MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumdixp Structured version   Visualization version   GIF version

Theorem gsumdixp 19763
Description: Distribute a binary product of sums to a sum of binary products in a ring. (Contributed by Mario Carneiro, 8-Mar-2015.) (Revised by AV, 10-Jul-2019.)
Hypotheses
Ref Expression
gsumdixp.b 𝐵 = (Base‘𝑅)
gsumdixp.t · = (.r𝑅)
gsumdixp.z 0 = (0g𝑅)
gsumdixp.i (𝜑𝐼𝑉)
gsumdixp.j (𝜑𝐽𝑊)
gsumdixp.r (𝜑𝑅 ∈ Ring)
gsumdixp.x ((𝜑𝑥𝐼) → 𝑋𝐵)
gsumdixp.y ((𝜑𝑦𝐽) → 𝑌𝐵)
gsumdixp.xf (𝜑 → (𝑥𝐼𝑋) finSupp 0 )
gsumdixp.yf (𝜑 → (𝑦𝐽𝑌) finSupp 0 )
Assertion
Ref Expression
gsumdixp (𝜑 → ((𝑅 Σg (𝑥𝐼𝑋)) · (𝑅 Σg (𝑦𝐽𝑌))) = (𝑅 Σg (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌))))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐼,𝑦   𝑥,𝐽,𝑦   𝑥,𝑅   𝑥, · ,𝑦   𝑦,𝑋   𝑥,𝑌
Allowed substitution hints:   𝑅(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥)   𝑌(𝑦)   0 (𝑥,𝑦)

Proof of Theorem gsumdixp
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumdixp.b . . . 4 𝐵 = (Base‘𝑅)
2 gsumdixp.z . . . 4 0 = (0g𝑅)
3 gsumdixp.r . . . . 5 (𝜑𝑅 ∈ Ring)
4 ringcmn 19735 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
53, 4syl 17 . . . 4 (𝜑𝑅 ∈ CMnd)
6 gsumdixp.i . . . 4 (𝜑𝐼𝑉)
7 gsumdixp.j . . . . 5 (𝜑𝐽𝑊)
87adantr 480 . . . 4 ((𝜑𝑖𝐼) → 𝐽𝑊)
93adantr 480 . . . . 5 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑅 ∈ Ring)
10 gsumdixp.x . . . . . . 7 ((𝜑𝑥𝐼) → 𝑋𝐵)
1110fmpttd 6971 . . . . . 6 (𝜑 → (𝑥𝐼𝑋):𝐼𝐵)
12 simpl 482 . . . . . 6 ((𝑖𝐼𝑗𝐽) → 𝑖𝐼)
13 ffvelrn 6941 . . . . . 6 (((𝑥𝐼𝑋):𝐼𝐵𝑖𝐼) → ((𝑥𝐼𝑋)‘𝑖) ∈ 𝐵)
1411, 12, 13syl2an 595 . . . . 5 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ((𝑥𝐼𝑋)‘𝑖) ∈ 𝐵)
15 gsumdixp.y . . . . . . 7 ((𝜑𝑦𝐽) → 𝑌𝐵)
1615fmpttd 6971 . . . . . 6 (𝜑 → (𝑦𝐽𝑌):𝐽𝐵)
17 simpr 484 . . . . . 6 ((𝑖𝐼𝑗𝐽) → 𝑗𝐽)
18 ffvelrn 6941 . . . . . 6 (((𝑦𝐽𝑌):𝐽𝐵𝑗𝐽) → ((𝑦𝐽𝑌)‘𝑗) ∈ 𝐵)
1916, 17, 18syl2an 595 . . . . 5 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ((𝑦𝐽𝑌)‘𝑗) ∈ 𝐵)
20 gsumdixp.t . . . . . 6 · = (.r𝑅)
211, 20ringcl 19715 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑥𝐼𝑋)‘𝑖) ∈ 𝐵 ∧ ((𝑦𝐽𝑌)‘𝑗) ∈ 𝐵) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) ∈ 𝐵)
229, 14, 19, 21syl3anc 1369 . . . 4 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) ∈ 𝐵)
23 gsumdixp.xf . . . . . 6 (𝜑 → (𝑥𝐼𝑋) finSupp 0 )
2423fsuppimpd 9065 . . . . 5 (𝜑 → ((𝑥𝐼𝑋) supp 0 ) ∈ Fin)
25 gsumdixp.yf . . . . . 6 (𝜑 → (𝑦𝐽𝑌) finSupp 0 )
2625fsuppimpd 9065 . . . . 5 (𝜑 → ((𝑦𝐽𝑌) supp 0 ) ∈ Fin)
27 xpfi 9015 . . . . 5 ((((𝑥𝐼𝑋) supp 0 ) ∈ Fin ∧ ((𝑦𝐽𝑌) supp 0 ) ∈ Fin) → (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )) ∈ Fin)
2824, 26, 27syl2anc 583 . . . 4 (𝜑 → (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )) ∈ Fin)
29 ianor 978 . . . . . . 7 (¬ (𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∧ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) ↔ (¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∨ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )))
30 brxp 5627 . . . . . . 7 (𝑖(((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))𝑗 ↔ (𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∧ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )))
3129, 30xchnxbir 332 . . . . . 6 𝑖(((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))𝑗 ↔ (¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∨ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )))
32 simprl 767 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑖𝐼)
33 eldif 3893 . . . . . . . . . . . 12 (𝑖 ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) ↔ (𝑖𝐼 ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )))
3433biimpri 227 . . . . . . . . . . 11 ((𝑖𝐼 ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → 𝑖 ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )))
3532, 34sylan 579 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → 𝑖 ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )))
3611adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (𝑥𝐼𝑋):𝐼𝐵)
37 ssidd 3940 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ((𝑥𝐼𝑋) supp 0 ) ⊆ ((𝑥𝐼𝑋) supp 0 ))
386adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝐼𝑉)
392fvexi 6770 . . . . . . . . . . . 12 0 ∈ V
4039a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 0 ∈ V)
4136, 37, 38, 40suppssr 7983 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ 𝑖 ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 ))) → ((𝑥𝐼𝑋)‘𝑖) = 0 )
4235, 41syldan 590 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → ((𝑥𝐼𝑋)‘𝑖) = 0 )
4342oveq1d 7270 . . . . . . . 8 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = ( 0 · ((𝑦𝐽𝑌)‘𝑗)))
441, 20, 2ringlz 19741 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑦𝐽𝑌)‘𝑗) ∈ 𝐵) → ( 0 · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
459, 19, 44syl2anc 583 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ( 0 · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
4645adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → ( 0 · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
4743, 46eqtrd 2778 . . . . . . 7 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
48 simprr 769 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑗𝐽)
49 eldif 3893 . . . . . . . . . . . 12 (𝑗 ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )) ↔ (𝑗𝐽 ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )))
5049biimpri 227 . . . . . . . . . . 11 ((𝑗𝐽 ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → 𝑗 ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))
5148, 50sylan 579 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → 𝑗 ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))
5216adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (𝑦𝐽𝑌):𝐽𝐵)
53 ssidd 3940 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ((𝑦𝐽𝑌) supp 0 ) ⊆ ((𝑦𝐽𝑌) supp 0 ))
547adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝐽𝑊)
5552, 53, 54, 40suppssr 7983 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ 𝑗 ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))) → ((𝑦𝐽𝑌)‘𝑗) = 0 )
5651, 55syldan 590 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → ((𝑦𝐽𝑌)‘𝑗) = 0 )
5756oveq2d 7271 . . . . . . . 8 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = (((𝑥𝐼𝑋)‘𝑖) · 0 ))
581, 20, 2ringrz 19742 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑥𝐼𝑋)‘𝑖) ∈ 𝐵) → (((𝑥𝐼𝑋)‘𝑖) · 0 ) = 0 )
599, 14, 58syl2anc 583 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (((𝑥𝐼𝑋)‘𝑖) · 0 ) = 0 )
6059adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · 0 ) = 0 )
6157, 60eqtrd 2778 . . . . . . 7 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
6247, 61jaodan 954 . . . . . 6 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ (¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∨ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 ))) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
6331, 62sylan2b 593 . . . . 5 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖(((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))𝑗) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
6463anasss 466 . . . 4 ((𝜑 ∧ ((𝑖𝐼𝑗𝐽) ∧ ¬ 𝑖(((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))𝑗)) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
651, 2, 5, 6, 8, 22, 28, 64gsum2d2 19490 . . 3 (𝜑 → (𝑅 Σg (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))) = (𝑅 Σg (𝑖𝐼 ↦ (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))))))
66 nffvmpt1 6767 . . . . . . 7 𝑥((𝑥𝐼𝑋)‘𝑖)
67 nfcv 2906 . . . . . . 7 𝑥 ·
68 nfcv 2906 . . . . . . 7 𝑥((𝑦𝐽𝑌)‘𝑗)
6966, 67, 68nfov 7285 . . . . . 6 𝑥(((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))
70 nfcv 2906 . . . . . . 7 𝑦((𝑥𝐼𝑋)‘𝑖)
71 nfcv 2906 . . . . . . 7 𝑦 ·
72 nffvmpt1 6767 . . . . . . 7 𝑦((𝑦𝐽𝑌)‘𝑗)
7370, 71, 72nfov 7285 . . . . . 6 𝑦(((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))
74 nfcv 2906 . . . . . 6 𝑖(((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))
75 nfcv 2906 . . . . . 6 𝑗(((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))
76 fveq2 6756 . . . . . . 7 (𝑖 = 𝑥 → ((𝑥𝐼𝑋)‘𝑖) = ((𝑥𝐼𝑋)‘𝑥))
77 fveq2 6756 . . . . . . 7 (𝑗 = 𝑦 → ((𝑦𝐽𝑌)‘𝑗) = ((𝑦𝐽𝑌)‘𝑦))
7876, 77oveqan12d 7274 . . . . . 6 ((𝑖 = 𝑥𝑗 = 𝑦) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))
7969, 73, 74, 75, 78cbvmpo 7347 . . . . 5 (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑥𝐼, 𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))
80 simp2 1135 . . . . . . . 8 ((𝜑𝑥𝐼𝑦𝐽) → 𝑥𝐼)
81103adant3 1130 . . . . . . . 8 ((𝜑𝑥𝐼𝑦𝐽) → 𝑋𝐵)
82 eqid 2738 . . . . . . . . 9 (𝑥𝐼𝑋) = (𝑥𝐼𝑋)
8382fvmpt2 6868 . . . . . . . 8 ((𝑥𝐼𝑋𝐵) → ((𝑥𝐼𝑋)‘𝑥) = 𝑋)
8480, 81, 83syl2anc 583 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → ((𝑥𝐼𝑋)‘𝑥) = 𝑋)
85 simp3 1136 . . . . . . . 8 ((𝜑𝑥𝐼𝑦𝐽) → 𝑦𝐽)
86 eqid 2738 . . . . . . . . 9 (𝑦𝐽𝑌) = (𝑦𝐽𝑌)
8786fvmpt2 6868 . . . . . . . 8 ((𝑦𝐽𝑌𝐵) → ((𝑦𝐽𝑌)‘𝑦) = 𝑌)
8885, 15, 873imp3i2an 1343 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → ((𝑦𝐽𝑌)‘𝑦) = 𝑌)
8984, 88oveq12d 7273 . . . . . 6 ((𝜑𝑥𝐼𝑦𝐽) → (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)) = (𝑋 · 𝑌))
9089mpoeq3dva 7330 . . . . 5 (𝜑 → (𝑥𝐼, 𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))) = (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)))
9179, 90eqtrid 2790 . . . 4 (𝜑 → (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)))
9291oveq2d 7271 . . 3 (𝜑 → (𝑅 Σg (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))) = (𝑅 Σg (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌))))
93 nfcv 2906 . . . . . . 7 𝑥𝑅
94 nfcv 2906 . . . . . . 7 𝑥 Σg
95 nfcv 2906 . . . . . . . 8 𝑥𝐽
9695, 69nfmpt 5177 . . . . . . 7 𝑥(𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
9793, 94, 96nfov 7285 . . . . . 6 𝑥(𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))))
98 nfcv 2906 . . . . . 6 𝑖(𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))))
9976oveq1d 7270 . . . . . . . . 9 (𝑖 = 𝑥 → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗)))
10099mpteq2dv 5172 . . . . . . . 8 (𝑖 = 𝑥 → (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗))))
101 nfcv 2906 . . . . . . . . . 10 𝑦((𝑥𝐼𝑋)‘𝑥)
102101, 71, 72nfov 7285 . . . . . . . . 9 𝑦(((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗))
10377oveq2d 7271 . . . . . . . . 9 (𝑗 = 𝑦 → (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗)) = (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))
104102, 75, 103cbvmpt 5181 . . . . . . . 8 (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))
105100, 104eqtrdi 2795 . . . . . . 7 (𝑖 = 𝑥 → (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))))
106105oveq2d 7271 . . . . . 6 (𝑖 = 𝑥 → (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))) = (𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))))
10797, 98, 106cbvmpt 5181 . . . . 5 (𝑖𝐼 ↦ (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))))
108893expa 1116 . . . . . . . 8 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)) = (𝑋 · 𝑌))
109108mpteq2dva 5170 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))) = (𝑦𝐽 ↦ (𝑋 · 𝑌)))
110109oveq2d 7271 . . . . . 6 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))) = (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))))
111110mpteq2dva 5170 . . . . 5 (𝜑 → (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌)))))
112107, 111eqtrid 2790 . . . 4 (𝜑 → (𝑖𝐼 ↦ (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌)))))
113112oveq2d 7271 . . 3 (𝜑 → (𝑅 Σg (𝑖𝐼 ↦ (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))))) = (𝑅 Σg (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))))))
11465, 92, 1133eqtr3d 2786 . 2 (𝜑 → (𝑅 Σg (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌))) = (𝑅 Σg (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))))))
115 eqid 2738 . . . . 5 (+g𝑅) = (+g𝑅)
1163adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝑅 ∈ Ring)
1177adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝐽𝑊)
11815adantlr 711 . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → 𝑌𝐵)
11925adantr 480 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽𝑌) finSupp 0 )
1201, 2, 115, 20, 116, 117, 10, 118, 119gsummulc2 19761 . . . 4 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))) = (𝑋 · (𝑅 Σg (𝑦𝐽𝑌))))
121120mpteq2dva 5170 . . 3 (𝜑 → (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌)))) = (𝑥𝐼 ↦ (𝑋 · (𝑅 Σg (𝑦𝐽𝑌)))))
122121oveq2d 7271 . 2 (𝜑 → (𝑅 Σg (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))))) = (𝑅 Σg (𝑥𝐼 ↦ (𝑋 · (𝑅 Σg (𝑦𝐽𝑌))))))
1231, 2, 5, 7, 16, 25gsumcl 19431 . . 3 (𝜑 → (𝑅 Σg (𝑦𝐽𝑌)) ∈ 𝐵)
1241, 2, 115, 20, 3, 6, 123, 10, 23gsummulc1 19760 . 2 (𝜑 → (𝑅 Σg (𝑥𝐼 ↦ (𝑋 · (𝑅 Σg (𝑦𝐽𝑌))))) = ((𝑅 Σg (𝑥𝐼𝑋)) · (𝑅 Σg (𝑦𝐽𝑌))))
125114, 122, 1243eqtrrd 2783 1 (𝜑 → ((𝑅 Σg (𝑥𝐼𝑋)) · (𝑅 Σg (𝑦𝐽𝑌))) = (𝑅 Σg (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880   class class class wbr 5070  cmpt 5153   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257   supp csupp 7948  Fincfn 8691   finSupp cfsupp 9058  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  0gc0g 17067   Σg cgsu 17068  CMndccmn 19301  Ringcrg 19698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-mulg 18616  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700
This theorem is referenced by:  evlslem2  21199
  Copyright terms: Public domain W3C validator