 (𝑥 = 𝑤 → ((𝐵𝐶) ≠ ∅ ↔ (𝑤 / 𝑥𝐵𝐶) ≠ ∅))
14019, 64, 136, 139elrabf 3674 . . . . . . . . . . 11 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ↔ (𝑤𝐴 ∧ (𝑤 / 𝑥𝐵𝐶) ≠ ∅))
141140simprbi 499 . . . . . . . . . 10 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} → (𝑤 / 𝑥𝐵𝐶) ≠ ∅)
142 n0 4308 . . . . . . . . . 10 ((𝑤 / 𝑥𝐵𝐶) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
143141, 142sylib 220 . . . . . . . . 9 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} → ∃𝑦 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
144143adantl 484 . . . . . . . 8 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → ∃𝑦 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
145 nfv 1908 . . . . . . . . 9 𝑦(𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅})
146 simpl 485 . . . . . . . . . 10 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → 𝜑)
147140simplbi 500 . . . . . . . . . . 11 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} → 𝑤𝐴)
148147adantl 484 . . . . . . . . . 10 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → 𝑤𝐴)
149 elinel1 4170 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → 𝑦𝑤 / 𝑥𝐵)
150149adantl 484 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦𝑤 / 𝑥𝐵)
151 simplr 767 . . . . . . . . . . . . . . . 16 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤𝐴)
152 nfv 1908 . . . . . . . . . . . . . . . . . . 19 𝑥(𝜑𝑤𝐴)
153 nfcv 2975 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑉
15467, 153nfel 2990 . . . . . . . . . . . . . . . . . . 19 𝑥𝑤 / 𝑥𝐵𝑉
155152, 154nfim 1890 . . . . . . . . . . . . . . . . . 18 𝑥((𝜑𝑤𝐴) → 𝑤 / 𝑥𝐵𝑉)
156 eleq1w 2893 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → (𝑥𝐴𝑤𝐴))
157156anbi2d 630 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → ((𝜑𝑥𝐴) ↔ (𝜑𝑤𝐴)))
158137eleq1d 2895 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → (𝐵𝑉𝑤 / 𝑥𝐵𝑉))
159157, 158imbi12d 347 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → (((𝜑𝑥𝐴) → 𝐵𝑉) ↔ ((𝜑𝑤𝐴) → 𝑤 / 𝑥𝐵𝑉)))
160 disjinfi.b . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → 𝐵𝑉)
161155, 159, 160chvarfv 2234 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝐴) → 𝑤 / 𝑥𝐵𝑉)
162161adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 / 𝑥𝐵𝑉)
163 eqid 2819 . . . . . . . . . . . . . . . . 17 (𝑤𝐴𝑤 / 𝑥𝐵) = (𝑤𝐴𝑤 / 𝑥𝐵)
164163elrnmpt1 5823 . . . . . . . . . . . . . . . 16 ((𝑤𝐴𝑤 / 𝑥𝐵𝑉) → 𝑤 / 𝑥𝐵 ∈ ran (𝑤𝐴𝑤 / 𝑥𝐵))
165151, 162, 164syl2anc 586 . . . . . . . . . . . . . . 15 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 / 𝑥𝐵 ∈ ran (𝑤𝐴𝑤 / 𝑥𝐵))
166 nfcv 2975 . . . . . . . . . . . . . . . . 17 𝑤𝐵
167137equcoms 2020 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑥𝐵 = 𝑤 / 𝑥𝐵)
168167eqcomd 2825 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑥𝑤 / 𝑥𝐵 = 𝐵)
16967, 166, 168cbvmpt 5158 . . . . . . . . . . . . . . . 16 (𝑤𝐴𝑤 / 𝑥𝐵) = (𝑥𝐴𝐵)
170169rneqi 5800 . . . . . . . . . . . . . . 15 ran (𝑤𝐴𝑤 / 𝑥𝐵) = ran (𝑥𝐴𝐵)
171165, 170eleqtrdi 2921 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 / 𝑥𝐵 ∈ ran (𝑥𝐴𝐵))
172 elunii 4835 . . . . . . . . . . . . . 14 ((𝑦𝑤 / 𝑥𝐵𝑤 / 𝑥𝐵 ∈ ran (𝑥𝐴𝐵)) → 𝑦 ran (𝑥𝐴𝐵))
173150, 171, 172syl2anc 586 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦 ran (𝑥𝐴𝐵))
174 elinel2 4171 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → 𝑦𝐶)
175174adantl 484 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦𝐶)
176173, 175elind 4169 . . . . . . . . . . . 12 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶))
177 nfv 1908 . . . . . . . . . . . . . . 15 𝑤 𝑦 ∈ (𝐵𝐶)
17840, 135nfel 2990 . . . . . . . . . . . . . . 15 𝑥 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)
179138eleq2d 2896 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)))
180177, 178, 179cbvriotaw 7115 . . . . . . . . . . . . . 14 (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) = (𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
181180a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) = (𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)))
182 simpr 487 . . . . . . . . . . . . . . 15 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
183151, 182jca 514 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → (𝑤𝐴𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)))
184 rspe 3302 . . . . . . . . . . . . . . . . . 18 ((𝑤𝐴𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ∃𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
185184adantll 712 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ∃𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
186 simpll 765 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝜑)
187 sbequ 2083 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑧 → ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ [𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶)))
188 sbsbc 3774 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ [𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶))
189188a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑧 → ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ [𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶)))
190 sbcel2 4365 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦𝑧 / 𝑥(𝐵𝐶))
191 csbin 4389 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑧 / 𝑥(𝐵𝐶) = (𝑧 / 𝑥𝐵𝑧 / 𝑥𝐶)
192 vex 3496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑧 ∈ V
193 csbconstg 3900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ V → 𝑧 / 𝑥𝐶 = 𝐶)
194192, 193ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑧 / 𝑥𝐶 = 𝐶
195194ineq2i 4184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 / 𝑥𝐵𝑧 / 𝑥𝐶) = (𝑧 / 𝑥𝐵𝐶)
196191, 195eqtri 2842 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑧 / 𝑥(𝐵𝐶) = (𝑧 / 𝑥𝐵𝐶)
197196eleq2i 2902 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝑧 / 𝑥(𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))
198190, 197bitri 277 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))
199198a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑧 → ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)))
200187, 189, 1993bitrd 307 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑧 → ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)))
201200anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑧 → ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) ↔ (𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))))
202 equequ2 2026 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑧 → (𝑥 = 𝑤𝑥 = 𝑧))
203201, 202imbi12d 347 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑧 → (((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤) ↔ ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧)))
204203cbvralvw 3448 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤) ↔ ∀𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧))
205204ralbii 3163 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤) ↔ ∀𝑥𝐴𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧))
206 nfv 1908 . . . . . . . . . . . . . . . . . . . . 21 𝑤𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧)
20766, 42nfin 4191 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥(𝑧 / 𝑥𝐵𝐶)
20840, 207nfel 2990 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)
209178, 208nfan 1893 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥(𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))
210 nfv 1908 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥 𝑤 = 𝑧
211209, 210nfim 1890 . . . . . . . . . . . . . . . . . . . . . 22 𝑥((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)
21264, 211nfralw 3223 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)
213179anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑤 → ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) ↔ (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))))
214 equequ1 2025 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑤 → (𝑥 = 𝑧𝑤 = 𝑧))
215213, 214imbi12d 347 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑤 → (((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧) ↔ ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)))
216215ralbidv 3195 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → (∀𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧) ↔ ∀𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)))
217206, 212, 216cbvralw 3440 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥𝐴𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧) ↔ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
218 biid 263 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧) ↔ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
219 sbsbc 3774 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ([𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ↔ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
220 sbcel2 4365 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ([𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ↔ 𝑦𝑧 / 𝑤(𝑤 / 𝑥𝐵𝐶))
221 csbin 4389 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑧 / 𝑤(𝑤 / 𝑥𝐵𝐶) = (𝑧 / 𝑤𝑤 / 𝑥𝐵𝑧 / 𝑤𝐶)
222 csbcow 3896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑧 / 𝑤𝑤 / 𝑥𝐵 = 𝑧 / 𝑥𝐵
223 csbconstg 3900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 ∈ V → 𝑧 / 𝑤𝐶 = 𝐶)
224192, 223ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑧 / 𝑤𝐶 = 𝐶
225222, 224ineq12i 4185 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 / 𝑤𝑤 / 𝑥𝐵𝑧 / 𝑤𝐶) = (𝑧 / 𝑥𝐵𝐶)
226 eqid 2819 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 / 𝑥𝐵𝐶) = (𝑧 / 𝑥𝐵𝐶)
227221, 225, 2263eqtri 2846 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑧 / 𝑤(𝑤 / 𝑥𝐵𝐶) = (𝑧 / 𝑥𝐵𝐶)
228227eleq2i 2902 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦𝑧 / 𝑤(𝑤 / 𝑥𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))
229219, 220, 2283bitrri 300 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (𝑧 / 𝑥𝐵𝐶) ↔ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
230229anbi2i 624 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) ↔ (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)))
231230imbi1i 352 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧) ↔ ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
232231ralbii 3163 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧) ↔ ∀𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
233232ralbii 3163 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧) ↔ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
234218, 233bitri 277 . . . . . . . . . . . . . . . . . . . 20 (∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧) ↔ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
235205, 217, 2343bitri 299 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤) ↔ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
236110, 235sylib 220 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
237186, 176, 236syl2anc 586 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
238185, 237jca 514 . . . . . . . . . . . . . . . 16 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → (∃𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)))
239 reu2 3714 . . . . . . . . . . . . . . . 16 (∃!𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ↔ (∃𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)))
240238, 239sylibr 236 . . . . . . . . . . . . . . 15 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ∃!𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
241 riota1 7127 . . . . . . . . . . . . . . 15 (∃!𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → ((𝑤𝐴𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) ↔ (𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) = 𝑤))
242240, 241syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ((𝑤𝐴𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) ↔ (𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) = 𝑤))
243183, 242mpbid 234 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → (𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) = 𝑤)
244181, 243eqtr2d 2855 . . . . . . . . . . . 12 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
245176, 244jca 514 . . . . . . . . . . 11 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
246245ex 415 . . . . . . . . . 10 ((𝜑𝑤𝐴) → (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))))
247146, 148, 246syl2anc 586 . . . . . . . . 9 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))))
248145, 247eximd 2208 . . . . . . . 8 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → (∃𝑦 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → ∃𝑦(𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))))
249144, 248mpd 15 . . . . . . 7 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → ∃𝑦(𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
250 df-rex 3142 . . . . . . 7 (∃𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ↔ ∃𝑦(𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
251249, 250sylibr 236 . . . . . 6 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → ∃𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
252251ralrimiva 3180 . . . . 5 (𝜑 → ∀𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}∃𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
253134, 252jca 514 . . . 4 (𝜑 → (∀𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)(𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ∧ ∀𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}∃𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
254 eqid 2819 . . . . 5 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶))) = (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
255254fompt 41442 . . . 4 ((𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶))):( ran (𝑥𝐴𝐵) ∩ 𝐶)–onto→{𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ↔ (∀𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)(𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ∧ ∀𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}∃𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
256253, 255sylibr 236 . . 3 (𝜑 → (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶))):( ran (𝑥𝐴𝐵) ∩ 𝐶)–onto→{𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅})
257 fodomg 9937 . . 3 (( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ V → ((𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶))):( ran (𝑥𝐴𝐵) ∩ 𝐶)–onto→{𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ≼ ( ran (𝑥𝐴𝐵) ∩ 𝐶)))
2589, 256, 257sylc 65 . 2 (𝜑 → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ≼ ( ran (𝑥𝐴𝐵) ∩ 𝐶))
259 domfi 8731 . 2 ((( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ Fin ∧ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ≼ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ∈ Fin)
2605, 258, 259syl2anc 586 1 (𝜑 → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1081   = wceq 1530  wex 1773  [wsb 2062  wcel 2107  wne 3014  wral 3136  wrex 3137  ∃!wreu 3138  {crab 3140  Vcvv 3493  [wsbc 3770  csb 3881  cin 3933  wss 3934  c0 4289   cuni 4830  Disj wdisj 5022   class class class wbr 5057  cmpt 5137  ran crn 5549  ontowfo 6346  crio 7105  cdom 8499  Fincfn 8501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-ac2 9877
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-fin 8505  df-card 9360  df-acn 9363  df-ac 9534
This theorem is referenced by:  fsumiunss  41845  sge0iunmptlemre  42687
  Copyright terms: Public domain W3C validator