Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjinfi Structured version   Visualization version   GIF version

Theorem disjinfi 42691
Description: Only a finite number of disjoint sets can have a nonempty intersection with a finite set 𝐶. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
disjinfi.b ((𝜑𝑥𝐴) → 𝐵𝑉)
disjinfi.d (𝜑Disj 𝑥𝐴 𝐵)
disjinfi.c (𝜑𝐶 ∈ Fin)
Assertion
Ref Expression
disjinfi (𝜑 → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ∈ Fin)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝑉   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjinfi
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjinfi.c . . 3 (𝜑𝐶 ∈ Fin)
2 inss2 4165 . . 3 ( ran (𝑥𝐴𝐵) ∩ 𝐶) ⊆ 𝐶
3 ssfi 8945 . . 3 ((𝐶 ∈ Fin ∧ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ⊆ 𝐶) → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ Fin)
41, 2, 3sylancl 586 . 2 (𝜑 → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ Fin)
52a1i 11 . . . 4 (𝜑 → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ⊆ 𝐶)
61, 5ssexd 5248 . . 3 (𝜑 → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ V)
7 elinel1 4130 . . . . . . . . . 10 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) → 𝑦 ran (𝑥𝐴𝐵))
8 eluni2 4845 . . . . . . . . . . . 12 (𝑦 ran (𝑥𝐴𝐵) ↔ ∃𝑤 ∈ ran (𝑥𝐴𝐵)𝑦𝑤)
98biimpi 215 . . . . . . . . . . 11 (𝑦 ran (𝑥𝐴𝐵) → ∃𝑤 ∈ ran (𝑥𝐴𝐵)𝑦𝑤)
10 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1110elrnmpt 5860 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ V → (𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑤 = 𝐵))
1211elv 3437 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑤 = 𝐵)
1312biimpi 215 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑤 = 𝐵)
1413adantr 481 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤) → ∃𝑥𝐴 𝑤 = 𝐵)
15 nfmpt1 5183 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑥𝐴𝐵)
1615nfrn 5856 . . . . . . . . . . . . . . . . . 18 𝑥ran (𝑥𝐴𝐵)
1716nfcri 2894 . . . . . . . . . . . . . . . . 17 𝑥 𝑤 ∈ ran (𝑥𝐴𝐵)
18 nfv 1917 . . . . . . . . . . . . . . . . 17 𝑥 𝑦𝑤
1917, 18nfan 1902 . . . . . . . . . . . . . . . 16 𝑥(𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤)
20 simpl 483 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑤𝑤 = 𝐵) → 𝑦𝑤)
21 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑤𝑤 = 𝐵) → 𝑤 = 𝐵)
2220, 21eleqtrd 2841 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝑤𝑤 = 𝐵) → 𝑦𝐵)
2322ex 413 . . . . . . . . . . . . . . . . . 18 (𝑦𝑤 → (𝑤 = 𝐵𝑦𝐵))
2423a1d 25 . . . . . . . . . . . . . . . . 17 (𝑦𝑤 → (𝑥𝐴 → (𝑤 = 𝐵𝑦𝐵)))
2524adantl 482 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤) → (𝑥𝐴 → (𝑤 = 𝐵𝑦𝐵)))
2619, 25reximdai 3243 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤) → (∃𝑥𝐴 𝑤 = 𝐵 → ∃𝑥𝐴 𝑦𝐵))
2714, 26mpd 15 . . . . . . . . . . . . . 14 ((𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤) → ∃𝑥𝐴 𝑦𝐵)
2827ex 413 . . . . . . . . . . . . 13 (𝑤 ∈ ran (𝑥𝐴𝐵) → (𝑦𝑤 → ∃𝑥𝐴 𝑦𝐵))
2928a1i 11 . . . . . . . . . . . 12 (𝑦 ran (𝑥𝐴𝐵) → (𝑤 ∈ ran (𝑥𝐴𝐵) → (𝑦𝑤 → ∃𝑥𝐴 𝑦𝐵)))
3029rexlimdv 3211 . . . . . . . . . . 11 (𝑦 ran (𝑥𝐴𝐵) → (∃𝑤 ∈ ran (𝑥𝐴𝐵)𝑦𝑤 → ∃𝑥𝐴 𝑦𝐵))
319, 30mpd 15 . . . . . . . . . 10 (𝑦 ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑦𝐵)
327, 31syl 17 . . . . . . . . 9 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) → ∃𝑥𝐴 𝑦𝐵)
3332adantl 482 . . . . . . . 8 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∃𝑥𝐴 𝑦𝐵)
34 nfv 1917 . . . . . . . . . 10 𝑥𝜑
3516nfuni 4848 . . . . . . . . . . . 12 𝑥 ran (𝑥𝐴𝐵)
36 nfcv 2907 . . . . . . . . . . . 12 𝑥𝐶
3735, 36nfin 4152 . . . . . . . . . . 11 𝑥( ran (𝑥𝐴𝐵) ∩ 𝐶)
3837nfcri 2894 . . . . . . . . . 10 𝑥 𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)
3934, 38nfan 1902 . . . . . . . . 9 𝑥(𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶))
40 nfre1 3238 . . . . . . . . 9 𝑥𝑥𝐴 𝑦 ∈ (𝐵𝐶)
41 elinel2 4131 . . . . . . . . . . 11 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) → 𝑦𝐶)
42 simp2 1136 . . . . . . . . . . . . 13 ((𝑦𝐶𝑥𝐴𝑦𝐵) → 𝑥𝐴)
43 simpr 485 . . . . . . . . . . . . . 14 ((𝑦𝐶𝑦𝐵) → 𝑦𝐵)
44 simpl 483 . . . . . . . . . . . . . 14 ((𝑦𝐶𝑦𝐵) → 𝑦𝐶)
4543, 44elind 4129 . . . . . . . . . . . . 13 ((𝑦𝐶𝑦𝐵) → 𝑦 ∈ (𝐵𝐶))
46 rspe 3236 . . . . . . . . . . . . 13 ((𝑥𝐴𝑦 ∈ (𝐵𝐶)) → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
4742, 45, 463imp3i2an 1344 . . . . . . . . . . . 12 ((𝑦𝐶𝑥𝐴𝑦𝐵) → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
48473exp 1118 . . . . . . . . . . 11 (𝑦𝐶 → (𝑥𝐴 → (𝑦𝐵 → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
4941, 48syl 17 . . . . . . . . . 10 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) → (𝑥𝐴 → (𝑦𝐵 → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
5049adantl 482 . . . . . . . . 9 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → (𝑥𝐴 → (𝑦𝐵 → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
5139, 40, 50rexlimd 3249 . . . . . . . 8 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → (∃𝑥𝐴 𝑦𝐵 → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
5233, 51mpd 15 . . . . . . 7 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
53 disjinfi.d . . . . . . . . . . . . . . 15 (𝜑Disj 𝑥𝐴 𝐵)
54 disjors 5056 . . . . . . . . . . . . . . 15 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑧𝐴𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅))
5553, 54sylib 217 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑧𝐴𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅))
56 nfv 1917 . . . . . . . . . . . . . . 15 𝑧𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅)
57 nfcv 2907 . . . . . . . . . . . . . . . 16 𝑥𝐴
58 nfv 1917 . . . . . . . . . . . . . . . . 17 𝑥 𝑧 = 𝑤
59 nfcsb1v 3858 . . . . . . . . . . . . . . . . . . 19 𝑥𝑧 / 𝑥𝐵
60 nfcv 2907 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑤
6160nfcsb1 3857 . . . . . . . . . . . . . . . . . . 19 𝑥𝑤 / 𝑥𝐵
6259, 61nfin 4152 . . . . . . . . . . . . . . . . . 18 𝑥(𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵)
6362nfeq1 2922 . . . . . . . . . . . . . . . . 17 𝑥(𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅
6458, 63nfor 1907 . . . . . . . . . . . . . . . 16 𝑥(𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅)
6557, 64nfralw 3151 . . . . . . . . . . . . . . 15 𝑥𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅)
66 equequ1 2028 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝑥 = 𝑤𝑧 = 𝑤))
67 csbeq1a 3847 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
6867ineq1d 4147 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝐵𝑤 / 𝑥𝐵) = (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵))
6968eqeq1d 2740 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝐵𝑤 / 𝑥𝐵) = ∅ ↔ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅))
7066, 69orbi12d 916 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ((𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ↔ (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅)))
7170ralbidv 3119 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ↔ ∀𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅)))
7256, 65, 71cbvralw 3372 . . . . . . . . . . . . . 14 (∀𝑥𝐴𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ↔ ∀𝑧𝐴𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅))
7355, 72sylibr 233 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝐴𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅))
7473r19.21bi 3134 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅))
75 rspa 3132 . . . . . . . . . . . . 13 ((∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ∧ 𝑤𝐴) → (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅))
7675orcomd 868 . . . . . . . . . . . 12 ((∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ∧ 𝑤𝐴) → ((𝐵𝑤 / 𝑥𝐵) = ∅ ∨ 𝑥 = 𝑤))
7774, 76sylan 580 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑤𝐴) → ((𝐵𝑤 / 𝑥𝐵) = ∅ ∨ 𝑥 = 𝑤))
78 elinel1 4130 . . . . . . . . . . . 12 (𝑦 ∈ (𝐵𝐶) → 𝑦𝐵)
79 sbsbc 3721 . . . . . . . . . . . . . 14 ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶))
80 sbcel2 4351 . . . . . . . . . . . . . 14 ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦𝑤 / 𝑥(𝐵𝐶))
81 csbin 4375 . . . . . . . . . . . . . . 15 𝑤 / 𝑥(𝐵𝐶) = (𝑤 / 𝑥𝐵𝑤 / 𝑥𝐶)
8281eleq2i 2830 . . . . . . . . . . . . . 14 (𝑦𝑤 / 𝑥(𝐵𝐶) ↔ 𝑦 ∈ (𝑤 / 𝑥𝐵𝑤 / 𝑥𝐶))
8379, 80, 823bitri 297 . . . . . . . . . . . . 13 ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑤 / 𝑥𝐵𝑤 / 𝑥𝐶))
84 elinel1 4130 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑤 / 𝑥𝐵𝑤 / 𝑥𝐶) → 𝑦𝑤 / 𝑥𝐵)
8583, 84sylbi 216 . . . . . . . . . . . 12 ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) → 𝑦𝑤 / 𝑥𝐵)
86 inelcm 4400 . . . . . . . . . . . . 13 ((𝑦𝐵𝑦𝑤 / 𝑥𝐵) → (𝐵𝑤 / 𝑥𝐵) ≠ ∅)
8786neneqd 2948 . . . . . . . . . . . 12 ((𝑦𝐵𝑦𝑤 / 𝑥𝐵) → ¬ (𝐵𝑤 / 𝑥𝐵) = ∅)
8878, 85, 87syl2an 596 . . . . . . . . . . 11 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → ¬ (𝐵𝑤 / 𝑥𝐵) = ∅)
89 pm2.53 848 . . . . . . . . . . 11 (((𝐵𝑤 / 𝑥𝐵) = ∅ ∨ 𝑥 = 𝑤) → (¬ (𝐵𝑤 / 𝑥𝐵) = ∅ → 𝑥 = 𝑤))
9077, 88, 89syl2im 40 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑤𝐴) → ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤))
9190ralrimiva 3103 . . . . . . . . 9 ((𝜑𝑥𝐴) → ∀𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤))
9291ralrimiva 3103 . . . . . . . 8 (𝜑 → ∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤))
9392adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤))
94 reu2 3661 . . . . . . 7 (∃!𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ∧ ∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤)))
9552, 93, 94sylanbrc 583 . . . . . 6 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∃!𝑥𝐴 𝑦 ∈ (𝐵𝐶))
96 riotacl2 7243 . . . . . 6 (∃!𝑥𝐴 𝑦 ∈ (𝐵𝐶) → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)})
97 nfriota1 7233 . . . . . . . . 9 𝑥(𝑥𝐴 𝑦 ∈ (𝐵𝐶))
9897nfcsb1 3857 . . . . . . . . . . 11 𝑥(𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵
9998, 36nfin 4152 . . . . . . . . . 10 𝑥((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶)
10099nfcri 2894 . . . . . . . . 9 𝑥 𝑦 ∈ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶)
101 csbeq1a 3847 . . . . . . . . . . 11 (𝑥 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) → 𝐵 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵)
102101ineq1d 4147 . . . . . . . . . 10 (𝑥 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) → (𝐵𝐶) = ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶))
103102eleq2d 2824 . . . . . . . . 9 (𝑥 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) → (𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶)))
10497, 57, 100, 103elrabf 3621 . . . . . . . 8 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} ↔ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ 𝐴𝑦 ∈ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶)))
105104simplbi 498 . . . . . . 7 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ 𝐴)
106104simprbi 497 . . . . . . . 8 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → 𝑦 ∈ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶))
107106ne0d 4271 . . . . . . 7 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) ≠ ∅)
108 nfcv 2907 . . . . . . . . 9 𝑥
10999, 108nfne 3045 . . . . . . . 8 𝑥((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) ≠ ∅
110102neeq1d 3003 . . . . . . . 8 (𝑥 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) → ((𝐵𝐶) ≠ ∅ ↔ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) ≠ ∅))
11197, 57, 109, 110elrabf 3621 . . . . . . 7 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ↔ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ 𝐴 ∧ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) ≠ ∅))
112105, 107, 111sylanbrc 583 . . . . . 6 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅})
11395, 96, 1123syl 18 . . . . 5 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅})
114113ralrimiva 3103 . . . 4 (𝜑 → ∀𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)(𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅})
11561, 36nfin 4152 . . . . . . . . . . . 12 𝑥(𝑤 / 𝑥𝐵𝐶)
116115, 108nfne 3045 . . . . . . . . . . 11 𝑥(𝑤 / 𝑥𝐵𝐶) ≠ ∅
117 csbeq1a 3847 . . . . . . . . . . . . 13 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
118117ineq1d 4147 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (𝐵𝐶) = (𝑤 / 𝑥𝐵𝐶))
119118neeq1d 3003 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((𝐵𝐶) ≠ ∅ ↔ (𝑤 / 𝑥𝐵𝐶) ≠ ∅))
12060, 57, 116, 119elrabf 3621 . . . . . . . . . 10 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ↔ (𝑤𝐴 ∧ (𝑤 / 𝑥𝐵𝐶) ≠ ∅))
121120simprbi 497 . . . . . . . . 9 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} → (𝑤 / 𝑥𝐵𝐶) ≠ ∅)
122 n0 4282 . . . . . . . . 9 ((𝑤 / 𝑥𝐵𝐶) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
123121, 122sylib 217 . . . . . . . 8 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} → ∃𝑦 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
124123adantl 482 . . . . . . 7 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → ∃𝑦 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
125120simplbi 498 . . . . . . . . 9 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} → 𝑤𝐴)
126 elinel1 4130 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → 𝑦𝑤 / 𝑥𝐵)
127126adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦𝑤 / 𝑥𝐵)
128 simplr 766 . . . . . . . . . . . . . . 15 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤𝐴)
129 nfv 1917 . . . . . . . . . . . . . . . . . 18 𝑥(𝜑𝑤𝐴)
13061nfel1 2923 . . . . . . . . . . . . . . . . . 18 𝑥𝑤 / 𝑥𝐵𝑉
131129, 130nfim 1899 . . . . . . . . . . . . . . . . 17 𝑥((𝜑𝑤𝐴) → 𝑤 / 𝑥𝐵𝑉)
132 eleq1w 2821 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → (𝑥𝐴𝑤𝐴))
133132anbi2d 629 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → ((𝜑𝑥𝐴) ↔ (𝜑𝑤𝐴)))
134117eleq1d 2823 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → (𝐵𝑉𝑤 / 𝑥𝐵𝑉))
135133, 134imbi12d 345 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑤 → (((𝜑𝑥𝐴) → 𝐵𝑉) ↔ ((𝜑𝑤𝐴) → 𝑤 / 𝑥𝐵𝑉)))
136 disjinfi.b . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵𝑉)
137131, 135, 136chvarfv 2233 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝐴) → 𝑤 / 𝑥𝐵𝑉)
138137adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 / 𝑥𝐵𝑉)
139 eqid 2738 . . . . . . . . . . . . . . . 16 (𝑤𝐴𝑤 / 𝑥𝐵) = (𝑤𝐴𝑤 / 𝑥𝐵)
140139elrnmpt1 5862 . . . . . . . . . . . . . . 15 ((𝑤𝐴𝑤 / 𝑥𝐵𝑉) → 𝑤 / 𝑥𝐵 ∈ ran (𝑤𝐴𝑤 / 𝑥𝐵))
141128, 138, 140syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 / 𝑥𝐵 ∈ ran (𝑤𝐴𝑤 / 𝑥𝐵))
142 nfcv 2907 . . . . . . . . . . . . . . . 16 𝑤𝐵
143117equcoms 2023 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑥𝐵 = 𝑤 / 𝑥𝐵)
144143eqcomd 2744 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑥𝑤 / 𝑥𝐵 = 𝐵)
14561, 142, 144cbvmpt 5186 . . . . . . . . . . . . . . 15 (𝑤𝐴𝑤 / 𝑥𝐵) = (𝑥𝐴𝐵)
146145rneqi 5841 . . . . . . . . . . . . . 14 ran (𝑤𝐴𝑤 / 𝑥𝐵) = ran (𝑥𝐴𝐵)
147141, 146eleqtrdi 2849 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 / 𝑥𝐵 ∈ ran (𝑥𝐴𝐵))
148 elunii 4846 . . . . . . . . . . . . 13 ((𝑦𝑤 / 𝑥𝐵𝑤 / 𝑥𝐵 ∈ ran (𝑥𝐴𝐵)) → 𝑦 ran (𝑥𝐴𝐵))
149127, 147, 148syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦 ran (𝑥𝐴𝐵))
150 elinel2 4131 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → 𝑦𝐶)
151150adantl 482 . . . . . . . . . . . 12 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦𝐶)
152149, 151elind 4129 . . . . . . . . . . 11 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶))
153 nfv 1917 . . . . . . . . . . . . 13 𝑤 𝑦 ∈ (𝐵𝐶)
154115nfcri 2894 . . . . . . . . . . . . 13 𝑥 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)
155118eleq2d 2824 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)))
156153, 154, 155cbvriotaw 7235 . . . . . . . . . . . 12 (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) = (𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
157 simpr 485 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
158 rspe 3236 . . . . . . . . . . . . . . . 16 ((𝑤𝐴𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ∃𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
159158adantll 711 . . . . . . . . . . . . . . 15 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ∃𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
160 simpll 764 . . . . . . . . . . . . . . . 16 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝜑)
161 sbequ 2086 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑧 → ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ [𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶)))
162 sbsbc 3721 . . . . . . . . . . . . . . . . . . . . . . . 24 ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ [𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶))
163162a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑧 → ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ [𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶)))
164 sbcel2 4351 . . . . . . . . . . . . . . . . . . . . . . . . 25 ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦𝑧 / 𝑥(𝐵𝐶))
165 csbin 4375 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑧 / 𝑥(𝐵𝐶) = (𝑧 / 𝑥𝐵𝑧 / 𝑥𝐶)
166 csbconstg 3852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ V → 𝑧 / 𝑥𝐶 = 𝐶)
167166elv 3437 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑧 / 𝑥𝐶 = 𝐶
168167ineq2i 4145 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 / 𝑥𝐵𝑧 / 𝑥𝐶) = (𝑧 / 𝑥𝐵𝐶)
169165, 168eqtri 2766 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑧 / 𝑥(𝐵𝐶) = (𝑧 / 𝑥𝐵𝐶)
170169eleq2i 2830 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝑧 / 𝑥(𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))
171164, 170bitri 274 . . . . . . . . . . . . . . . . . . . . . . . 24 ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))
172171a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑧 → ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)))
173161, 163, 1723bitrd 305 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑧 → ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)))
174173anbi2d 629 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑧 → ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) ↔ (𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))))
175 equequ2 2029 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑧 → (𝑥 = 𝑤𝑥 = 𝑧))
176174, 175imbi12d 345 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑧 → (((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤) ↔ ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧)))
177176cbvralvw 3382 . . . . . . . . . . . . . . . . . . 19 (∀𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤) ↔ ∀𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧))
178177ralbii 3092 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤) ↔ ∀𝑥𝐴𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧))
179 nfv 1917 . . . . . . . . . . . . . . . . . . 19 𝑤𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧)
18059, 36nfin 4152 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥(𝑧 / 𝑥𝐵𝐶)
181180nfcri 2894 . . . . . . . . . . . . . . . . . . . . . 22 𝑥 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)
182154, 181nfan 1902 . . . . . . . . . . . . . . . . . . . . 21 𝑥(𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))
183 nfv 1917 . . . . . . . . . . . . . . . . . . . . 21 𝑥 𝑤 = 𝑧
184182, 183nfim 1899 . . . . . . . . . . . . . . . . . . . 20 𝑥((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)
18557, 184nfralw 3151 . . . . . . . . . . . . . . . . . . 19 𝑥𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)
186155anbi1d 630 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) ↔ (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))))
187 equequ1 2028 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → (𝑥 = 𝑧𝑤 = 𝑧))
188186, 187imbi12d 345 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → (((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧) ↔ ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)))
189188ralbidv 3119 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → (∀𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧) ↔ ∀𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)))
190179, 185, 189cbvralw 3372 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝐴𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧) ↔ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
191 sbsbc 3721 . . . . . . . . . . . . . . . . . . . . . 22 ([𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ↔ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
192 sbcel2 4351 . . . . . . . . . . . . . . . . . . . . . 22 ([𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ↔ 𝑦𝑧 / 𝑤(𝑤 / 𝑥𝐵𝐶))
193 csbin 4375 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧 / 𝑤(𝑤 / 𝑥𝐵𝐶) = (𝑧 / 𝑤𝑤 / 𝑥𝐵𝑧 / 𝑤𝐶)
194 csbcow 3848 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑧 / 𝑤𝑤 / 𝑥𝐵 = 𝑧 / 𝑥𝐵
195 csbconstg 3852 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ V → 𝑧 / 𝑤𝐶 = 𝐶)
196195elv 3437 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑧 / 𝑤𝐶 = 𝐶
197194, 196ineq12i 4146 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 / 𝑤𝑤 / 𝑥𝐵𝑧 / 𝑤𝐶) = (𝑧 / 𝑥𝐵𝐶)
198193, 197eqtri 2766 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧 / 𝑤(𝑤 / 𝑥𝐵𝐶) = (𝑧 / 𝑥𝐵𝐶)
199198eleq2i 2830 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝑧 / 𝑤(𝑤 / 𝑥𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))
200191, 192, 1993bitrri 298 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝑧 / 𝑥𝐵𝐶) ↔ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
201200anbi2i 623 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) ↔ (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)))
202201imbi1i 350 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧) ↔ ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
2032022ralbii 3093 . . . . . . . . . . . . . . . . . 18 (∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧) ↔ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
204178, 190, 2033bitri 297 . . . . . . . . . . . . . . . . 17 (∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤) ↔ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
20593, 204sylib 217 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
206160, 152, 205syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
207 reu2 3661 . . . . . . . . . . . . . . 15 (∃!𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ↔ (∃𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)))
208159, 206, 207sylanbrc 583 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ∃!𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
209 riota1 7248 . . . . . . . . . . . . . 14 (∃!𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → ((𝑤𝐴𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) ↔ (𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) = 𝑤))
210208, 209syl 17 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ((𝑤𝐴𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) ↔ (𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) = 𝑤))
211128, 157, 210mpbi2and 709 . . . . . . . . . . . 12 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → (𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) = 𝑤)
212156, 211eqtr2id 2791 . . . . . . . . . . 11 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
213152, 212jca 512 . . . . . . . . . 10 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
214213ex 413 . . . . . . . . 9 ((𝜑𝑤𝐴) → (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))))
215125, 214sylan2 593 . . . . . . . 8 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))))
216215eximdv 1920 . . . . . . 7 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → (∃𝑦 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → ∃𝑦(𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))))
217124, 216mpd 15 . . . . . 6 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → ∃𝑦(𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
218 df-rex 3070 . . . . . 6 (∃𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ↔ ∃𝑦(𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
219217, 218sylibr 233 . . . . 5 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → ∃𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
220219ralrimiva 3103 . . . 4 (𝜑 → ∀𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}∃𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
221 eqid 2738 . . . . 5 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶))) = (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
222221fompt 42690 . . . 4 ((𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶))):( ran (𝑥𝐴𝐵) ∩ 𝐶)–onto→{𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ↔ (∀𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)(𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ∧ ∀𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}∃𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
223114, 220, 222sylanbrc 583 . . 3 (𝜑 → (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶))):( ran (𝑥𝐴𝐵) ∩ 𝐶)–onto→{𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅})
224 fodomg 10267 . . 3 (( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ V → ((𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶))):( ran (𝑥𝐴𝐵) ∩ 𝐶)–onto→{𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ≼ ( ran (𝑥𝐴𝐵) ∩ 𝐶)))
2256, 223, 224sylc 65 . 2 (𝜑 → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ≼ ( ran (𝑥𝐴𝐵) ∩ 𝐶))
226 domfi 8964 . 2 ((( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ Fin ∧ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ≼ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ∈ Fin)
2274, 225, 226syl2anc 584 1 (𝜑 → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wex 1782  [wsb 2067  wcel 2106  wne 2943  wral 3064  wrex 3065  ∃!wreu 3066  {crab 3068  Vcvv 3431  [wsbc 3717  csb 3833  cin 3887  wss 3888  c0 4258   cuni 4841  Disj wdisj 5040   class class class wbr 5075  cmpt 5158  ran crn 5587  ontowfo 6426  crio 7225  cdom 8720  Fincfn 8722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5210  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7580  ax-ac2 10208
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-disj 5041  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5486  df-eprel 5492  df-po 5500  df-so 5501  df-fr 5541  df-se 5542  df-we 5543  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-pred 6197  df-ord 6264  df-on 6265  df-lim 6266  df-suc 6267  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-f1 6433  df-fo 6434  df-f1o 6435  df-fv 6436  df-isom 6437  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-1o 8286  df-er 8487  df-map 8606  df-en 8723  df-dom 8724  df-fin 8726  df-card 9686  df-acn 9689  df-ac 9861
This theorem is referenced by:  fsumiunss  43076  sge0iunmptlemre  43913
  Copyright terms: Public domain W3C validator