Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjinfi Structured version   Visualization version   GIF version

Theorem disjinfi 45159
Description: Only a finite number of disjoint sets can have a nonempty intersection with a finite set 𝐶. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
disjinfi.b ((𝜑𝑥𝐴) → 𝐵𝑉)
disjinfi.d (𝜑Disj 𝑥𝐴 𝐵)
disjinfi.c (𝜑𝐶 ∈ Fin)
Assertion
Ref Expression
disjinfi (𝜑 → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ∈ Fin)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝑉   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjinfi
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjinfi.c . . 3 (𝜑𝐶 ∈ Fin)
2 inss2 4197 . . 3 ( ran (𝑥𝐴𝐵) ∩ 𝐶) ⊆ 𝐶
3 ssfi 9114 . . 3 ((𝐶 ∈ Fin ∧ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ⊆ 𝐶) → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ Fin)
41, 2, 3sylancl 586 . 2 (𝜑 → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ Fin)
52a1i 11 . . . 4 (𝜑 → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ⊆ 𝐶)
61, 5ssexd 5274 . . 3 (𝜑 → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ V)
7 elinel1 4160 . . . . . . . . . 10 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) → 𝑦 ran (𝑥𝐴𝐵))
8 eluni2 4871 . . . . . . . . . . . 12 (𝑦 ran (𝑥𝐴𝐵) ↔ ∃𝑤 ∈ ran (𝑥𝐴𝐵)𝑦𝑤)
98biimpi 216 . . . . . . . . . . 11 (𝑦 ran (𝑥𝐴𝐵) → ∃𝑤 ∈ ran (𝑥𝐴𝐵)𝑦𝑤)
10 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1110elrnmpt 5911 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ V → (𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑤 = 𝐵))
1211elv 3449 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑤 = 𝐵)
1312biimpi 216 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑤 = 𝐵)
1413adantr 480 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤) → ∃𝑥𝐴 𝑤 = 𝐵)
15 nfmpt1 5201 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑥𝐴𝐵)
1615nfrn 5905 . . . . . . . . . . . . . . . . . 18 𝑥ran (𝑥𝐴𝐵)
1716nfcri 2883 . . . . . . . . . . . . . . . . 17 𝑥 𝑤 ∈ ran (𝑥𝐴𝐵)
18 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑥 𝑦𝑤
1917, 18nfan 1899 . . . . . . . . . . . . . . . 16 𝑥(𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤)
20 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑤𝑤 = 𝐵) → 𝑦𝑤)
21 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑤𝑤 = 𝐵) → 𝑤 = 𝐵)
2220, 21eleqtrd 2830 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝑤𝑤 = 𝐵) → 𝑦𝐵)
2322ex 412 . . . . . . . . . . . . . . . . . 18 (𝑦𝑤 → (𝑤 = 𝐵𝑦𝐵))
2423a1d 25 . . . . . . . . . . . . . . . . 17 (𝑦𝑤 → (𝑥𝐴 → (𝑤 = 𝐵𝑦𝐵)))
2524adantl 481 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤) → (𝑥𝐴 → (𝑤 = 𝐵𝑦𝐵)))
2619, 25reximdai 3237 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤) → (∃𝑥𝐴 𝑤 = 𝐵 → ∃𝑥𝐴 𝑦𝐵))
2714, 26mpd 15 . . . . . . . . . . . . . 14 ((𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤) → ∃𝑥𝐴 𝑦𝐵)
2827ex 412 . . . . . . . . . . . . 13 (𝑤 ∈ ran (𝑥𝐴𝐵) → (𝑦𝑤 → ∃𝑥𝐴 𝑦𝐵))
2928a1i 11 . . . . . . . . . . . 12 (𝑦 ran (𝑥𝐴𝐵) → (𝑤 ∈ ran (𝑥𝐴𝐵) → (𝑦𝑤 → ∃𝑥𝐴 𝑦𝐵)))
3029rexlimdv 3132 . . . . . . . . . . 11 (𝑦 ran (𝑥𝐴𝐵) → (∃𝑤 ∈ ran (𝑥𝐴𝐵)𝑦𝑤 → ∃𝑥𝐴 𝑦𝐵))
319, 30mpd 15 . . . . . . . . . 10 (𝑦 ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑦𝐵)
327, 31syl 17 . . . . . . . . 9 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) → ∃𝑥𝐴 𝑦𝐵)
3332adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∃𝑥𝐴 𝑦𝐵)
34 nfv 1914 . . . . . . . . . 10 𝑥𝜑
3516nfuni 4874 . . . . . . . . . . . 12 𝑥 ran (𝑥𝐴𝐵)
36 nfcv 2891 . . . . . . . . . . . 12 𝑥𝐶
3735, 36nfin 4183 . . . . . . . . . . 11 𝑥( ran (𝑥𝐴𝐵) ∩ 𝐶)
3837nfcri 2883 . . . . . . . . . 10 𝑥 𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)
3934, 38nfan 1899 . . . . . . . . 9 𝑥(𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶))
40 nfre1 3260 . . . . . . . . 9 𝑥𝑥𝐴 𝑦 ∈ (𝐵𝐶)
41 elinel2 4161 . . . . . . . . . . 11 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) → 𝑦𝐶)
42 simp2 1137 . . . . . . . . . . . . 13 ((𝑦𝐶𝑥𝐴𝑦𝐵) → 𝑥𝐴)
43 simpr 484 . . . . . . . . . . . . . 14 ((𝑦𝐶𝑦𝐵) → 𝑦𝐵)
44 simpl 482 . . . . . . . . . . . . . 14 ((𝑦𝐶𝑦𝐵) → 𝑦𝐶)
4543, 44elind 4159 . . . . . . . . . . . . 13 ((𝑦𝐶𝑦𝐵) → 𝑦 ∈ (𝐵𝐶))
46 rspe 3225 . . . . . . . . . . . . 13 ((𝑥𝐴𝑦 ∈ (𝐵𝐶)) → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
4742, 45, 463imp3i2an 1346 . . . . . . . . . . . 12 ((𝑦𝐶𝑥𝐴𝑦𝐵) → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
48473exp 1119 . . . . . . . . . . 11 (𝑦𝐶 → (𝑥𝐴 → (𝑦𝐵 → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
4941, 48syl 17 . . . . . . . . . 10 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) → (𝑥𝐴 → (𝑦𝐵 → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
5049adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → (𝑥𝐴 → (𝑦𝐵 → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
5139, 40, 50rexlimd 3242 . . . . . . . 8 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → (∃𝑥𝐴 𝑦𝐵 → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
5233, 51mpd 15 . . . . . . 7 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
53 disjinfi.d . . . . . . . . . . . . . . 15 (𝜑Disj 𝑥𝐴 𝐵)
54 disjors 5085 . . . . . . . . . . . . . . 15 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑧𝐴𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅))
5553, 54sylib 218 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑧𝐴𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅))
56 nfv 1914 . . . . . . . . . . . . . . 15 𝑧𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅)
57 nfcv 2891 . . . . . . . . . . . . . . . 16 𝑥𝐴
58 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑥 𝑧 = 𝑤
59 nfcsb1v 3883 . . . . . . . . . . . . . . . . . . 19 𝑥𝑧 / 𝑥𝐵
60 nfcv 2891 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑤
6160nfcsb1 3882 . . . . . . . . . . . . . . . . . . 19 𝑥𝑤 / 𝑥𝐵
6259, 61nfin 4183 . . . . . . . . . . . . . . . . . 18 𝑥(𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵)
6362nfeq1 2907 . . . . . . . . . . . . . . . . 17 𝑥(𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅
6458, 63nfor 1904 . . . . . . . . . . . . . . . 16 𝑥(𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅)
6557, 64nfralw 3283 . . . . . . . . . . . . . . 15 𝑥𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅)
66 equequ1 2025 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝑥 = 𝑤𝑧 = 𝑤))
67 csbeq1a 3873 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
6867ineq1d 4178 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝐵𝑤 / 𝑥𝐵) = (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵))
6968eqeq1d 2731 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝐵𝑤 / 𝑥𝐵) = ∅ ↔ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅))
7066, 69orbi12d 918 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ((𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ↔ (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅)))
7170ralbidv 3156 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ↔ ∀𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅)))
7256, 65, 71cbvralw 3278 . . . . . . . . . . . . . 14 (∀𝑥𝐴𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ↔ ∀𝑧𝐴𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅))
7355, 72sylibr 234 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝐴𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅))
7473r19.21bi 3227 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅))
75 rspa 3224 . . . . . . . . . . . . 13 ((∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ∧ 𝑤𝐴) → (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅))
7675orcomd 871 . . . . . . . . . . . 12 ((∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ∧ 𝑤𝐴) → ((𝐵𝑤 / 𝑥𝐵) = ∅ ∨ 𝑥 = 𝑤))
7774, 76sylan 580 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑤𝐴) → ((𝐵𝑤 / 𝑥𝐵) = ∅ ∨ 𝑥 = 𝑤))
78 elinel1 4160 . . . . . . . . . . . 12 (𝑦 ∈ (𝐵𝐶) → 𝑦𝐵)
79 sbsbc 3754 . . . . . . . . . . . . . 14 ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶))
80 sbcel2 4377 . . . . . . . . . . . . . 14 ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦𝑤 / 𝑥(𝐵𝐶))
81 csbin 4401 . . . . . . . . . . . . . . 15 𝑤 / 𝑥(𝐵𝐶) = (𝑤 / 𝑥𝐵𝑤 / 𝑥𝐶)
8281eleq2i 2820 . . . . . . . . . . . . . 14 (𝑦𝑤 / 𝑥(𝐵𝐶) ↔ 𝑦 ∈ (𝑤 / 𝑥𝐵𝑤 / 𝑥𝐶))
8379, 80, 823bitri 297 . . . . . . . . . . . . 13 ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑤 / 𝑥𝐵𝑤 / 𝑥𝐶))
84 elinel1 4160 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑤 / 𝑥𝐵𝑤 / 𝑥𝐶) → 𝑦𝑤 / 𝑥𝐵)
8583, 84sylbi 217 . . . . . . . . . . . 12 ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) → 𝑦𝑤 / 𝑥𝐵)
86 inelcm 4424 . . . . . . . . . . . . 13 ((𝑦𝐵𝑦𝑤 / 𝑥𝐵) → (𝐵𝑤 / 𝑥𝐵) ≠ ∅)
8786neneqd 2930 . . . . . . . . . . . 12 ((𝑦𝐵𝑦𝑤 / 𝑥𝐵) → ¬ (𝐵𝑤 / 𝑥𝐵) = ∅)
8878, 85, 87syl2an 596 . . . . . . . . . . 11 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → ¬ (𝐵𝑤 / 𝑥𝐵) = ∅)
89 pm2.53 851 . . . . . . . . . . 11 (((𝐵𝑤 / 𝑥𝐵) = ∅ ∨ 𝑥 = 𝑤) → (¬ (𝐵𝑤 / 𝑥𝐵) = ∅ → 𝑥 = 𝑤))
9077, 88, 89syl2im 40 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑤𝐴) → ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤))
9190ralrimiva 3125 . . . . . . . . 9 ((𝜑𝑥𝐴) → ∀𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤))
9291ralrimiva 3125 . . . . . . . 8 (𝜑 → ∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤))
9392adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤))
94 reu2 3693 . . . . . . 7 (∃!𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ∧ ∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤)))
9552, 93, 94sylanbrc 583 . . . . . 6 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∃!𝑥𝐴 𝑦 ∈ (𝐵𝐶))
96 riotacl2 7342 . . . . . 6 (∃!𝑥𝐴 𝑦 ∈ (𝐵𝐶) → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)})
97 nfriota1 7333 . . . . . . . . 9 𝑥(𝑥𝐴 𝑦 ∈ (𝐵𝐶))
9897nfcsb1 3882 . . . . . . . . . . 11 𝑥(𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵
9998, 36nfin 4183 . . . . . . . . . 10 𝑥((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶)
10099nfcri 2883 . . . . . . . . 9 𝑥 𝑦 ∈ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶)
101 csbeq1a 3873 . . . . . . . . . . 11 (𝑥 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) → 𝐵 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵)
102101ineq1d 4178 . . . . . . . . . 10 (𝑥 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) → (𝐵𝐶) = ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶))
103102eleq2d 2814 . . . . . . . . 9 (𝑥 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) → (𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶)))
10497, 57, 100, 103elrabf 3652 . . . . . . . 8 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} ↔ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ 𝐴𝑦 ∈ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶)))
105104simplbi 497 . . . . . . 7 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ 𝐴)
106104simprbi 496 . . . . . . . 8 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → 𝑦 ∈ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶))
107106ne0d 4301 . . . . . . 7 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) ≠ ∅)
108 nfcv 2891 . . . . . . . . 9 𝑥
10999, 108nfne 3026 . . . . . . . 8 𝑥((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) ≠ ∅
110102neeq1d 2984 . . . . . . . 8 (𝑥 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) → ((𝐵𝐶) ≠ ∅ ↔ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) ≠ ∅))
11197, 57, 109, 110elrabf 3652 . . . . . . 7 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ↔ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ 𝐴 ∧ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) ≠ ∅))
112105, 107, 111sylanbrc 583 . . . . . 6 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅})
11395, 96, 1123syl 18 . . . . 5 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅})
114113ralrimiva 3125 . . . 4 (𝜑 → ∀𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)(𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅})
11561, 36nfin 4183 . . . . . . . . . . . 12 𝑥(𝑤 / 𝑥𝐵𝐶)
116115, 108nfne 3026 . . . . . . . . . . 11 𝑥(𝑤 / 𝑥𝐵𝐶) ≠ ∅
117 csbeq1a 3873 . . . . . . . . . . . . 13 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
118117ineq1d 4178 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (𝐵𝐶) = (𝑤 / 𝑥𝐵𝐶))
119118neeq1d 2984 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((𝐵𝐶) ≠ ∅ ↔ (𝑤 / 𝑥𝐵𝐶) ≠ ∅))
12060, 57, 116, 119elrabf 3652 . . . . . . . . . 10 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ↔ (𝑤𝐴 ∧ (𝑤 / 𝑥𝐵𝐶) ≠ ∅))
121120simprbi 496 . . . . . . . . 9 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} → (𝑤 / 𝑥𝐵𝐶) ≠ ∅)
122 n0 4312 . . . . . . . . 9 ((𝑤 / 𝑥𝐵𝐶) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
123121, 122sylib 218 . . . . . . . 8 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} → ∃𝑦 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
124123adantl 481 . . . . . . 7 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → ∃𝑦 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
125120simplbi 497 . . . . . . . . 9 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} → 𝑤𝐴)
126 elinel1 4160 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → 𝑦𝑤 / 𝑥𝐵)
127126adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦𝑤 / 𝑥𝐵)
128 simplr 768 . . . . . . . . . . . . . . 15 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤𝐴)
129 nfv 1914 . . . . . . . . . . . . . . . . . 18 𝑥(𝜑𝑤𝐴)
13061nfel1 2908 . . . . . . . . . . . . . . . . . 18 𝑥𝑤 / 𝑥𝐵𝑉
131129, 130nfim 1896 . . . . . . . . . . . . . . . . 17 𝑥((𝜑𝑤𝐴) → 𝑤 / 𝑥𝐵𝑉)
132 eleq1w 2811 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → (𝑥𝐴𝑤𝐴))
133132anbi2d 630 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → ((𝜑𝑥𝐴) ↔ (𝜑𝑤𝐴)))
134117eleq1d 2813 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → (𝐵𝑉𝑤 / 𝑥𝐵𝑉))
135133, 134imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑤 → (((𝜑𝑥𝐴) → 𝐵𝑉) ↔ ((𝜑𝑤𝐴) → 𝑤 / 𝑥𝐵𝑉)))
136 disjinfi.b . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵𝑉)
137131, 135, 136chvarfv 2241 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝐴) → 𝑤 / 𝑥𝐵𝑉)
138137adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 / 𝑥𝐵𝑉)
139 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑤𝐴𝑤 / 𝑥𝐵) = (𝑤𝐴𝑤 / 𝑥𝐵)
140139elrnmpt1 5913 . . . . . . . . . . . . . . 15 ((𝑤𝐴𝑤 / 𝑥𝐵𝑉) → 𝑤 / 𝑥𝐵 ∈ ran (𝑤𝐴𝑤 / 𝑥𝐵))
141128, 138, 140syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 / 𝑥𝐵 ∈ ran (𝑤𝐴𝑤 / 𝑥𝐵))
142 nfcv 2891 . . . . . . . . . . . . . . . 16 𝑤𝐵
143117equcoms 2020 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑥𝐵 = 𝑤 / 𝑥𝐵)
144143eqcomd 2735 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑥𝑤 / 𝑥𝐵 = 𝐵)
14561, 142, 144cbvmpt 5204 . . . . . . . . . . . . . . 15 (𝑤𝐴𝑤 / 𝑥𝐵) = (𝑥𝐴𝐵)
146145rneqi 5890 . . . . . . . . . . . . . 14 ran (𝑤𝐴𝑤 / 𝑥𝐵) = ran (𝑥𝐴𝐵)
147141, 146eleqtrdi 2838 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 / 𝑥𝐵 ∈ ran (𝑥𝐴𝐵))
148 elunii 4872 . . . . . . . . . . . . 13 ((𝑦𝑤 / 𝑥𝐵𝑤 / 𝑥𝐵 ∈ ran (𝑥𝐴𝐵)) → 𝑦 ran (𝑥𝐴𝐵))
149127, 147, 148syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦 ran (𝑥𝐴𝐵))
150 elinel2 4161 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → 𝑦𝐶)
151150adantl 481 . . . . . . . . . . . 12 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦𝐶)
152149, 151elind 4159 . . . . . . . . . . 11 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶))
153 nfv 1914 . . . . . . . . . . . . 13 𝑤 𝑦 ∈ (𝐵𝐶)
154115nfcri 2883 . . . . . . . . . . . . 13 𝑥 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)
155118eleq2d 2814 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)))
156153, 154, 155cbvriotaw 7335 . . . . . . . . . . . 12 (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) = (𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
157 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
158 rspe 3225 . . . . . . . . . . . . . . . 16 ((𝑤𝐴𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ∃𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
159158adantll 714 . . . . . . . . . . . . . . 15 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ∃𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
160 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝜑)
161 sbequ 2084 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑧 → ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ [𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶)))
162 sbsbc 3754 . . . . . . . . . . . . . . . . . . . . . . . 24 ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ [𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶))
163162a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑧 → ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ [𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶)))
164 sbcel2 4377 . . . . . . . . . . . . . . . . . . . . . . . . 25 ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦𝑧 / 𝑥(𝐵𝐶))
165 csbin 4401 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑧 / 𝑥(𝐵𝐶) = (𝑧 / 𝑥𝐵𝑧 / 𝑥𝐶)
166 csbconstg 3878 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ V → 𝑧 / 𝑥𝐶 = 𝐶)
167166elv 3449 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑧 / 𝑥𝐶 = 𝐶
168167ineq2i 4176 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 / 𝑥𝐵𝑧 / 𝑥𝐶) = (𝑧 / 𝑥𝐵𝐶)
169165, 168eqtri 2752 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑧 / 𝑥(𝐵𝐶) = (𝑧 / 𝑥𝐵𝐶)
170169eleq2i 2820 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝑧 / 𝑥(𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))
171164, 170bitri 275 . . . . . . . . . . . . . . . . . . . . . . . 24 ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))
172171a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑧 → ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)))
173161, 163, 1723bitrd 305 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑧 → ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)))
174173anbi2d 630 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑧 → ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) ↔ (𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))))
175 equequ2 2026 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑧 → (𝑥 = 𝑤𝑥 = 𝑧))
176174, 175imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑧 → (((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤) ↔ ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧)))
177176cbvralvw 3213 . . . . . . . . . . . . . . . . . . 19 (∀𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤) ↔ ∀𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧))
178177ralbii 3075 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤) ↔ ∀𝑥𝐴𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧))
179 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑤𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧)
18059, 36nfin 4183 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥(𝑧 / 𝑥𝐵𝐶)
181180nfcri 2883 . . . . . . . . . . . . . . . . . . . . . 22 𝑥 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)
182154, 181nfan 1899 . . . . . . . . . . . . . . . . . . . . 21 𝑥(𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))
183 nfv 1914 . . . . . . . . . . . . . . . . . . . . 21 𝑥 𝑤 = 𝑧
184182, 183nfim 1896 . . . . . . . . . . . . . . . . . . . 20 𝑥((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)
18557, 184nfralw 3283 . . . . . . . . . . . . . . . . . . 19 𝑥𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)
186155anbi1d 631 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) ↔ (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))))
187 equequ1 2025 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → (𝑥 = 𝑧𝑤 = 𝑧))
188186, 187imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → (((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧) ↔ ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)))
189188ralbidv 3156 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → (∀𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧) ↔ ∀𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)))
190179, 185, 189cbvralw 3278 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝐴𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧) ↔ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
191 sbsbc 3754 . . . . . . . . . . . . . . . . . . . . . 22 ([𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ↔ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
192 sbcel2 4377 . . . . . . . . . . . . . . . . . . . . . 22 ([𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ↔ 𝑦𝑧 / 𝑤(𝑤 / 𝑥𝐵𝐶))
193 csbin 4401 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧 / 𝑤(𝑤 / 𝑥𝐵𝐶) = (𝑧 / 𝑤𝑤 / 𝑥𝐵𝑧 / 𝑤𝐶)
194 csbcow 3874 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑧 / 𝑤𝑤 / 𝑥𝐵 = 𝑧 / 𝑥𝐵
195 csbconstg 3878 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ V → 𝑧 / 𝑤𝐶 = 𝐶)
196195elv 3449 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑧 / 𝑤𝐶 = 𝐶
197194, 196ineq12i 4177 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 / 𝑤𝑤 / 𝑥𝐵𝑧 / 𝑤𝐶) = (𝑧 / 𝑥𝐵𝐶)
198193, 197eqtri 2752 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧 / 𝑤(𝑤 / 𝑥𝐵𝐶) = (𝑧 / 𝑥𝐵𝐶)
199198eleq2i 2820 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝑧 / 𝑤(𝑤 / 𝑥𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))
200191, 192, 1993bitrri 298 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝑧 / 𝑥𝐵𝐶) ↔ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
201200anbi2i 623 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) ↔ (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)))
202201imbi1i 349 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧) ↔ ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
2032022ralbii 3108 . . . . . . . . . . . . . . . . . 18 (∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧) ↔ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
204178, 190, 2033bitri 297 . . . . . . . . . . . . . . . . 17 (∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤) ↔ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
20593, 204sylib 218 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
206160, 152, 205syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
207 reu2 3693 . . . . . . . . . . . . . . 15 (∃!𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ↔ (∃𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)))
208159, 206, 207sylanbrc 583 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ∃!𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
209 riota1 7347 . . . . . . . . . . . . . 14 (∃!𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → ((𝑤𝐴𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) ↔ (𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) = 𝑤))
210208, 209syl 17 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ((𝑤𝐴𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) ↔ (𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) = 𝑤))
211128, 157, 210mpbi2and 712 . . . . . . . . . . . 12 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → (𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) = 𝑤)
212156, 211eqtr2id 2777 . . . . . . . . . . 11 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
213152, 212jca 511 . . . . . . . . . 10 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
214213ex 412 . . . . . . . . 9 ((𝜑𝑤𝐴) → (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))))
215125, 214sylan2 593 . . . . . . . 8 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))))
216215eximdv 1917 . . . . . . 7 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → (∃𝑦 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → ∃𝑦(𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))))
217124, 216mpd 15 . . . . . 6 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → ∃𝑦(𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
218 df-rex 3054 . . . . . 6 (∃𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ↔ ∃𝑦(𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
219217, 218sylibr 234 . . . . 5 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → ∃𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
220219ralrimiva 3125 . . . 4 (𝜑 → ∀𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}∃𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
221 eqid 2729 . . . . 5 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶))) = (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
222221fompt 7072 . . . 4 ((𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶))):( ran (𝑥𝐴𝐵) ∩ 𝐶)–onto→{𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ↔ (∀𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)(𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ∧ ∀𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}∃𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
223114, 220, 222sylanbrc 583 . . 3 (𝜑 → (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶))):( ran (𝑥𝐴𝐵) ∩ 𝐶)–onto→{𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅})
224 fodomg 10451 . . 3 (( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ V → ((𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶))):( ran (𝑥𝐴𝐵) ∩ 𝐶)–onto→{𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ≼ ( ran (𝑥𝐴𝐵) ∩ 𝐶)))
2256, 223, 224sylc 65 . 2 (𝜑 → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ≼ ( ran (𝑥𝐴𝐵) ∩ 𝐶))
226 domfi 9130 . 2 ((( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ Fin ∧ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ≼ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ∈ Fin)
2274, 225, 226syl2anc 584 1 (𝜑 → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  [wsb 2065  wcel 2109  wne 2925  wral 3044  wrex 3053  ∃!wreu 3349  {crab 3402  Vcvv 3444  [wsbc 3750  csb 3859  cin 3910  wss 3911  c0 4292   cuni 4867  Disj wdisj 5069   class class class wbr 5102  cmpt 5183  ran crn 5632  ontowfo 6497  crio 7325  cdom 8893  Fincfn 8895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-ac2 10392
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-fin 8899  df-card 9868  df-acn 9871  df-ac 10045
This theorem is referenced by:  fsumiunss  45546  sge0iunmptlemre  46386
  Copyright terms: Public domain W3C validator