MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumdixp Structured version   Visualization version   GIF version

Theorem gsumdixp 20285
Description: Distribute a binary product of sums to a sum of binary products in a ring. (Contributed by Mario Carneiro, 8-Mar-2015.) (Revised by AV, 10-Jul-2019.)
Hypotheses
Ref Expression
gsumdixp.b 𝐵 = (Base‘𝑅)
gsumdixp.t · = (.r𝑅)
gsumdixp.z 0 = (0g𝑅)
gsumdixp.i (𝜑𝐼𝑉)
gsumdixp.j (𝜑𝐽𝑊)
gsumdixp.r (𝜑𝑅 ∈ Ring)
gsumdixp.x ((𝜑𝑥𝐼) → 𝑋𝐵)
gsumdixp.y ((𝜑𝑦𝐽) → 𝑌𝐵)
gsumdixp.xf (𝜑 → (𝑥𝐼𝑋) finSupp 0 )
gsumdixp.yf (𝜑 → (𝑦𝐽𝑌) finSupp 0 )
Assertion
Ref Expression
gsumdixp (𝜑 → ((𝑅 Σg (𝑥𝐼𝑋)) · (𝑅 Σg (𝑦𝐽𝑌))) = (𝑅 Σg (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌))))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐼,𝑦   𝑥,𝐽,𝑦   𝑥,𝑅   𝑥, · ,𝑦   𝑦,𝑋   𝑥,𝑌
Allowed substitution hints:   𝑅(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥)   𝑌(𝑦)   0 (𝑥,𝑦)

Proof of Theorem gsumdixp
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumdixp.b . . . 4 𝐵 = (Base‘𝑅)
2 gsumdixp.z . . . 4 0 = (0g𝑅)
3 gsumdixp.r . . . . 5 (𝜑𝑅 ∈ Ring)
43ringcmnd 20250 . . . 4 (𝜑𝑅 ∈ CMnd)
5 gsumdixp.i . . . 4 (𝜑𝐼𝑉)
6 gsumdixp.j . . . . 5 (𝜑𝐽𝑊)
76adantr 480 . . . 4 ((𝜑𝑖𝐼) → 𝐽𝑊)
8 gsumdixp.t . . . . 5 · = (.r𝑅)
93adantr 480 . . . . 5 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑅 ∈ Ring)
10 gsumdixp.x . . . . . . 7 ((𝜑𝑥𝐼) → 𝑋𝐵)
1110fmpttd 7115 . . . . . 6 (𝜑 → (𝑥𝐼𝑋):𝐼𝐵)
12 simpl 482 . . . . . 6 ((𝑖𝐼𝑗𝐽) → 𝑖𝐼)
13 ffvelcdm 7081 . . . . . 6 (((𝑥𝐼𝑋):𝐼𝐵𝑖𝐼) → ((𝑥𝐼𝑋)‘𝑖) ∈ 𝐵)
1411, 12, 13syl2an 596 . . . . 5 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ((𝑥𝐼𝑋)‘𝑖) ∈ 𝐵)
15 gsumdixp.y . . . . . . 7 ((𝜑𝑦𝐽) → 𝑌𝐵)
1615fmpttd 7115 . . . . . 6 (𝜑 → (𝑦𝐽𝑌):𝐽𝐵)
17 simpr 484 . . . . . 6 ((𝑖𝐼𝑗𝐽) → 𝑗𝐽)
18 ffvelcdm 7081 . . . . . 6 (((𝑦𝐽𝑌):𝐽𝐵𝑗𝐽) → ((𝑦𝐽𝑌)‘𝑗) ∈ 𝐵)
1916, 17, 18syl2an 596 . . . . 5 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ((𝑦𝐽𝑌)‘𝑗) ∈ 𝐵)
201, 8, 9, 14, 19ringcld 20226 . . . 4 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) ∈ 𝐵)
21 gsumdixp.xf . . . . . 6 (𝜑 → (𝑥𝐼𝑋) finSupp 0 )
2221fsuppimpd 9391 . . . . 5 (𝜑 → ((𝑥𝐼𝑋) supp 0 ) ∈ Fin)
23 gsumdixp.yf . . . . . 6 (𝜑 → (𝑦𝐽𝑌) finSupp 0 )
2423fsuppimpd 9391 . . . . 5 (𝜑 → ((𝑦𝐽𝑌) supp 0 ) ∈ Fin)
25 xpfi 9340 . . . . 5 ((((𝑥𝐼𝑋) supp 0 ) ∈ Fin ∧ ((𝑦𝐽𝑌) supp 0 ) ∈ Fin) → (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )) ∈ Fin)
2622, 24, 25syl2anc 584 . . . 4 (𝜑 → (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )) ∈ Fin)
27 ianor 983 . . . . . . 7 (¬ (𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∧ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) ↔ (¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∨ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )))
28 brxp 5714 . . . . . . 7 (𝑖(((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))𝑗 ↔ (𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∧ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )))
2927, 28xchnxbir 333 . . . . . 6 𝑖(((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))𝑗 ↔ (¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∨ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )))
30 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑖𝐼)
31 eldif 3941 . . . . . . . . . . . 12 (𝑖 ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) ↔ (𝑖𝐼 ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )))
3231biimpri 228 . . . . . . . . . . 11 ((𝑖𝐼 ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → 𝑖 ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )))
3330, 32sylan 580 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → 𝑖 ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )))
3411adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (𝑥𝐼𝑋):𝐼𝐵)
35 ssidd 3987 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ((𝑥𝐼𝑋) supp 0 ) ⊆ ((𝑥𝐼𝑋) supp 0 ))
365adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝐼𝑉)
372fvexi 6900 . . . . . . . . . . . 12 0 ∈ V
3837a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 0 ∈ V)
3934, 35, 36, 38suppssr 8202 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ 𝑖 ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 ))) → ((𝑥𝐼𝑋)‘𝑖) = 0 )
4033, 39syldan 591 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → ((𝑥𝐼𝑋)‘𝑖) = 0 )
4140oveq1d 7428 . . . . . . . 8 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = ( 0 · ((𝑦𝐽𝑌)‘𝑗)))
421, 8, 2ringlz 20259 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑦𝐽𝑌)‘𝑗) ∈ 𝐵) → ( 0 · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
439, 19, 42syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ( 0 · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
4443adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → ( 0 · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
4541, 44eqtrd 2769 . . . . . . 7 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
46 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑗𝐽)
47 eldif 3941 . . . . . . . . . . . 12 (𝑗 ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )) ↔ (𝑗𝐽 ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )))
4847biimpri 228 . . . . . . . . . . 11 ((𝑗𝐽 ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → 𝑗 ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))
4946, 48sylan 580 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → 𝑗 ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))
5016adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (𝑦𝐽𝑌):𝐽𝐵)
51 ssidd 3987 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ((𝑦𝐽𝑌) supp 0 ) ⊆ ((𝑦𝐽𝑌) supp 0 ))
526adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝐽𝑊)
5350, 51, 52, 38suppssr 8202 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ 𝑗 ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))) → ((𝑦𝐽𝑌)‘𝑗) = 0 )
5449, 53syldan 591 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → ((𝑦𝐽𝑌)‘𝑗) = 0 )
5554oveq2d 7429 . . . . . . . 8 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = (((𝑥𝐼𝑋)‘𝑖) · 0 ))
561, 8, 2ringrz 20260 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑥𝐼𝑋)‘𝑖) ∈ 𝐵) → (((𝑥𝐼𝑋)‘𝑖) · 0 ) = 0 )
579, 14, 56syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (((𝑥𝐼𝑋)‘𝑖) · 0 ) = 0 )
5857adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · 0 ) = 0 )
5955, 58eqtrd 2769 . . . . . . 7 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
6045, 59jaodan 959 . . . . . 6 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ (¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∨ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 ))) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
6129, 60sylan2b 594 . . . . 5 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖(((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))𝑗) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
6261anasss 466 . . . 4 ((𝜑 ∧ ((𝑖𝐼𝑗𝐽) ∧ ¬ 𝑖(((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))𝑗)) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
631, 2, 4, 5, 7, 20, 26, 62gsum2d2 19961 . . 3 (𝜑 → (𝑅 Σg (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))) = (𝑅 Σg (𝑖𝐼 ↦ (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))))))
64 nffvmpt1 6897 . . . . . . 7 𝑥((𝑥𝐼𝑋)‘𝑖)
65 nfcv 2897 . . . . . . 7 𝑥 ·
66 nfcv 2897 . . . . . . 7 𝑥((𝑦𝐽𝑌)‘𝑗)
6764, 65, 66nfov 7443 . . . . . 6 𝑥(((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))
68 nfcv 2897 . . . . . . 7 𝑦((𝑥𝐼𝑋)‘𝑖)
69 nfcv 2897 . . . . . . 7 𝑦 ·
70 nffvmpt1 6897 . . . . . . 7 𝑦((𝑦𝐽𝑌)‘𝑗)
7168, 69, 70nfov 7443 . . . . . 6 𝑦(((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))
72 nfcv 2897 . . . . . 6 𝑖(((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))
73 nfcv 2897 . . . . . 6 𝑗(((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))
74 fveq2 6886 . . . . . . 7 (𝑖 = 𝑥 → ((𝑥𝐼𝑋)‘𝑖) = ((𝑥𝐼𝑋)‘𝑥))
75 fveq2 6886 . . . . . . 7 (𝑗 = 𝑦 → ((𝑦𝐽𝑌)‘𝑗) = ((𝑦𝐽𝑌)‘𝑦))
7674, 75oveqan12d 7432 . . . . . 6 ((𝑖 = 𝑥𝑗 = 𝑦) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))
7767, 71, 72, 73, 76cbvmpo 7509 . . . . 5 (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑥𝐼, 𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))
78 simp2 1137 . . . . . . . 8 ((𝜑𝑥𝐼𝑦𝐽) → 𝑥𝐼)
79103adant3 1132 . . . . . . . 8 ((𝜑𝑥𝐼𝑦𝐽) → 𝑋𝐵)
80 eqid 2734 . . . . . . . . 9 (𝑥𝐼𝑋) = (𝑥𝐼𝑋)
8180fvmpt2 7007 . . . . . . . 8 ((𝑥𝐼𝑋𝐵) → ((𝑥𝐼𝑋)‘𝑥) = 𝑋)
8278, 79, 81syl2anc 584 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → ((𝑥𝐼𝑋)‘𝑥) = 𝑋)
83 simp3 1138 . . . . . . . 8 ((𝜑𝑥𝐼𝑦𝐽) → 𝑦𝐽)
84 eqid 2734 . . . . . . . . 9 (𝑦𝐽𝑌) = (𝑦𝐽𝑌)
8584fvmpt2 7007 . . . . . . . 8 ((𝑦𝐽𝑌𝐵) → ((𝑦𝐽𝑌)‘𝑦) = 𝑌)
8683, 15, 853imp3i2an 1345 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → ((𝑦𝐽𝑌)‘𝑦) = 𝑌)
8782, 86oveq12d 7431 . . . . . 6 ((𝜑𝑥𝐼𝑦𝐽) → (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)) = (𝑋 · 𝑌))
8887mpoeq3dva 7492 . . . . 5 (𝜑 → (𝑥𝐼, 𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))) = (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)))
8977, 88eqtrid 2781 . . . 4 (𝜑 → (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)))
9089oveq2d 7429 . . 3 (𝜑 → (𝑅 Σg (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))) = (𝑅 Σg (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌))))
91 nfcv 2897 . . . . . . 7 𝑥𝑅
92 nfcv 2897 . . . . . . 7 𝑥 Σg
93 nfcv 2897 . . . . . . . 8 𝑥𝐽
9493, 67nfmpt 5229 . . . . . . 7 𝑥(𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
9591, 92, 94nfov 7443 . . . . . 6 𝑥(𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))))
96 nfcv 2897 . . . . . 6 𝑖(𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))))
9774oveq1d 7428 . . . . . . . . 9 (𝑖 = 𝑥 → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗)))
9897mpteq2dv 5224 . . . . . . . 8 (𝑖 = 𝑥 → (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗))))
99 nfcv 2897 . . . . . . . . . 10 𝑦((𝑥𝐼𝑋)‘𝑥)
10099, 69, 70nfov 7443 . . . . . . . . 9 𝑦(((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗))
10175oveq2d 7429 . . . . . . . . 9 (𝑗 = 𝑦 → (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗)) = (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))
102100, 73, 101cbvmpt 5233 . . . . . . . 8 (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))
10398, 102eqtrdi 2785 . . . . . . 7 (𝑖 = 𝑥 → (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))))
104103oveq2d 7429 . . . . . 6 (𝑖 = 𝑥 → (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))) = (𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))))
10595, 96, 104cbvmpt 5233 . . . . 5 (𝑖𝐼 ↦ (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))))
106873expa 1118 . . . . . . . 8 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)) = (𝑋 · 𝑌))
107106mpteq2dva 5222 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))) = (𝑦𝐽 ↦ (𝑋 · 𝑌)))
108107oveq2d 7429 . . . . . 6 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))) = (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))))
109108mpteq2dva 5222 . . . . 5 (𝜑 → (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌)))))
110105, 109eqtrid 2781 . . . 4 (𝜑 → (𝑖𝐼 ↦ (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌)))))
111110oveq2d 7429 . . 3 (𝜑 → (𝑅 Σg (𝑖𝐼 ↦ (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))))) = (𝑅 Σg (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))))))
11263, 90, 1113eqtr3d 2777 . 2 (𝜑 → (𝑅 Σg (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌))) = (𝑅 Σg (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))))))
1133adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝑅 ∈ Ring)
1146adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝐽𝑊)
11515adantlr 715 . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → 𝑌𝐵)
11623adantr 480 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽𝑌) finSupp 0 )
1171, 2, 8, 113, 114, 10, 115, 116gsummulc2 20283 . . . 4 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))) = (𝑋 · (𝑅 Σg (𝑦𝐽𝑌))))
118117mpteq2dva 5222 . . 3 (𝜑 → (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌)))) = (𝑥𝐼 ↦ (𝑋 · (𝑅 Σg (𝑦𝐽𝑌)))))
119118oveq2d 7429 . 2 (𝜑 → (𝑅 Σg (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))))) = (𝑅 Σg (𝑥𝐼 ↦ (𝑋 · (𝑅 Σg (𝑦𝐽𝑌))))))
1201, 2, 4, 6, 16, 23gsumcl 19902 . . 3 (𝜑 → (𝑅 Σg (𝑦𝐽𝑌)) ∈ 𝐵)
1211, 2, 8, 3, 5, 120, 10, 21gsummulc1 20282 . 2 (𝜑 → (𝑅 Σg (𝑥𝐼 ↦ (𝑋 · (𝑅 Σg (𝑦𝐽𝑌))))) = ((𝑅 Σg (𝑥𝐼𝑋)) · (𝑅 Σg (𝑦𝐽𝑌))))
122112, 119, 1213eqtrrd 2774 1 (𝜑 → ((𝑅 Σg (𝑥𝐼𝑋)) · (𝑅 Σg (𝑦𝐽𝑌))) = (𝑅 Σg (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  Vcvv 3463  cdif 3928   class class class wbr 5123  cmpt 5205   × cxp 5663  wf 6537  cfv 6541  (class class class)co 7413  cmpo 7415   supp csupp 8167  Fincfn 8967   finSupp cfsupp 9383  Basecbs 17230  .rcmulr 17275  0gc0g 17456   Σg cgsu 17457  Ringcrg 20199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14353  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-0g 17458  df-gsum 17459  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-mulg 19056  df-ghm 19201  df-cntz 19305  df-cmn 19769  df-abl 19770  df-mgp 20107  df-rng 20119  df-ur 20148  df-ring 20201
This theorem is referenced by:  evlslem2  22052  elrgspnlem2  33191
  Copyright terms: Public domain W3C validator