Step | Hyp | Ref
| Expression |
1 | | gsumdixp.b |
. . . 4
⊢ 𝐵 = (Base‘𝑅) |
2 | | gsumdixp.z |
. . . 4
⊢ 0 =
(0g‘𝑅) |
3 | | gsumdixp.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
4 | | ringcmn 19735 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
5 | 3, 4 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ CMnd) |
6 | | gsumdixp.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
7 | | gsumdixp.j |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ 𝑊) |
8 | 7 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐽 ∈ 𝑊) |
9 | 3 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) → 𝑅 ∈ Ring) |
10 | | gsumdixp.x |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑋 ∈ 𝐵) |
11 | 10 | fmpttd 6971 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝑋):𝐼⟶𝐵) |
12 | | simpl 482 |
. . . . . 6
⊢ ((𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽) → 𝑖 ∈ 𝐼) |
13 | | ffvelrn 6941 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐼 ↦ 𝑋):𝐼⟶𝐵 ∧ 𝑖 ∈ 𝐼) → ((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) ∈ 𝐵) |
14 | 11, 12, 13 | syl2an 595 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) → ((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) ∈ 𝐵) |
15 | | gsumdixp.y |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → 𝑌 ∈ 𝐵) |
16 | 15 | fmpttd 6971 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ 𝑌):𝐽⟶𝐵) |
17 | | simpr 484 |
. . . . . 6
⊢ ((𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽) → 𝑗 ∈ 𝐽) |
18 | | ffvelrn 6941 |
. . . . . 6
⊢ (((𝑦 ∈ 𝐽 ↦ 𝑌):𝐽⟶𝐵 ∧ 𝑗 ∈ 𝐽) → ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗) ∈ 𝐵) |
19 | 16, 17, 18 | syl2an 595 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) → ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗) ∈ 𝐵) |
20 | | gsumdixp.t |
. . . . . 6
⊢ · =
(.r‘𝑅) |
21 | 1, 20 | ringcl 19715 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ ((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) ∈ 𝐵 ∧ ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗) ∈ 𝐵) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)) ∈ 𝐵) |
22 | 9, 14, 19, 21 | syl3anc 1369 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)) ∈ 𝐵) |
23 | | gsumdixp.xf |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝑋) finSupp 0 ) |
24 | 23 | fsuppimpd 9065 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ) ∈
Fin) |
25 | | gsumdixp.yf |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ 𝑌) finSupp 0 ) |
26 | 25 | fsuppimpd 9065 |
. . . . 5
⊢ (𝜑 → ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ) ∈
Fin) |
27 | | xpfi 9015 |
. . . . 5
⊢ ((((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ) ∈ Fin ∧ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ) ∈ Fin) →
(((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ) × ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 )) ∈
Fin) |
28 | 24, 26, 27 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ) × ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 )) ∈
Fin) |
29 | | ianor 978 |
. . . . . . 7
⊢ (¬
(𝑖 ∈ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ) ∧ 𝑗 ∈ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 )) ↔ (¬ 𝑖 ∈ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ) ∨ ¬ 𝑗 ∈ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))) |
30 | | brxp 5627 |
. . . . . . 7
⊢ (𝑖(((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ) × ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))𝑗 ↔ (𝑖 ∈ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ) ∧ 𝑗 ∈ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))) |
31 | 29, 30 | xchnxbir 332 |
. . . . . 6
⊢ (¬
𝑖(((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ) × ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))𝑗 ↔ (¬ 𝑖 ∈ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ) ∨ ¬ 𝑗 ∈ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))) |
32 | | simprl 767 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) → 𝑖 ∈ 𝐼) |
33 | | eldif 3893 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 )) ↔ (𝑖 ∈ 𝐼 ∧ ¬ 𝑖 ∈ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ))) |
34 | 33 | biimpri 227 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ 𝐼 ∧ ¬ 𝑖 ∈ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 )) → 𝑖 ∈ (𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ))) |
35 | 32, 34 | sylan 579 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 )) → 𝑖 ∈ (𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ))) |
36 | 11 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) → (𝑥 ∈ 𝐼 ↦ 𝑋):𝐼⟶𝐵) |
37 | | ssidd 3940 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) → ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ) ⊆ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 )) |
38 | 6 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) → 𝐼 ∈ 𝑉) |
39 | 2 | fvexi 6770 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
40 | 39 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) → 0 ∈ V) |
41 | 36, 37, 38, 40 | suppssr 7983 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) ∧ 𝑖 ∈ (𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ))) → ((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) = 0 ) |
42 | 35, 41 | syldan 590 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 )) → ((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) = 0 ) |
43 | 42 | oveq1d 7270 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 )) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)) = ( 0 · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗))) |
44 | 1, 20, 2 | ringlz 19741 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗) ∈ 𝐵) → ( 0 · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)) = 0 ) |
45 | 9, 19, 44 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) → ( 0 · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)) = 0 ) |
46 | 45 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 )) → ( 0 ·
((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)) = 0 ) |
47 | 43, 46 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 )) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)) = 0 ) |
48 | | simprr 769 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) → 𝑗 ∈ 𝐽) |
49 | | eldif 3893 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (𝐽 ∖ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 )) ↔ (𝑗 ∈ 𝐽 ∧ ¬ 𝑗 ∈ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))) |
50 | 49 | biimpri 227 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ 𝐽 ∧ ¬ 𝑗 ∈ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 )) → 𝑗 ∈ (𝐽 ∖ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))) |
51 | 48, 50 | sylan 579 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 )) → 𝑗 ∈ (𝐽 ∖ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))) |
52 | 16 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) → (𝑦 ∈ 𝐽 ↦ 𝑌):𝐽⟶𝐵) |
53 | | ssidd 3940 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) → ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ) ⊆ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 )) |
54 | 7 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) → 𝐽 ∈ 𝑊) |
55 | 52, 53, 54, 40 | suppssr 7983 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) ∧ 𝑗 ∈ (𝐽 ∖ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))) → ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗) = 0 ) |
56 | 51, 55 | syldan 590 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 )) → ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗) = 0 ) |
57 | 56 | oveq2d 7271 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 )) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)) = (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · 0 )) |
58 | 1, 20, 2 | ringrz 19742 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ ((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) ∈ 𝐵) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · 0 ) = 0 ) |
59 | 9, 14, 58 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · 0 ) = 0 ) |
60 | 59 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 )) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · 0 ) = 0 ) |
61 | 57, 60 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 )) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)) = 0 ) |
62 | 47, 61 | jaodan 954 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) ∧ (¬ 𝑖 ∈ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ) ∨ ¬ 𝑗 ∈ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)) = 0 ) |
63 | 31, 62 | sylan2b 593 |
. . . . 5
⊢ (((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) ∧ ¬ 𝑖(((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ) × ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))𝑗) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)) = 0 ) |
64 | 63 | anasss 466 |
. . . 4
⊢ ((𝜑 ∧ ((𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽) ∧ ¬ 𝑖(((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ) × ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))𝑗)) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)) = 0 ) |
65 | 1, 2, 5, 6, 8, 22,
28, 64 | gsum2d2 19490 |
. . 3
⊢ (𝜑 → (𝑅 Σg (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)))) = (𝑅 Σg (𝑖 ∈ 𝐼 ↦ (𝑅 Σg (𝑗 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗))))))) |
66 | | nffvmpt1 6767 |
. . . . . . 7
⊢
Ⅎ𝑥((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) |
67 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑥
· |
68 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑥((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗) |
69 | 66, 67, 68 | nfov 7285 |
. . . . . 6
⊢
Ⅎ𝑥(((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)) |
70 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑦((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) |
71 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑦
· |
72 | | nffvmpt1 6767 |
. . . . . . 7
⊢
Ⅎ𝑦((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗) |
73 | 70, 71, 72 | nfov 7285 |
. . . . . 6
⊢
Ⅎ𝑦(((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)) |
74 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑖(((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦)) |
75 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑗(((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦)) |
76 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑖 = 𝑥 → ((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) = ((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥)) |
77 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑗 = 𝑦 → ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗) = ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦)) |
78 | 76, 77 | oveqan12d 7274 |
. . . . . 6
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = 𝑦) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)) = (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦))) |
79 | 69, 73, 74, 75, 78 | cbvmpo 7347 |
. . . . 5
⊢ (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗))) = (𝑥 ∈ 𝐼, 𝑦 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦))) |
80 | | simp2 1135 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽) → 𝑥 ∈ 𝐼) |
81 | 10 | 3adant3 1130 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽) → 𝑋 ∈ 𝐵) |
82 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐼 ↦ 𝑋) = (𝑥 ∈ 𝐼 ↦ 𝑋) |
83 | 82 | fvmpt2 6868 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) = 𝑋) |
84 | 80, 81, 83 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽) → ((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) = 𝑋) |
85 | | simp3 1136 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽) → 𝑦 ∈ 𝐽) |
86 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐽 ↦ 𝑌) = (𝑦 ∈ 𝐽 ↦ 𝑌) |
87 | 86 | fvmpt2 6868 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐽 ∧ 𝑌 ∈ 𝐵) → ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦) = 𝑌) |
88 | 85, 15, 87 | 3imp3i2an 1343 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽) → ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦) = 𝑌) |
89 | 84, 88 | oveq12d 7273 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦)) = (𝑋 · 𝑌)) |
90 | 89 | mpoeq3dva 7330 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐼, 𝑦 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦))) = (𝑥 ∈ 𝐼, 𝑦 ∈ 𝐽 ↦ (𝑋 · 𝑌))) |
91 | 79, 90 | eqtrid 2790 |
. . . 4
⊢ (𝜑 → (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗))) = (𝑥 ∈ 𝐼, 𝑦 ∈ 𝐽 ↦ (𝑋 · 𝑌))) |
92 | 91 | oveq2d 7271 |
. . 3
⊢ (𝜑 → (𝑅 Σg (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)))) = (𝑅 Σg (𝑥 ∈ 𝐼, 𝑦 ∈ 𝐽 ↦ (𝑋 · 𝑌)))) |
93 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑥𝑅 |
94 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑥
Σg |
95 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐽 |
96 | 95, 69 | nfmpt 5177 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑗 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗))) |
97 | 93, 94, 96 | nfov 7285 |
. . . . . 6
⊢
Ⅎ𝑥(𝑅 Σg (𝑗 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)))) |
98 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑖(𝑅 Σg (𝑦 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦)))) |
99 | 76 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑖 = 𝑥 → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)) = (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗))) |
100 | 99 | mpteq2dv 5172 |
. . . . . . . 8
⊢ (𝑖 = 𝑥 → (𝑗 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗))) = (𝑗 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)))) |
101 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑦((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) |
102 | 101, 71, 72 | nfov 7285 |
. . . . . . . . 9
⊢
Ⅎ𝑦(((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)) |
103 | 77 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑗 = 𝑦 → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)) = (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦))) |
104 | 102, 75, 103 | cbvmpt 5181 |
. . . . . . . 8
⊢ (𝑗 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗))) = (𝑦 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦))) |
105 | 100, 104 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝑖 = 𝑥 → (𝑗 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗))) = (𝑦 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦)))) |
106 | 105 | oveq2d 7271 |
. . . . . 6
⊢ (𝑖 = 𝑥 → (𝑅 Σg (𝑗 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)))) = (𝑅 Σg (𝑦 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦))))) |
107 | 97, 98, 106 | cbvmpt 5181 |
. . . . 5
⊢ (𝑖 ∈ 𝐼 ↦ (𝑅 Σg (𝑗 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗))))) = (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦))))) |
108 | 89 | 3expa 1116 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦)) = (𝑋 · 𝑌)) |
109 | 108 | mpteq2dva 5170 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑦 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦))) = (𝑦 ∈ 𝐽 ↦ (𝑋 · 𝑌))) |
110 | 109 | oveq2d 7271 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑅 Σg (𝑦 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦)))) = (𝑅 Σg (𝑦 ∈ 𝐽 ↦ (𝑋 · 𝑌)))) |
111 | 110 | mpteq2dva 5170 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦))))) = (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ (𝑋 · 𝑌))))) |
112 | 107, 111 | eqtrid 2790 |
. . . 4
⊢ (𝜑 → (𝑖 ∈ 𝐼 ↦ (𝑅 Σg (𝑗 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗))))) = (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ (𝑋 · 𝑌))))) |
113 | 112 | oveq2d 7271 |
. . 3
⊢ (𝜑 → (𝑅 Σg (𝑖 ∈ 𝐼 ↦ (𝑅 Σg (𝑗 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)))))) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ (𝑋 · 𝑌)))))) |
114 | 65, 92, 113 | 3eqtr3d 2786 |
. 2
⊢ (𝜑 → (𝑅 Σg (𝑥 ∈ 𝐼, 𝑦 ∈ 𝐽 ↦ (𝑋 · 𝑌))) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ (𝑋 · 𝑌)))))) |
115 | | eqid 2738 |
. . . . 5
⊢
(+g‘𝑅) = (+g‘𝑅) |
116 | 3 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ Ring) |
117 | 7 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐽 ∈ 𝑊) |
118 | 15 | adantlr 711 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝑌 ∈ 𝐵) |
119 | 25 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑦 ∈ 𝐽 ↦ 𝑌) finSupp 0 ) |
120 | 1, 2, 115, 20, 116, 117, 10, 118, 119 | gsummulc2 19761 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑅 Σg (𝑦 ∈ 𝐽 ↦ (𝑋 · 𝑌))) = (𝑋 · (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑌)))) |
121 | 120 | mpteq2dva 5170 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ (𝑋 · 𝑌)))) = (𝑥 ∈ 𝐼 ↦ (𝑋 · (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑌))))) |
122 | 121 | oveq2d 7271 |
. 2
⊢ (𝜑 → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ (𝑋 · 𝑌))))) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ (𝑋 · (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑌)))))) |
123 | 1, 2, 5, 7, 16, 25 | gsumcl 19431 |
. . 3
⊢ (𝜑 → (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑌)) ∈ 𝐵) |
124 | 1, 2, 115, 20, 3, 6, 123, 10, 23 | gsummulc1 19760 |
. 2
⊢ (𝜑 → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ (𝑋 · (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑌))))) = ((𝑅 Σg (𝑥 ∈ 𝐼 ↦ 𝑋)) · (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑌)))) |
125 | 114, 122,
124 | 3eqtrrd 2783 |
1
⊢ (𝜑 → ((𝑅 Σg (𝑥 ∈ 𝐼 ↦ 𝑋)) · (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑌))) = (𝑅 Σg (𝑥 ∈ 𝐼, 𝑦 ∈ 𝐽 ↦ (𝑋 · 𝑌)))) |