| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | disjinfi.c | . . 3
⊢ (𝜑 → 𝐶 ∈ Fin) | 
| 2 |  | inss2 4237 | . . 3
⊢ (∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) ⊆ 𝐶 | 
| 3 |  | ssfi 9214 | . . 3
⊢ ((𝐶 ∈ Fin ∧ (∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) ⊆ 𝐶) → (∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) ∈ Fin) | 
| 4 | 1, 2, 3 | sylancl 586 | . 2
⊢ (𝜑 → (∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) ∈ Fin) | 
| 5 | 2 | a1i 11 | . . . 4
⊢ (𝜑 → (∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) ⊆ 𝐶) | 
| 6 | 1, 5 | ssexd 5323 | . . 3
⊢ (𝜑 → (∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) ∈ V) | 
| 7 |  | elinel1 4200 | . . . . . . . . . 10
⊢ (𝑦 ∈ (∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) → 𝑦 ∈ ∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵)) | 
| 8 |  | eluni2 4910 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ∈ 𝑤) | 
| 9 | 8 | biimpi 216 | . . . . . . . . . . 11
⊢ (𝑦 ∈ ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → ∃𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ∈ 𝑤) | 
| 10 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | 
| 11 | 10 | elrnmpt 5968 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ V → (𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑤 = 𝐵)) | 
| 12 | 11 | elv 3484 | . . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑤 = 𝐵) | 
| 13 | 12 | biimpi 216 | . . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → ∃𝑥 ∈ 𝐴 𝑤 = 𝐵) | 
| 14 | 13 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ 𝑦 ∈ 𝑤) → ∃𝑥 ∈ 𝐴 𝑤 = 𝐵) | 
| 15 |  | nfmpt1 5249 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | 
| 16 | 15 | nfrn 5962 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥ran
(𝑥 ∈ 𝐴 ↦ 𝐵) | 
| 17 | 16 | nfcri 2896 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) | 
| 18 |  | nfv 1913 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥 𝑦 ∈ 𝑤 | 
| 19 | 17, 18 | nfan 1898 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥(𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ 𝑦 ∈ 𝑤) | 
| 20 |  | simpl 482 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑤 = 𝐵) → 𝑦 ∈ 𝑤) | 
| 21 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑤 = 𝐵) → 𝑤 = 𝐵) | 
| 22 | 20, 21 | eleqtrd 2842 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑤 = 𝐵) → 𝑦 ∈ 𝐵) | 
| 23 | 22 | ex 412 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ 𝑤 → (𝑤 = 𝐵 → 𝑦 ∈ 𝐵)) | 
| 24 | 23 | a1d 25 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝑤 → (𝑥 ∈ 𝐴 → (𝑤 = 𝐵 → 𝑦 ∈ 𝐵))) | 
| 25 | 24 | adantl 481 | . . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ 𝑦 ∈ 𝑤) → (𝑥 ∈ 𝐴 → (𝑤 = 𝐵 → 𝑦 ∈ 𝐵))) | 
| 26 | 19, 25 | reximdai 3260 | . . . . . . . . . . . . . . 15
⊢ ((𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ 𝑦 ∈ 𝑤) → (∃𝑥 ∈ 𝐴 𝑤 = 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | 
| 27 | 14, 26 | mpd 15 | . . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ 𝑦 ∈ 𝑤) → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | 
| 28 | 27 | ex 412 | . . . . . . . . . . . . 13
⊢ (𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → (𝑦 ∈ 𝑤 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | 
| 29 | 28 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → (𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → (𝑦 ∈ 𝑤 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵))) | 
| 30 | 29 | rexlimdv 3152 | . . . . . . . . . . 11
⊢ (𝑦 ∈ ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → (∃𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ∈ 𝑤 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | 
| 31 | 9, 30 | mpd 15 | . . . . . . . . . 10
⊢ (𝑦 ∈ ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | 
| 32 | 7, 31 | syl 17 | . . . . . . . . 9
⊢ (𝑦 ∈ (∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | 
| 33 | 32 | adantl 481 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶)) → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | 
| 34 |  | nfv 1913 | . . . . . . . . . 10
⊢
Ⅎ𝑥𝜑 | 
| 35 | 16 | nfuni 4913 | . . . . . . . . . . . 12
⊢
Ⅎ𝑥∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) | 
| 36 |  | nfcv 2904 | . . . . . . . . . . . 12
⊢
Ⅎ𝑥𝐶 | 
| 37 | 35, 36 | nfin 4223 | . . . . . . . . . . 11
⊢
Ⅎ𝑥(∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) | 
| 38 | 37 | nfcri 2896 | . . . . . . . . . 10
⊢
Ⅎ𝑥 𝑦 ∈ (∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) | 
| 39 | 34, 38 | nfan 1898 | . . . . . . . . 9
⊢
Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ (∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶)) | 
| 40 |  | nfre1 3284 | . . . . . . . . 9
⊢
Ⅎ𝑥∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶) | 
| 41 |  | elinel2 4201 | . . . . . . . . . . 11
⊢ (𝑦 ∈ (∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) → 𝑦 ∈ 𝐶) | 
| 42 |  | simp2 1137 | . . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐴) | 
| 43 |  | simpr 484 | . . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | 
| 44 |  | simpl 482 | . . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐶) | 
| 45 | 43, 44 | elind 4199 | . . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ (𝐵 ∩ 𝐶)) | 
| 46 |  | rspe 3248 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐵 ∩ 𝐶)) → ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) | 
| 47 | 42, 45, 46 | 3imp3i2an 1345 | . . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) | 
| 48 | 47 | 3exp 1119 | . . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐶 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)))) | 
| 49 | 41, 48 | syl 17 | . . . . . . . . . 10
⊢ (𝑦 ∈ (∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)))) | 
| 50 | 49 | adantl 481 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶)) → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)))) | 
| 51 | 39, 40, 50 | rexlimd 3265 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶)) → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶))) | 
| 52 | 33, 51 | mpd 15 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶)) → ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) | 
| 53 |  | disjinfi.d | . . . . . . . . . . . . . . 15
⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) | 
| 54 |  | disjors 5125 | . . . . . . . . . . . . . . 15
⊢
(Disj 𝑥
∈ 𝐴 𝐵 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧 = 𝑤 ∨ (⦋𝑧 / 𝑥⦌𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅)) | 
| 55 | 53, 54 | sylib 218 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧 = 𝑤 ∨ (⦋𝑧 / 𝑥⦌𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅)) | 
| 56 |  | nfv 1913 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑧∀𝑤 ∈ 𝐴 (𝑥 = 𝑤 ∨ (𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅) | 
| 57 |  | nfcv 2904 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥𝐴 | 
| 58 |  | nfv 1913 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥 𝑧 = 𝑤 | 
| 59 |  | nfcsb1v 3922 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵 | 
| 60 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑥𝑤 | 
| 61 | 60 | nfcsb1 3921 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝐵 | 
| 62 | 59, 61 | nfin 4223 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥(⦋𝑧 / 𝑥⦌𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) | 
| 63 | 62 | nfeq1 2920 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥(⦋𝑧 / 𝑥⦌𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅ | 
| 64 | 58, 63 | nfor 1903 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥(𝑧 = 𝑤 ∨ (⦋𝑧 / 𝑥⦌𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅) | 
| 65 | 57, 64 | nfralw 3310 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥∀𝑤 ∈ 𝐴 (𝑧 = 𝑤 ∨ (⦋𝑧 / 𝑥⦌𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅) | 
| 66 |  | equequ1 2023 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑤 ↔ 𝑧 = 𝑤)) | 
| 67 |  | csbeq1a 3912 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | 
| 68 | 67 | ineq1d 4218 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑧 → (𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = (⦋𝑧 / 𝑥⦌𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵)) | 
| 69 | 68 | eqeq1d 2738 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → ((𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅ ↔ (⦋𝑧 / 𝑥⦌𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅)) | 
| 70 | 66, 69 | orbi12d 918 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → ((𝑥 = 𝑤 ∨ (𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅) ↔ (𝑧 = 𝑤 ∨ (⦋𝑧 / 𝑥⦌𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅))) | 
| 71 | 70 | ralbidv 3177 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (∀𝑤 ∈ 𝐴 (𝑥 = 𝑤 ∨ (𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅) ↔ ∀𝑤 ∈ 𝐴 (𝑧 = 𝑤 ∨ (⦋𝑧 / 𝑥⦌𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅))) | 
| 72 | 56, 65, 71 | cbvralw 3305 | . . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝐴 ∀𝑤 ∈ 𝐴 (𝑥 = 𝑤 ∨ (𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅) ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧 = 𝑤 ∨ (⦋𝑧 / 𝑥⦌𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅)) | 
| 73 | 55, 72 | sylibr 234 | . . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑥 = 𝑤 ∨ (𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅)) | 
| 74 | 73 | r19.21bi 3250 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑤 ∈ 𝐴 (𝑥 = 𝑤 ∨ (𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅)) | 
| 75 |  | rspa 3247 | . . . . . . . . . . . . 13
⊢
((∀𝑤 ∈
𝐴 (𝑥 = 𝑤 ∨ (𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅) ∧ 𝑤 ∈ 𝐴) → (𝑥 = 𝑤 ∨ (𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅)) | 
| 76 | 75 | orcomd 871 | . . . . . . . . . . . 12
⊢
((∀𝑤 ∈
𝐴 (𝑥 = 𝑤 ∨ (𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅) ∧ 𝑤 ∈ 𝐴) → ((𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅ ∨ 𝑥 = 𝑤)) | 
| 77 | 74, 76 | sylan 580 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴) → ((𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅ ∨ 𝑥 = 𝑤)) | 
| 78 |  | elinel1 4200 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝐵 ∩ 𝐶) → 𝑦 ∈ 𝐵) | 
| 79 |  | sbsbc 3791 | . . . . . . . . . . . . . 14
⊢ ([𝑤 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶) ↔ [𝑤 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶)) | 
| 80 |  | sbcel2 4417 | . . . . . . . . . . . . . 14
⊢
([𝑤 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶) ↔ 𝑦 ∈ ⦋𝑤 / 𝑥⦌(𝐵 ∩ 𝐶)) | 
| 81 |  | csbin 4441 | . . . . . . . . . . . . . . 15
⊢
⦋𝑤 /
𝑥⦌(𝐵 ∩ 𝐶) = (⦋𝑤 / 𝑥⦌𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐶) | 
| 82 | 81 | eleq2i 2832 | . . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ⦋𝑤 / 𝑥⦌(𝐵 ∩ 𝐶) ↔ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐶)) | 
| 83 | 79, 80, 82 | 3bitri 297 | . . . . . . . . . . . . 13
⊢ ([𝑤 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶) ↔ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐶)) | 
| 84 |  | elinel1 4200 | . . . . . . . . . . . . 13
⊢ (𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐶) → 𝑦 ∈ ⦋𝑤 / 𝑥⦌𝐵) | 
| 85 | 83, 84 | sylbi 217 | . . . . . . . . . . . 12
⊢ ([𝑤 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶) → 𝑦 ∈ ⦋𝑤 / 𝑥⦌𝐵) | 
| 86 |  | inelcm 4464 | . . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ⦋𝑤 / 𝑥⦌𝐵) → (𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) ≠ ∅) | 
| 87 | 86 | neneqd 2944 | . . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ⦋𝑤 / 𝑥⦌𝐵) → ¬ (𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅) | 
| 88 | 78, 85, 87 | syl2an 596 | . . . . . . . . . . 11
⊢ ((𝑦 ∈ (𝐵 ∩ 𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶)) → ¬ (𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅) | 
| 89 |  | pm2.53 851 | . . . . . . . . . . 11
⊢ (((𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅ ∨ 𝑥 = 𝑤) → (¬ (𝐵 ∩ ⦋𝑤 / 𝑥⦌𝐵) = ∅ → 𝑥 = 𝑤)) | 
| 90 | 77, 88, 89 | syl2im 40 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴) → ((𝑦 ∈ (𝐵 ∩ 𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶)) → 𝑥 = 𝑤)) | 
| 91 | 90 | ralrimiva 3145 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑤 ∈ 𝐴 ((𝑦 ∈ (𝐵 ∩ 𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶)) → 𝑥 = 𝑤)) | 
| 92 | 91 | ralrimiva 3145 | . . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ (𝐵 ∩ 𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶)) → 𝑥 = 𝑤)) | 
| 93 | 92 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶)) → ∀𝑥 ∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ (𝐵 ∩ 𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶)) → 𝑥 = 𝑤)) | 
| 94 |  | reu2 3730 | . . . . . . 7
⊢
(∃!𝑥 ∈
𝐴 𝑦 ∈ (𝐵 ∩ 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶) ∧ ∀𝑥 ∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ (𝐵 ∩ 𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶)) → 𝑥 = 𝑤))) | 
| 95 | 52, 93, 94 | sylanbrc 583 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶)) → ∃!𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) | 
| 96 |  | riotacl2 7405 | . . . . . 6
⊢
(∃!𝑥 ∈
𝐴 𝑦 ∈ (𝐵 ∩ 𝐶) → (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) ∈ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝐵 ∩ 𝐶)}) | 
| 97 |  | nfriota1 7396 | . . . . . . . . 9
⊢
Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) | 
| 98 | 97 | nfcsb1 3921 | . . . . . . . . . . 11
⊢
Ⅎ𝑥⦋(℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) / 𝑥⦌𝐵 | 
| 99 | 98, 36 | nfin 4223 | . . . . . . . . . 10
⊢
Ⅎ𝑥(⦋(℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) / 𝑥⦌𝐵 ∩ 𝐶) | 
| 100 | 99 | nfcri 2896 | . . . . . . . . 9
⊢
Ⅎ𝑥 𝑦 ∈
(⦋(℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) / 𝑥⦌𝐵 ∩ 𝐶) | 
| 101 |  | csbeq1a 3912 | . . . . . . . . . . 11
⊢ (𝑥 = (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) → 𝐵 = ⦋(℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) / 𝑥⦌𝐵) | 
| 102 | 101 | ineq1d 4218 | . . . . . . . . . 10
⊢ (𝑥 = (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) → (𝐵 ∩ 𝐶) = (⦋(℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) / 𝑥⦌𝐵 ∩ 𝐶)) | 
| 103 | 102 | eleq2d 2826 | . . . . . . . . 9
⊢ (𝑥 = (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) → (𝑦 ∈ (𝐵 ∩ 𝐶) ↔ 𝑦 ∈ (⦋(℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) / 𝑥⦌𝐵 ∩ 𝐶))) | 
| 104 | 97, 57, 100, 103 | elrabf 3687 | . . . . . . . 8
⊢
((℩𝑥
∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) ∈ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝐵 ∩ 𝐶)} ↔ ((℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) ∈ 𝐴 ∧ 𝑦 ∈ (⦋(℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) / 𝑥⦌𝐵 ∩ 𝐶))) | 
| 105 | 104 | simplbi 497 | . . . . . . 7
⊢
((℩𝑥
∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) ∈ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝐵 ∩ 𝐶)} → (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) ∈ 𝐴) | 
| 106 | 104 | simprbi 496 | . . . . . . . 8
⊢
((℩𝑥
∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) ∈ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝐵 ∩ 𝐶)} → 𝑦 ∈ (⦋(℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) / 𝑥⦌𝐵 ∩ 𝐶)) | 
| 107 | 106 | ne0d 4341 | . . . . . . 7
⊢
((℩𝑥
∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) ∈ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝐵 ∩ 𝐶)} →
(⦋(℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) / 𝑥⦌𝐵 ∩ 𝐶) ≠ ∅) | 
| 108 |  | nfcv 2904 | . . . . . . . . 9
⊢
Ⅎ𝑥∅ | 
| 109 | 99, 108 | nfne 3042 | . . . . . . . 8
⊢
Ⅎ𝑥(⦋(℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) / 𝑥⦌𝐵 ∩ 𝐶) ≠ ∅ | 
| 110 | 102 | neeq1d 2999 | . . . . . . . 8
⊢ (𝑥 = (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) → ((𝐵 ∩ 𝐶) ≠ ∅ ↔
(⦋(℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) / 𝑥⦌𝐵 ∩ 𝐶) ≠ ∅)) | 
| 111 | 97, 57, 109, 110 | elrabf 3687 | . . . . . . 7
⊢
((℩𝑥
∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) ∈ {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅} ↔ ((℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) ∈ 𝐴 ∧ (⦋(℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) / 𝑥⦌𝐵 ∩ 𝐶) ≠ ∅)) | 
| 112 | 105, 107,
111 | sylanbrc 583 | . . . . . 6
⊢
((℩𝑥
∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) ∈ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝐵 ∩ 𝐶)} → (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) ∈ {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅}) | 
| 113 | 95, 96, 112 | 3syl 18 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶)) → (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) ∈ {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅}) | 
| 114 | 113 | ralrimiva 3145 | . . . 4
⊢ (𝜑 → ∀𝑦 ∈ (∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶)(℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) ∈ {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅}) | 
| 115 | 61, 36 | nfin 4223 | . . . . . . . . . . . 12
⊢
Ⅎ𝑥(⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) | 
| 116 | 115, 108 | nfne 3042 | . . . . . . . . . . 11
⊢
Ⅎ𝑥(⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ≠ ∅ | 
| 117 |  | csbeq1a 3912 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → 𝐵 = ⦋𝑤 / 𝑥⦌𝐵) | 
| 118 | 117 | ineq1d 4218 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (𝐵 ∩ 𝐶) = (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) | 
| 119 | 118 | neeq1d 2999 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → ((𝐵 ∩ 𝐶) ≠ ∅ ↔ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ≠ ∅)) | 
| 120 | 60, 57, 116, 119 | elrabf 3687 | . . . . . . . . . 10
⊢ (𝑤 ∈ {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅} ↔ (𝑤 ∈ 𝐴 ∧ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ≠ ∅)) | 
| 121 | 120 | simprbi 496 | . . . . . . . . 9
⊢ (𝑤 ∈ {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅} → (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ≠ ∅) | 
| 122 |  | n0 4352 | . . . . . . . . 9
⊢
((⦋𝑤 /
𝑥⦌𝐵 ∩ 𝐶) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) | 
| 123 | 121, 122 | sylib 218 | . . . . . . . 8
⊢ (𝑤 ∈ {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅} → ∃𝑦 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) | 
| 124 | 123 | adantl 481 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅}) → ∃𝑦 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) | 
| 125 | 120 | simplbi 497 | . . . . . . . . 9
⊢ (𝑤 ∈ {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅} → 𝑤 ∈ 𝐴) | 
| 126 |  | elinel1 4200 | . . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) → 𝑦 ∈ ⦋𝑤 / 𝑥⦌𝐵) | 
| 127 | 126 | adantl 481 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑦 ∈ ⦋𝑤 / 𝑥⦌𝐵) | 
| 128 |  | simplr 768 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑤 ∈ 𝐴) | 
| 129 |  | nfv 1913 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥(𝜑 ∧ 𝑤 ∈ 𝐴) | 
| 130 | 61 | nfel1 2921 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝐵 ∈ 𝑉 | 
| 131 | 129, 130 | nfim 1895 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥((𝜑 ∧ 𝑤 ∈ 𝐴) → ⦋𝑤 / 𝑥⦌𝐵 ∈ 𝑉) | 
| 132 |  | eleq1w 2823 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) | 
| 133 | 132 | anbi2d 630 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑤 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑤 ∈ 𝐴))) | 
| 134 | 117 | eleq1d 2825 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑤 → (𝐵 ∈ 𝑉 ↔ ⦋𝑤 / 𝑥⦌𝐵 ∈ 𝑉)) | 
| 135 | 133, 134 | imbi12d 344 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑤 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ↔ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ⦋𝑤 / 𝑥⦌𝐵 ∈ 𝑉))) | 
| 136 |  | disjinfi.b | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | 
| 137 | 131, 135,
136 | chvarfv 2239 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ⦋𝑤 / 𝑥⦌𝐵 ∈ 𝑉) | 
| 138 | 137 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → ⦋𝑤 / 𝑥⦌𝐵 ∈ 𝑉) | 
| 139 |  | eqid 2736 | . . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ 𝐴 ↦ ⦋𝑤 / 𝑥⦌𝐵) = (𝑤 ∈ 𝐴 ↦ ⦋𝑤 / 𝑥⦌𝐵) | 
| 140 | 139 | elrnmpt1 5970 | . . . . . . . . . . . . . . 15
⊢ ((𝑤 ∈ 𝐴 ∧ ⦋𝑤 / 𝑥⦌𝐵 ∈ 𝑉) → ⦋𝑤 / 𝑥⦌𝐵 ∈ ran (𝑤 ∈ 𝐴 ↦ ⦋𝑤 / 𝑥⦌𝐵)) | 
| 141 | 128, 138,
140 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → ⦋𝑤 / 𝑥⦌𝐵 ∈ ran (𝑤 ∈ 𝐴 ↦ ⦋𝑤 / 𝑥⦌𝐵)) | 
| 142 |  | nfcv 2904 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑤𝐵 | 
| 143 | 117 | equcoms 2018 | . . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑥 → 𝐵 = ⦋𝑤 / 𝑥⦌𝐵) | 
| 144 | 143 | eqcomd 2742 | . . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑥 → ⦋𝑤 / 𝑥⦌𝐵 = 𝐵) | 
| 145 | 61, 142, 144 | cbvmpt 5252 | . . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ 𝐴 ↦ ⦋𝑤 / 𝑥⦌𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | 
| 146 | 145 | rneqi 5947 | . . . . . . . . . . . . . 14
⊢ ran
(𝑤 ∈ 𝐴 ↦ ⦋𝑤 / 𝑥⦌𝐵) = ran (𝑥 ∈ 𝐴 ↦ 𝐵) | 
| 147 | 141, 146 | eleqtrdi 2850 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → ⦋𝑤 / 𝑥⦌𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) | 
| 148 |  | elunii 4911 | . . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ⦋𝑤 / 𝑥⦌𝐵 ∧ ⦋𝑤 / 𝑥⦌𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → 𝑦 ∈ ∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵)) | 
| 149 | 127, 147,
148 | syl2anc 584 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑦 ∈ ∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵)) | 
| 150 |  | elinel2 4201 | . . . . . . . . . . . . 13
⊢ (𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) → 𝑦 ∈ 𝐶) | 
| 151 | 150 | adantl 481 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑦 ∈ 𝐶) | 
| 152 | 149, 151 | elind 4199 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑦 ∈ (∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶)) | 
| 153 |  | nfv 1913 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑤 𝑦 ∈ (𝐵 ∩ 𝐶) | 
| 154 | 115 | nfcri 2896 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑥 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) | 
| 155 | 118 | eleq2d 2826 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝑦 ∈ (𝐵 ∩ 𝐶) ↔ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶))) | 
| 156 | 153, 154,
155 | cbvriotaw 7398 | . . . . . . . . . . . 12
⊢
(℩𝑥
∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) = (℩𝑤 ∈ 𝐴 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) | 
| 157 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) | 
| 158 |  | rspe 3248 | . . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ 𝐴 ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → ∃𝑤 ∈ 𝐴 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) | 
| 159 | 158 | adantll 714 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → ∃𝑤 ∈ 𝐴 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) | 
| 160 |  | simpll 766 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝜑) | 
| 161 |  | sbequ 2082 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑧 → ([𝑤 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶) ↔ [𝑧 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶))) | 
| 162 |  | sbsbc 3791 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ([𝑧 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶) ↔ [𝑧 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶)) | 
| 163 | 162 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑧 → ([𝑧 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶) ↔ [𝑧 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶))) | 
| 164 |  | sbcel2 4417 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
([𝑧 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶) ↔ 𝑦 ∈ ⦋𝑧 / 𝑥⦌(𝐵 ∩ 𝐶)) | 
| 165 |  | csbin 4441 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
⦋𝑧 /
𝑥⦌(𝐵 ∩ 𝐶) = (⦋𝑧 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐶) | 
| 166 |  | csbconstg 3917 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 ∈ V →
⦋𝑧 / 𝑥⦌𝐶 = 𝐶) | 
| 167 | 166 | elv 3484 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
⦋𝑧 /
𝑥⦌𝐶 = 𝐶 | 
| 168 | 167 | ineq2i 4216 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(⦋𝑧 /
𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐶) = (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶) | 
| 169 | 165, 168 | eqtri 2764 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
⦋𝑧 /
𝑥⦌(𝐵 ∩ 𝐶) = (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶) | 
| 170 | 169 | eleq2i 2832 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ ⦋𝑧 / 𝑥⦌(𝐵 ∩ 𝐶) ↔ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶)) | 
| 171 | 164, 170 | bitri 275 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
([𝑧 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶) ↔ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶)) | 
| 172 | 171 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑧 → ([𝑧 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶) ↔ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶))) | 
| 173 | 161, 163,
172 | 3bitrd 305 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = 𝑧 → ([𝑤 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶) ↔ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶))) | 
| 174 | 173 | anbi2d 630 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = 𝑧 → ((𝑦 ∈ (𝐵 ∩ 𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶)) ↔ (𝑦 ∈ (𝐵 ∩ 𝐶) ∧ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶)))) | 
| 175 |  | equequ2 2024 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = 𝑧 → (𝑥 = 𝑤 ↔ 𝑥 = 𝑧)) | 
| 176 | 174, 175 | imbi12d 344 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑧 → (((𝑦 ∈ (𝐵 ∩ 𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶)) → 𝑥 = 𝑤) ↔ ((𝑦 ∈ (𝐵 ∩ 𝐶) ∧ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑥 = 𝑧))) | 
| 177 | 176 | cbvralvw 3236 | . . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑤 ∈
𝐴 ((𝑦 ∈ (𝐵 ∩ 𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶)) → 𝑥 = 𝑤) ↔ ∀𝑧 ∈ 𝐴 ((𝑦 ∈ (𝐵 ∩ 𝐶) ∧ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑥 = 𝑧)) | 
| 178 | 177 | ralbii 3092 | . . . . . . . . . . . . . . . . . 18
⊢
(∀𝑥 ∈
𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ (𝐵 ∩ 𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶)) → 𝑥 = 𝑤) ↔ ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑦 ∈ (𝐵 ∩ 𝐶) ∧ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑥 = 𝑧)) | 
| 179 |  | nfv 1913 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑤∀𝑧 ∈ 𝐴 ((𝑦 ∈ (𝐵 ∩ 𝐶) ∧ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑥 = 𝑧) | 
| 180 | 59, 36 | nfin 4223 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑥(⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶) | 
| 181 | 180 | nfcri 2896 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑥 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶) | 
| 182 | 154, 181 | nfan 1898 | . . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑥(𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ∧ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶)) | 
| 183 |  | nfv 1913 | . . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑥 𝑤 = 𝑧 | 
| 184 | 182, 183 | nfim 1895 | . . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑥((𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ∧ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑤 = 𝑧) | 
| 185 | 57, 184 | nfralw 3310 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥∀𝑧 ∈ 𝐴 ((𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ∧ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑤 = 𝑧) | 
| 186 | 155 | anbi1d 631 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑤 → ((𝑦 ∈ (𝐵 ∩ 𝐶) ∧ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶)) ↔ (𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ∧ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶)))) | 
| 187 |  | equequ1 2023 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑤 → (𝑥 = 𝑧 ↔ 𝑤 = 𝑧)) | 
| 188 | 186, 187 | imbi12d 344 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑤 → (((𝑦 ∈ (𝐵 ∩ 𝐶) ∧ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑥 = 𝑧) ↔ ((𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ∧ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑤 = 𝑧))) | 
| 189 | 188 | ralbidv 3177 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑤 → (∀𝑧 ∈ 𝐴 ((𝑦 ∈ (𝐵 ∩ 𝐶) ∧ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑥 = 𝑧) ↔ ∀𝑧 ∈ 𝐴 ((𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ∧ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑤 = 𝑧))) | 
| 190 | 179, 185,
189 | cbvralw 3305 | . . . . . . . . . . . . . . . . . 18
⊢
(∀𝑥 ∈
𝐴 ∀𝑧 ∈ 𝐴 ((𝑦 ∈ (𝐵 ∩ 𝐶) ∧ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑥 = 𝑧) ↔ ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ∧ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑤 = 𝑧)) | 
| 191 |  | sbsbc 3791 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ([𝑧 / 𝑤]𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ↔ [𝑧 / 𝑤]𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) | 
| 192 |  | sbcel2 4417 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
([𝑧 / 𝑤]𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ↔ 𝑦 ∈ ⦋𝑧 / 𝑤⦌(⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) | 
| 193 |  | csbin 4441 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
⦋𝑧 /
𝑤⦌(⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) = (⦋𝑧 / 𝑤⦌⦋𝑤 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑤⦌𝐶) | 
| 194 |  | csbcow 3913 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
⦋𝑧 /
𝑤⦌⦋𝑤 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵 | 
| 195 |  | csbconstg 3917 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 ∈ V →
⦋𝑧 / 𝑤⦌𝐶 = 𝐶) | 
| 196 | 195 | elv 3484 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
⦋𝑧 /
𝑤⦌𝐶 = 𝐶 | 
| 197 | 194, 196 | ineq12i 4217 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(⦋𝑧 /
𝑤⦌⦋𝑤 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑤⦌𝐶) = (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶) | 
| 198 | 193, 197 | eqtri 2764 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
⦋𝑧 /
𝑤⦌(⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) = (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶) | 
| 199 | 198 | eleq2i 2832 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ ⦋𝑧 / 𝑤⦌(⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ↔ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶)) | 
| 200 | 191, 192,
199 | 3bitrri 298 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶) ↔ [𝑧 / 𝑤]𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) | 
| 201 | 200 | anbi2i 623 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ∧ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶)) ↔ (𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶))) | 
| 202 | 201 | imbi1i 349 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ∧ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑤 = 𝑧) ↔ ((𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑤 = 𝑧)) | 
| 203 | 202 | 2ralbii 3127 | . . . . . . . . . . . . . . . . . 18
⊢
(∀𝑤 ∈
𝐴 ∀𝑧 ∈ 𝐴 ((𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ∧ 𝑦 ∈ (⦋𝑧 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑤 = 𝑧) ↔ ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑤 = 𝑧)) | 
| 204 | 178, 190,
203 | 3bitri 297 | . . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ (𝐵 ∩ 𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵 ∩ 𝐶)) → 𝑥 = 𝑤) ↔ ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑤 = 𝑧)) | 
| 205 | 93, 204 | sylib 218 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶)) → ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑤 = 𝑧)) | 
| 206 | 160, 152,
205 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑤 = 𝑧)) | 
| 207 |  | reu2 3730 | . . . . . . . . . . . . . . 15
⊢
(∃!𝑤 ∈
𝐴 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ↔ (∃𝑤 ∈ 𝐴 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ∧ ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑤 = 𝑧))) | 
| 208 | 159, 206,
207 | sylanbrc 583 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → ∃!𝑤 ∈ 𝐴 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) | 
| 209 |  | riota1 7410 | . . . . . . . . . . . . . 14
⊢
(∃!𝑤 ∈
𝐴 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) → ((𝑤 ∈ 𝐴 ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) ↔ (℩𝑤 ∈ 𝐴 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) = 𝑤)) | 
| 210 | 208, 209 | syl 17 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → ((𝑤 ∈ 𝐴 ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) ↔ (℩𝑤 ∈ 𝐴 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) = 𝑤)) | 
| 211 | 128, 157,
210 | mpbi2and 712 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → (℩𝑤 ∈ 𝐴 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) = 𝑤) | 
| 212 | 156, 211 | eqtr2id 2789 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → 𝑤 = (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶))) | 
| 213 | 152, 212 | jca 511 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶)) → (𝑦 ∈ (∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) ∧ 𝑤 = (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)))) | 
| 214 | 213 | ex 412 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) → (𝑦 ∈ (∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) ∧ 𝑤 = (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶))))) | 
| 215 | 125, 214 | sylan2 593 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅}) → (𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) → (𝑦 ∈ (∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) ∧ 𝑤 = (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶))))) | 
| 216 | 215 | eximdv 1916 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅}) → (∃𝑦 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 ∩ 𝐶) → ∃𝑦(𝑦 ∈ (∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) ∧ 𝑤 = (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶))))) | 
| 217 | 124, 216 | mpd 15 | . . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅}) → ∃𝑦(𝑦 ∈ (∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) ∧ 𝑤 = (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)))) | 
| 218 |  | df-rex 3070 | . . . . . 6
⊢
(∃𝑦 ∈
(∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶)𝑤 = (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) ↔ ∃𝑦(𝑦 ∈ (∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) ∧ 𝑤 = (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)))) | 
| 219 | 217, 218 | sylibr 234 | . . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅}) → ∃𝑦 ∈ (∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶)𝑤 = (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶))) | 
| 220 | 219 | ralrimiva 3145 | . . . 4
⊢ (𝜑 → ∀𝑤 ∈ {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅}∃𝑦 ∈ (∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶)𝑤 = (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶))) | 
| 221 |  | eqid 2736 | . . . . 5
⊢ (𝑦 ∈ (∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) ↦ (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶))) = (𝑦 ∈ (∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) ↦ (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶))) | 
| 222 | 221 | fompt 7137 | . . . 4
⊢ ((𝑦 ∈ (∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) ↦ (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶))):(∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶)–onto→{𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅} ↔ (∀𝑦 ∈ (∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶)(℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) ∈ {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅} ∧ ∀𝑤 ∈ {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅}∃𝑦 ∈ (∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶)𝑤 = (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)))) | 
| 223 | 114, 220,
222 | sylanbrc 583 | . . 3
⊢ (𝜑 → (𝑦 ∈ (∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) ↦ (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶))):(∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶)–onto→{𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅}) | 
| 224 |  | fodomg 10563 | . . 3
⊢ ((∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) ∈ V → ((𝑦 ∈ (∪ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) ↦ (℩𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶))):(∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶)–onto→{𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅} → {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅} ≼ (∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶))) | 
| 225 | 6, 223, 224 | sylc 65 | . 2
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅} ≼ (∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶)) | 
| 226 |  | domfi 9230 | . 2
⊢ (((∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶) ∈ Fin ∧ {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅} ≼ (∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∩ 𝐶)) → {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅} ∈ Fin) | 
| 227 | 4, 225, 226 | syl2anc 584 | 1
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅} ∈ Fin) |