Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjinfi Structured version   Visualization version   GIF version

Theorem disjinfi 45183
Description: Only a finite number of disjoint sets can have a nonempty intersection with a finite set 𝐶. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
disjinfi.b ((𝜑𝑥𝐴) → 𝐵𝑉)
disjinfi.d (𝜑Disj 𝑥𝐴 𝐵)
disjinfi.c (𝜑𝐶 ∈ Fin)
Assertion
Ref Expression
disjinfi (𝜑 → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ∈ Fin)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝑉   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjinfi
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjinfi.c . . 3 (𝜑𝐶 ∈ Fin)
2 inss2 4218 . . 3 ( ran (𝑥𝐴𝐵) ∩ 𝐶) ⊆ 𝐶
3 ssfi 9192 . . 3 ((𝐶 ∈ Fin ∧ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ⊆ 𝐶) → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ Fin)
41, 2, 3sylancl 586 . 2 (𝜑 → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ Fin)
52a1i 11 . . . 4 (𝜑 → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ⊆ 𝐶)
61, 5ssexd 5299 . . 3 (𝜑 → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ V)
7 elinel1 4181 . . . . . . . . . 10 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) → 𝑦 ran (𝑥𝐴𝐵))
8 eluni2 4892 . . . . . . . . . . . 12 (𝑦 ran (𝑥𝐴𝐵) ↔ ∃𝑤 ∈ ran (𝑥𝐴𝐵)𝑦𝑤)
98biimpi 216 . . . . . . . . . . 11 (𝑦 ran (𝑥𝐴𝐵) → ∃𝑤 ∈ ran (𝑥𝐴𝐵)𝑦𝑤)
10 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1110elrnmpt 5943 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ V → (𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑤 = 𝐵))
1211elv 3469 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑤 = 𝐵)
1312biimpi 216 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑤 = 𝐵)
1413adantr 480 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤) → ∃𝑥𝐴 𝑤 = 𝐵)
15 nfmpt1 5225 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑥𝐴𝐵)
1615nfrn 5937 . . . . . . . . . . . . . . . . . 18 𝑥ran (𝑥𝐴𝐵)
1716nfcri 2891 . . . . . . . . . . . . . . . . 17 𝑥 𝑤 ∈ ran (𝑥𝐴𝐵)
18 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑥 𝑦𝑤
1917, 18nfan 1899 . . . . . . . . . . . . . . . 16 𝑥(𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤)
20 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑤𝑤 = 𝐵) → 𝑦𝑤)
21 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑤𝑤 = 𝐵) → 𝑤 = 𝐵)
2220, 21eleqtrd 2837 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝑤𝑤 = 𝐵) → 𝑦𝐵)
2322ex 412 . . . . . . . . . . . . . . . . . 18 (𝑦𝑤 → (𝑤 = 𝐵𝑦𝐵))
2423a1d 25 . . . . . . . . . . . . . . . . 17 (𝑦𝑤 → (𝑥𝐴 → (𝑤 = 𝐵𝑦𝐵)))
2524adantl 481 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤) → (𝑥𝐴 → (𝑤 = 𝐵𝑦𝐵)))
2619, 25reximdai 3248 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤) → (∃𝑥𝐴 𝑤 = 𝐵 → ∃𝑥𝐴 𝑦𝐵))
2714, 26mpd 15 . . . . . . . . . . . . . 14 ((𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤) → ∃𝑥𝐴 𝑦𝐵)
2827ex 412 . . . . . . . . . . . . 13 (𝑤 ∈ ran (𝑥𝐴𝐵) → (𝑦𝑤 → ∃𝑥𝐴 𝑦𝐵))
2928a1i 11 . . . . . . . . . . . 12 (𝑦 ran (𝑥𝐴𝐵) → (𝑤 ∈ ran (𝑥𝐴𝐵) → (𝑦𝑤 → ∃𝑥𝐴 𝑦𝐵)))
3029rexlimdv 3140 . . . . . . . . . . 11 (𝑦 ran (𝑥𝐴𝐵) → (∃𝑤 ∈ ran (𝑥𝐴𝐵)𝑦𝑤 → ∃𝑥𝐴 𝑦𝐵))
319, 30mpd 15 . . . . . . . . . 10 (𝑦 ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑦𝐵)
327, 31syl 17 . . . . . . . . 9 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) → ∃𝑥𝐴 𝑦𝐵)
3332adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∃𝑥𝐴 𝑦𝐵)
34 nfv 1914 . . . . . . . . . 10 𝑥𝜑
3516nfuni 4895 . . . . . . . . . . . 12 𝑥 ran (𝑥𝐴𝐵)
36 nfcv 2899 . . . . . . . . . . . 12 𝑥𝐶
3735, 36nfin 4204 . . . . . . . . . . 11 𝑥( ran (𝑥𝐴𝐵) ∩ 𝐶)
3837nfcri 2891 . . . . . . . . . 10 𝑥 𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)
3934, 38nfan 1899 . . . . . . . . 9 𝑥(𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶))
40 nfre1 3271 . . . . . . . . 9 𝑥𝑥𝐴 𝑦 ∈ (𝐵𝐶)
41 elinel2 4182 . . . . . . . . . . 11 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) → 𝑦𝐶)
42 simp2 1137 . . . . . . . . . . . . 13 ((𝑦𝐶𝑥𝐴𝑦𝐵) → 𝑥𝐴)
43 simpr 484 . . . . . . . . . . . . . 14 ((𝑦𝐶𝑦𝐵) → 𝑦𝐵)
44 simpl 482 . . . . . . . . . . . . . 14 ((𝑦𝐶𝑦𝐵) → 𝑦𝐶)
4543, 44elind 4180 . . . . . . . . . . . . 13 ((𝑦𝐶𝑦𝐵) → 𝑦 ∈ (𝐵𝐶))
46 rspe 3236 . . . . . . . . . . . . 13 ((𝑥𝐴𝑦 ∈ (𝐵𝐶)) → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
4742, 45, 463imp3i2an 1346 . . . . . . . . . . . 12 ((𝑦𝐶𝑥𝐴𝑦𝐵) → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
48473exp 1119 . . . . . . . . . . 11 (𝑦𝐶 → (𝑥𝐴 → (𝑦𝐵 → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
4941, 48syl 17 . . . . . . . . . 10 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) → (𝑥𝐴 → (𝑦𝐵 → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
5049adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → (𝑥𝐴 → (𝑦𝐵 → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
5139, 40, 50rexlimd 3253 . . . . . . . 8 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → (∃𝑥𝐴 𝑦𝐵 → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
5233, 51mpd 15 . . . . . . 7 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
53 disjinfi.d . . . . . . . . . . . . . . 15 (𝜑Disj 𝑥𝐴 𝐵)
54 disjors 5107 . . . . . . . . . . . . . . 15 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑧𝐴𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅))
5553, 54sylib 218 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑧𝐴𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅))
56 nfv 1914 . . . . . . . . . . . . . . 15 𝑧𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅)
57 nfcv 2899 . . . . . . . . . . . . . . . 16 𝑥𝐴
58 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑥 𝑧 = 𝑤
59 nfcsb1v 3903 . . . . . . . . . . . . . . . . . . 19 𝑥𝑧 / 𝑥𝐵
60 nfcv 2899 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑤
6160nfcsb1 3902 . . . . . . . . . . . . . . . . . . 19 𝑥𝑤 / 𝑥𝐵
6259, 61nfin 4204 . . . . . . . . . . . . . . . . . 18 𝑥(𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵)
6362nfeq1 2915 . . . . . . . . . . . . . . . . 17 𝑥(𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅
6458, 63nfor 1904 . . . . . . . . . . . . . . . 16 𝑥(𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅)
6557, 64nfralw 3295 . . . . . . . . . . . . . . 15 𝑥𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅)
66 equequ1 2025 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝑥 = 𝑤𝑧 = 𝑤))
67 csbeq1a 3893 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
6867ineq1d 4199 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝐵𝑤 / 𝑥𝐵) = (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵))
6968eqeq1d 2738 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝐵𝑤 / 𝑥𝐵) = ∅ ↔ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅))
7066, 69orbi12d 918 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ((𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ↔ (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅)))
7170ralbidv 3164 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ↔ ∀𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅)))
7256, 65, 71cbvralw 3290 . . . . . . . . . . . . . 14 (∀𝑥𝐴𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ↔ ∀𝑧𝐴𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅))
7355, 72sylibr 234 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝐴𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅))
7473r19.21bi 3238 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅))
75 rspa 3235 . . . . . . . . . . . . 13 ((∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ∧ 𝑤𝐴) → (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅))
7675orcomd 871 . . . . . . . . . . . 12 ((∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ∧ 𝑤𝐴) → ((𝐵𝑤 / 𝑥𝐵) = ∅ ∨ 𝑥 = 𝑤))
7774, 76sylan 580 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑤𝐴) → ((𝐵𝑤 / 𝑥𝐵) = ∅ ∨ 𝑥 = 𝑤))
78 elinel1 4181 . . . . . . . . . . . 12 (𝑦 ∈ (𝐵𝐶) → 𝑦𝐵)
79 sbsbc 3774 . . . . . . . . . . . . . 14 ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶))
80 sbcel2 4398 . . . . . . . . . . . . . 14 ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦𝑤 / 𝑥(𝐵𝐶))
81 csbin 4422 . . . . . . . . . . . . . . 15 𝑤 / 𝑥(𝐵𝐶) = (𝑤 / 𝑥𝐵𝑤 / 𝑥𝐶)
8281eleq2i 2827 . . . . . . . . . . . . . 14 (𝑦𝑤 / 𝑥(𝐵𝐶) ↔ 𝑦 ∈ (𝑤 / 𝑥𝐵𝑤 / 𝑥𝐶))
8379, 80, 823bitri 297 . . . . . . . . . . . . 13 ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑤 / 𝑥𝐵𝑤 / 𝑥𝐶))
84 elinel1 4181 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑤 / 𝑥𝐵𝑤 / 𝑥𝐶) → 𝑦𝑤 / 𝑥𝐵)
8583, 84sylbi 217 . . . . . . . . . . . 12 ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) → 𝑦𝑤 / 𝑥𝐵)
86 inelcm 4445 . . . . . . . . . . . . 13 ((𝑦𝐵𝑦𝑤 / 𝑥𝐵) → (𝐵𝑤 / 𝑥𝐵) ≠ ∅)
8786neneqd 2938 . . . . . . . . . . . 12 ((𝑦𝐵𝑦𝑤 / 𝑥𝐵) → ¬ (𝐵𝑤 / 𝑥𝐵) = ∅)
8878, 85, 87syl2an 596 . . . . . . . . . . 11 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → ¬ (𝐵𝑤 / 𝑥𝐵) = ∅)
89 pm2.53 851 . . . . . . . . . . 11 (((𝐵𝑤 / 𝑥𝐵) = ∅ ∨ 𝑥 = 𝑤) → (¬ (𝐵𝑤 / 𝑥𝐵) = ∅ → 𝑥 = 𝑤))
9077, 88, 89syl2im 40 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑤𝐴) → ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤))
9190ralrimiva 3133 . . . . . . . . 9 ((𝜑𝑥𝐴) → ∀𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤))
9291ralrimiva 3133 . . . . . . . 8 (𝜑 → ∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤))
9392adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤))
94 reu2 3713 . . . . . . 7 (∃!𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ∧ ∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤)))
9552, 93, 94sylanbrc 583 . . . . . 6 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∃!𝑥𝐴 𝑦 ∈ (𝐵𝐶))
96 riotacl2 7383 . . . . . 6 (∃!𝑥𝐴 𝑦 ∈ (𝐵𝐶) → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)})
97 nfriota1 7374 . . . . . . . . 9 𝑥(𝑥𝐴 𝑦 ∈ (𝐵𝐶))
9897nfcsb1 3902 . . . . . . . . . . 11 𝑥(𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵
9998, 36nfin 4204 . . . . . . . . . 10 𝑥((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶)
10099nfcri 2891 . . . . . . . . 9 𝑥 𝑦 ∈ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶)
101 csbeq1a 3893 . . . . . . . . . . 11 (𝑥 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) → 𝐵 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵)
102101ineq1d 4199 . . . . . . . . . 10 (𝑥 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) → (𝐵𝐶) = ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶))
103102eleq2d 2821 . . . . . . . . 9 (𝑥 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) → (𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶)))
10497, 57, 100, 103elrabf 3672 . . . . . . . 8 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} ↔ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ 𝐴𝑦 ∈ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶)))
105104simplbi 497 . . . . . . 7 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ 𝐴)
106104simprbi 496 . . . . . . . 8 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → 𝑦 ∈ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶))
107106ne0d 4322 . . . . . . 7 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) ≠ ∅)
108 nfcv 2899 . . . . . . . . 9 𝑥
10999, 108nfne 3034 . . . . . . . 8 𝑥((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) ≠ ∅
110102neeq1d 2992 . . . . . . . 8 (𝑥 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) → ((𝐵𝐶) ≠ ∅ ↔ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) ≠ ∅))
11197, 57, 109, 110elrabf 3672 . . . . . . 7 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ↔ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ 𝐴 ∧ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) ≠ ∅))
112105, 107, 111sylanbrc 583 . . . . . 6 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅})
11395, 96, 1123syl 18 . . . . 5 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅})
114113ralrimiva 3133 . . . 4 (𝜑 → ∀𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)(𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅})
11561, 36nfin 4204 . . . . . . . . . . . 12 𝑥(𝑤 / 𝑥𝐵𝐶)
116115, 108nfne 3034 . . . . . . . . . . 11 𝑥(𝑤 / 𝑥𝐵𝐶) ≠ ∅
117 csbeq1a 3893 . . . . . . . . . . . . 13 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
118117ineq1d 4199 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (𝐵𝐶) = (𝑤 / 𝑥𝐵𝐶))
119118neeq1d 2992 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((𝐵𝐶) ≠ ∅ ↔ (𝑤 / 𝑥𝐵𝐶) ≠ ∅))
12060, 57, 116, 119elrabf 3672 . . . . . . . . . 10 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ↔ (𝑤𝐴 ∧ (𝑤 / 𝑥𝐵𝐶) ≠ ∅))
121120simprbi 496 . . . . . . . . 9 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} → (𝑤 / 𝑥𝐵𝐶) ≠ ∅)
122 n0 4333 . . . . . . . . 9 ((𝑤 / 𝑥𝐵𝐶) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
123121, 122sylib 218 . . . . . . . 8 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} → ∃𝑦 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
124123adantl 481 . . . . . . 7 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → ∃𝑦 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
125120simplbi 497 . . . . . . . . 9 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} → 𝑤𝐴)
126 elinel1 4181 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → 𝑦𝑤 / 𝑥𝐵)
127126adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦𝑤 / 𝑥𝐵)
128 simplr 768 . . . . . . . . . . . . . . 15 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤𝐴)
129 nfv 1914 . . . . . . . . . . . . . . . . . 18 𝑥(𝜑𝑤𝐴)
13061nfel1 2916 . . . . . . . . . . . . . . . . . 18 𝑥𝑤 / 𝑥𝐵𝑉
131129, 130nfim 1896 . . . . . . . . . . . . . . . . 17 𝑥((𝜑𝑤𝐴) → 𝑤 / 𝑥𝐵𝑉)
132 eleq1w 2818 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → (𝑥𝐴𝑤𝐴))
133132anbi2d 630 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → ((𝜑𝑥𝐴) ↔ (𝜑𝑤𝐴)))
134117eleq1d 2820 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → (𝐵𝑉𝑤 / 𝑥𝐵𝑉))
135133, 134imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑤 → (((𝜑𝑥𝐴) → 𝐵𝑉) ↔ ((𝜑𝑤𝐴) → 𝑤 / 𝑥𝐵𝑉)))
136 disjinfi.b . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵𝑉)
137131, 135, 136chvarfv 2241 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝐴) → 𝑤 / 𝑥𝐵𝑉)
138137adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 / 𝑥𝐵𝑉)
139 eqid 2736 . . . . . . . . . . . . . . . 16 (𝑤𝐴𝑤 / 𝑥𝐵) = (𝑤𝐴𝑤 / 𝑥𝐵)
140139elrnmpt1 5945 . . . . . . . . . . . . . . 15 ((𝑤𝐴𝑤 / 𝑥𝐵𝑉) → 𝑤 / 𝑥𝐵 ∈ ran (𝑤𝐴𝑤 / 𝑥𝐵))
141128, 138, 140syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 / 𝑥𝐵 ∈ ran (𝑤𝐴𝑤 / 𝑥𝐵))
142 nfcv 2899 . . . . . . . . . . . . . . . 16 𝑤𝐵
143117equcoms 2020 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑥𝐵 = 𝑤 / 𝑥𝐵)
144143eqcomd 2742 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑥𝑤 / 𝑥𝐵 = 𝐵)
14561, 142, 144cbvmpt 5228 . . . . . . . . . . . . . . 15 (𝑤𝐴𝑤 / 𝑥𝐵) = (𝑥𝐴𝐵)
146145rneqi 5922 . . . . . . . . . . . . . 14 ran (𝑤𝐴𝑤 / 𝑥𝐵) = ran (𝑥𝐴𝐵)
147141, 146eleqtrdi 2845 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 / 𝑥𝐵 ∈ ran (𝑥𝐴𝐵))
148 elunii 4893 . . . . . . . . . . . . 13 ((𝑦𝑤 / 𝑥𝐵𝑤 / 𝑥𝐵 ∈ ran (𝑥𝐴𝐵)) → 𝑦 ran (𝑥𝐴𝐵))
149127, 147, 148syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦 ran (𝑥𝐴𝐵))
150 elinel2 4182 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → 𝑦𝐶)
151150adantl 481 . . . . . . . . . . . 12 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦𝐶)
152149, 151elind 4180 . . . . . . . . . . 11 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶))
153 nfv 1914 . . . . . . . . . . . . 13 𝑤 𝑦 ∈ (𝐵𝐶)
154115nfcri 2891 . . . . . . . . . . . . 13 𝑥 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)
155118eleq2d 2821 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)))
156153, 154, 155cbvriotaw 7376 . . . . . . . . . . . 12 (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) = (𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
157 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
158 rspe 3236 . . . . . . . . . . . . . . . 16 ((𝑤𝐴𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ∃𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
159158adantll 714 . . . . . . . . . . . . . . 15 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ∃𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
160 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝜑)
161 sbequ 2084 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑧 → ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ [𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶)))
162 sbsbc 3774 . . . . . . . . . . . . . . . . . . . . . . . 24 ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ [𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶))
163162a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑧 → ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ [𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶)))
164 sbcel2 4398 . . . . . . . . . . . . . . . . . . . . . . . . 25 ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦𝑧 / 𝑥(𝐵𝐶))
165 csbin 4422 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑧 / 𝑥(𝐵𝐶) = (𝑧 / 𝑥𝐵𝑧 / 𝑥𝐶)
166 csbconstg 3898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ V → 𝑧 / 𝑥𝐶 = 𝐶)
167166elv 3469 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑧 / 𝑥𝐶 = 𝐶
168167ineq2i 4197 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 / 𝑥𝐵𝑧 / 𝑥𝐶) = (𝑧 / 𝑥𝐵𝐶)
169165, 168eqtri 2759 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑧 / 𝑥(𝐵𝐶) = (𝑧 / 𝑥𝐵𝐶)
170169eleq2i 2827 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝑧 / 𝑥(𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))
171164, 170bitri 275 . . . . . . . . . . . . . . . . . . . . . . . 24 ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))
172171a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑧 → ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)))
173161, 163, 1723bitrd 305 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑧 → ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)))
174173anbi2d 630 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑧 → ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) ↔ (𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))))
175 equequ2 2026 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑧 → (𝑥 = 𝑤𝑥 = 𝑧))
176174, 175imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑧 → (((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤) ↔ ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧)))
177176cbvralvw 3224 . . . . . . . . . . . . . . . . . . 19 (∀𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤) ↔ ∀𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧))
178177ralbii 3083 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤) ↔ ∀𝑥𝐴𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧))
179 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑤𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧)
18059, 36nfin 4204 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥(𝑧 / 𝑥𝐵𝐶)
181180nfcri 2891 . . . . . . . . . . . . . . . . . . . . . 22 𝑥 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)
182154, 181nfan 1899 . . . . . . . . . . . . . . . . . . . . 21 𝑥(𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))
183 nfv 1914 . . . . . . . . . . . . . . . . . . . . 21 𝑥 𝑤 = 𝑧
184182, 183nfim 1896 . . . . . . . . . . . . . . . . . . . 20 𝑥((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)
18557, 184nfralw 3295 . . . . . . . . . . . . . . . . . . 19 𝑥𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)
186155anbi1d 631 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) ↔ (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))))
187 equequ1 2025 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → (𝑥 = 𝑧𝑤 = 𝑧))
188186, 187imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → (((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧) ↔ ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)))
189188ralbidv 3164 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → (∀𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧) ↔ ∀𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)))
190179, 185, 189cbvralw 3290 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝐴𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧) ↔ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
191 sbsbc 3774 . . . . . . . . . . . . . . . . . . . . . 22 ([𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ↔ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
192 sbcel2 4398 . . . . . . . . . . . . . . . . . . . . . 22 ([𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ↔ 𝑦𝑧 / 𝑤(𝑤 / 𝑥𝐵𝐶))
193 csbin 4422 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧 / 𝑤(𝑤 / 𝑥𝐵𝐶) = (𝑧 / 𝑤𝑤 / 𝑥𝐵𝑧 / 𝑤𝐶)
194 csbcow 3894 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑧 / 𝑤𝑤 / 𝑥𝐵 = 𝑧 / 𝑥𝐵
195 csbconstg 3898 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ V → 𝑧 / 𝑤𝐶 = 𝐶)
196195elv 3469 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑧 / 𝑤𝐶 = 𝐶
197194, 196ineq12i 4198 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 / 𝑤𝑤 / 𝑥𝐵𝑧 / 𝑤𝐶) = (𝑧 / 𝑥𝐵𝐶)
198193, 197eqtri 2759 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧 / 𝑤(𝑤 / 𝑥𝐵𝐶) = (𝑧 / 𝑥𝐵𝐶)
199198eleq2i 2827 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝑧 / 𝑤(𝑤 / 𝑥𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))
200191, 192, 1993bitrri 298 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝑧 / 𝑥𝐵𝐶) ↔ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
201200anbi2i 623 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) ↔ (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)))
202201imbi1i 349 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧) ↔ ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
2032022ralbii 3116 . . . . . . . . . . . . . . . . . 18 (∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧) ↔ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
204178, 190, 2033bitri 297 . . . . . . . . . . . . . . . . 17 (∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤) ↔ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
20593, 204sylib 218 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
206160, 152, 205syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
207 reu2 3713 . . . . . . . . . . . . . . 15 (∃!𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ↔ (∃𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)))
208159, 206, 207sylanbrc 583 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ∃!𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
209 riota1 7388 . . . . . . . . . . . . . 14 (∃!𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → ((𝑤𝐴𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) ↔ (𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) = 𝑤))
210208, 209syl 17 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ((𝑤𝐴𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) ↔ (𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) = 𝑤))
211128, 157, 210mpbi2and 712 . . . . . . . . . . . 12 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → (𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) = 𝑤)
212156, 211eqtr2id 2784 . . . . . . . . . . 11 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
213152, 212jca 511 . . . . . . . . . 10 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
214213ex 412 . . . . . . . . 9 ((𝜑𝑤𝐴) → (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))))
215125, 214sylan2 593 . . . . . . . 8 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))))
216215eximdv 1917 . . . . . . 7 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → (∃𝑦 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → ∃𝑦(𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))))
217124, 216mpd 15 . . . . . 6 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → ∃𝑦(𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
218 df-rex 3062 . . . . . 6 (∃𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ↔ ∃𝑦(𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
219217, 218sylibr 234 . . . . 5 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → ∃𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
220219ralrimiva 3133 . . . 4 (𝜑 → ∀𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}∃𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
221 eqid 2736 . . . . 5 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶))) = (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
222221fompt 7113 . . . 4 ((𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶))):( ran (𝑥𝐴𝐵) ∩ 𝐶)–onto→{𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ↔ (∀𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)(𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ∧ ∀𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}∃𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
223114, 220, 222sylanbrc 583 . . 3 (𝜑 → (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶))):( ran (𝑥𝐴𝐵) ∩ 𝐶)–onto→{𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅})
224 fodomg 10541 . . 3 (( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ V → ((𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶))):( ran (𝑥𝐴𝐵) ∩ 𝐶)–onto→{𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ≼ ( ran (𝑥𝐴𝐵) ∩ 𝐶)))
2256, 223, 224sylc 65 . 2 (𝜑 → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ≼ ( ran (𝑥𝐴𝐵) ∩ 𝐶))
226 domfi 9208 . 2 ((( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ Fin ∧ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ≼ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ∈ Fin)
2274, 225, 226syl2anc 584 1 (𝜑 → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  [wsb 2065  wcel 2109  wne 2933  wral 3052  wrex 3061  ∃!wreu 3362  {crab 3420  Vcvv 3464  [wsbc 3770  csb 3879  cin 3930  wss 3931  c0 4313   cuni 4888  Disj wdisj 5091   class class class wbr 5124  cmpt 5206  ran crn 5660  ontowfo 6534  crio 7366  cdom 8962  Fincfn 8964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-ac2 10482
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-fin 8968  df-card 9958  df-acn 9961  df-ac 10135
This theorem is referenced by:  fsumiunss  45571  sge0iunmptlemre  46411
  Copyright terms: Public domain W3C validator