MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumdixp Structured version   Visualization version   GIF version

Theorem gsumdixp 20332
Description: Distribute a binary product of sums to a sum of binary products in a ring. (Contributed by Mario Carneiro, 8-Mar-2015.) (Revised by AV, 10-Jul-2019.)
Hypotheses
Ref Expression
gsumdixp.b 𝐵 = (Base‘𝑅)
gsumdixp.t · = (.r𝑅)
gsumdixp.z 0 = (0g𝑅)
gsumdixp.i (𝜑𝐼𝑉)
gsumdixp.j (𝜑𝐽𝑊)
gsumdixp.r (𝜑𝑅 ∈ Ring)
gsumdixp.x ((𝜑𝑥𝐼) → 𝑋𝐵)
gsumdixp.y ((𝜑𝑦𝐽) → 𝑌𝐵)
gsumdixp.xf (𝜑 → (𝑥𝐼𝑋) finSupp 0 )
gsumdixp.yf (𝜑 → (𝑦𝐽𝑌) finSupp 0 )
Assertion
Ref Expression
gsumdixp (𝜑 → ((𝑅 Σg (𝑥𝐼𝑋)) · (𝑅 Σg (𝑦𝐽𝑌))) = (𝑅 Σg (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌))))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐼,𝑦   𝑥,𝐽,𝑦   𝑥,𝑅   𝑥, · ,𝑦   𝑦,𝑋   𝑥,𝑌
Allowed substitution hints:   𝑅(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥)   𝑌(𝑦)   0 (𝑥,𝑦)

Proof of Theorem gsumdixp
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumdixp.b . . . 4 𝐵 = (Base‘𝑅)
2 gsumdixp.z . . . 4 0 = (0g𝑅)
3 gsumdixp.r . . . . 5 (𝜑𝑅 ∈ Ring)
43ringcmnd 20297 . . . 4 (𝜑𝑅 ∈ CMnd)
5 gsumdixp.i . . . 4 (𝜑𝐼𝑉)
6 gsumdixp.j . . . . 5 (𝜑𝐽𝑊)
76adantr 480 . . . 4 ((𝜑𝑖𝐼) → 𝐽𝑊)
8 gsumdixp.t . . . . 5 · = (.r𝑅)
93adantr 480 . . . . 5 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑅 ∈ Ring)
10 gsumdixp.x . . . . . . 7 ((𝜑𝑥𝐼) → 𝑋𝐵)
1110fmpttd 7134 . . . . . 6 (𝜑 → (𝑥𝐼𝑋):𝐼𝐵)
12 simpl 482 . . . . . 6 ((𝑖𝐼𝑗𝐽) → 𝑖𝐼)
13 ffvelcdm 7100 . . . . . 6 (((𝑥𝐼𝑋):𝐼𝐵𝑖𝐼) → ((𝑥𝐼𝑋)‘𝑖) ∈ 𝐵)
1411, 12, 13syl2an 596 . . . . 5 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ((𝑥𝐼𝑋)‘𝑖) ∈ 𝐵)
15 gsumdixp.y . . . . . . 7 ((𝜑𝑦𝐽) → 𝑌𝐵)
1615fmpttd 7134 . . . . . 6 (𝜑 → (𝑦𝐽𝑌):𝐽𝐵)
17 simpr 484 . . . . . 6 ((𝑖𝐼𝑗𝐽) → 𝑗𝐽)
18 ffvelcdm 7100 . . . . . 6 (((𝑦𝐽𝑌):𝐽𝐵𝑗𝐽) → ((𝑦𝐽𝑌)‘𝑗) ∈ 𝐵)
1916, 17, 18syl2an 596 . . . . 5 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ((𝑦𝐽𝑌)‘𝑗) ∈ 𝐵)
201, 8, 9, 14, 19ringcld 20276 . . . 4 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) ∈ 𝐵)
21 gsumdixp.xf . . . . . 6 (𝜑 → (𝑥𝐼𝑋) finSupp 0 )
2221fsuppimpd 9406 . . . . 5 (𝜑 → ((𝑥𝐼𝑋) supp 0 ) ∈ Fin)
23 gsumdixp.yf . . . . . 6 (𝜑 → (𝑦𝐽𝑌) finSupp 0 )
2423fsuppimpd 9406 . . . . 5 (𝜑 → ((𝑦𝐽𝑌) supp 0 ) ∈ Fin)
25 xpfi 9355 . . . . 5 ((((𝑥𝐼𝑋) supp 0 ) ∈ Fin ∧ ((𝑦𝐽𝑌) supp 0 ) ∈ Fin) → (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )) ∈ Fin)
2622, 24, 25syl2anc 584 . . . 4 (𝜑 → (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )) ∈ Fin)
27 ianor 983 . . . . . . 7 (¬ (𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∧ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) ↔ (¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∨ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )))
28 brxp 5737 . . . . . . 7 (𝑖(((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))𝑗 ↔ (𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∧ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )))
2927, 28xchnxbir 333 . . . . . 6 𝑖(((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))𝑗 ↔ (¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∨ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )))
30 simprl 771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑖𝐼)
31 eldif 3972 . . . . . . . . . . . 12 (𝑖 ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) ↔ (𝑖𝐼 ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )))
3231biimpri 228 . . . . . . . . . . 11 ((𝑖𝐼 ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → 𝑖 ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )))
3330, 32sylan 580 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → 𝑖 ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )))
3411adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (𝑥𝐼𝑋):𝐼𝐵)
35 ssidd 4018 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ((𝑥𝐼𝑋) supp 0 ) ⊆ ((𝑥𝐼𝑋) supp 0 ))
365adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝐼𝑉)
372fvexi 6920 . . . . . . . . . . . 12 0 ∈ V
3837a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 0 ∈ V)
3934, 35, 36, 38suppssr 8218 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ 𝑖 ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 ))) → ((𝑥𝐼𝑋)‘𝑖) = 0 )
4033, 39syldan 591 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → ((𝑥𝐼𝑋)‘𝑖) = 0 )
4140oveq1d 7445 . . . . . . . 8 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = ( 0 · ((𝑦𝐽𝑌)‘𝑗)))
421, 8, 2ringlz 20306 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑦𝐽𝑌)‘𝑗) ∈ 𝐵) → ( 0 · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
439, 19, 42syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ( 0 · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
4443adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → ( 0 · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
4541, 44eqtrd 2774 . . . . . . 7 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
46 simprr 773 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑗𝐽)
47 eldif 3972 . . . . . . . . . . . 12 (𝑗 ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )) ↔ (𝑗𝐽 ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )))
4847biimpri 228 . . . . . . . . . . 11 ((𝑗𝐽 ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → 𝑗 ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))
4946, 48sylan 580 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → 𝑗 ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))
5016adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (𝑦𝐽𝑌):𝐽𝐵)
51 ssidd 4018 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ((𝑦𝐽𝑌) supp 0 ) ⊆ ((𝑦𝐽𝑌) supp 0 ))
526adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝐽𝑊)
5350, 51, 52, 38suppssr 8218 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ 𝑗 ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))) → ((𝑦𝐽𝑌)‘𝑗) = 0 )
5449, 53syldan 591 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → ((𝑦𝐽𝑌)‘𝑗) = 0 )
5554oveq2d 7446 . . . . . . . 8 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = (((𝑥𝐼𝑋)‘𝑖) · 0 ))
561, 8, 2ringrz 20307 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑥𝐼𝑋)‘𝑖) ∈ 𝐵) → (((𝑥𝐼𝑋)‘𝑖) · 0 ) = 0 )
579, 14, 56syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (((𝑥𝐼𝑋)‘𝑖) · 0 ) = 0 )
5857adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · 0 ) = 0 )
5955, 58eqtrd 2774 . . . . . . 7 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
6045, 59jaodan 959 . . . . . 6 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ (¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∨ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 ))) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
6129, 60sylan2b 594 . . . . 5 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖(((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))𝑗) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
6261anasss 466 . . . 4 ((𝜑 ∧ ((𝑖𝐼𝑗𝐽) ∧ ¬ 𝑖(((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))𝑗)) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
631, 2, 4, 5, 7, 20, 26, 62gsum2d2 20006 . . 3 (𝜑 → (𝑅 Σg (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))) = (𝑅 Σg (𝑖𝐼 ↦ (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))))))
64 nffvmpt1 6917 . . . . . . 7 𝑥((𝑥𝐼𝑋)‘𝑖)
65 nfcv 2902 . . . . . . 7 𝑥 ·
66 nfcv 2902 . . . . . . 7 𝑥((𝑦𝐽𝑌)‘𝑗)
6764, 65, 66nfov 7460 . . . . . 6 𝑥(((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))
68 nfcv 2902 . . . . . . 7 𝑦((𝑥𝐼𝑋)‘𝑖)
69 nfcv 2902 . . . . . . 7 𝑦 ·
70 nffvmpt1 6917 . . . . . . 7 𝑦((𝑦𝐽𝑌)‘𝑗)
7168, 69, 70nfov 7460 . . . . . 6 𝑦(((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))
72 nfcv 2902 . . . . . 6 𝑖(((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))
73 nfcv 2902 . . . . . 6 𝑗(((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))
74 fveq2 6906 . . . . . . 7 (𝑖 = 𝑥 → ((𝑥𝐼𝑋)‘𝑖) = ((𝑥𝐼𝑋)‘𝑥))
75 fveq2 6906 . . . . . . 7 (𝑗 = 𝑦 → ((𝑦𝐽𝑌)‘𝑗) = ((𝑦𝐽𝑌)‘𝑦))
7674, 75oveqan12d 7449 . . . . . 6 ((𝑖 = 𝑥𝑗 = 𝑦) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))
7767, 71, 72, 73, 76cbvmpo 7526 . . . . 5 (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑥𝐼, 𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))
78 simp2 1136 . . . . . . . 8 ((𝜑𝑥𝐼𝑦𝐽) → 𝑥𝐼)
79103adant3 1131 . . . . . . . 8 ((𝜑𝑥𝐼𝑦𝐽) → 𝑋𝐵)
80 eqid 2734 . . . . . . . . 9 (𝑥𝐼𝑋) = (𝑥𝐼𝑋)
8180fvmpt2 7026 . . . . . . . 8 ((𝑥𝐼𝑋𝐵) → ((𝑥𝐼𝑋)‘𝑥) = 𝑋)
8278, 79, 81syl2anc 584 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → ((𝑥𝐼𝑋)‘𝑥) = 𝑋)
83 simp3 1137 . . . . . . . 8 ((𝜑𝑥𝐼𝑦𝐽) → 𝑦𝐽)
84 eqid 2734 . . . . . . . . 9 (𝑦𝐽𝑌) = (𝑦𝐽𝑌)
8584fvmpt2 7026 . . . . . . . 8 ((𝑦𝐽𝑌𝐵) → ((𝑦𝐽𝑌)‘𝑦) = 𝑌)
8683, 15, 853imp3i2an 1344 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → ((𝑦𝐽𝑌)‘𝑦) = 𝑌)
8782, 86oveq12d 7448 . . . . . 6 ((𝜑𝑥𝐼𝑦𝐽) → (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)) = (𝑋 · 𝑌))
8887mpoeq3dva 7509 . . . . 5 (𝜑 → (𝑥𝐼, 𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))) = (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)))
8977, 88eqtrid 2786 . . . 4 (𝜑 → (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)))
9089oveq2d 7446 . . 3 (𝜑 → (𝑅 Σg (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))) = (𝑅 Σg (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌))))
91 nfcv 2902 . . . . . . 7 𝑥𝑅
92 nfcv 2902 . . . . . . 7 𝑥 Σg
93 nfcv 2902 . . . . . . . 8 𝑥𝐽
9493, 67nfmpt 5254 . . . . . . 7 𝑥(𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
9591, 92, 94nfov 7460 . . . . . 6 𝑥(𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))))
96 nfcv 2902 . . . . . 6 𝑖(𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))))
9774oveq1d 7445 . . . . . . . . 9 (𝑖 = 𝑥 → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗)))
9897mpteq2dv 5249 . . . . . . . 8 (𝑖 = 𝑥 → (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗))))
99 nfcv 2902 . . . . . . . . . 10 𝑦((𝑥𝐼𝑋)‘𝑥)
10099, 69, 70nfov 7460 . . . . . . . . 9 𝑦(((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗))
10175oveq2d 7446 . . . . . . . . 9 (𝑗 = 𝑦 → (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗)) = (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))
102100, 73, 101cbvmpt 5258 . . . . . . . 8 (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))
10398, 102eqtrdi 2790 . . . . . . 7 (𝑖 = 𝑥 → (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))))
104103oveq2d 7446 . . . . . 6 (𝑖 = 𝑥 → (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))) = (𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))))
10595, 96, 104cbvmpt 5258 . . . . 5 (𝑖𝐼 ↦ (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))))
106873expa 1117 . . . . . . . 8 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)) = (𝑋 · 𝑌))
107106mpteq2dva 5247 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))) = (𝑦𝐽 ↦ (𝑋 · 𝑌)))
108107oveq2d 7446 . . . . . 6 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))) = (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))))
109108mpteq2dva 5247 . . . . 5 (𝜑 → (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌)))))
110105, 109eqtrid 2786 . . . 4 (𝜑 → (𝑖𝐼 ↦ (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌)))))
111110oveq2d 7446 . . 3 (𝜑 → (𝑅 Σg (𝑖𝐼 ↦ (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))))) = (𝑅 Σg (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))))))
11263, 90, 1113eqtr3d 2782 . 2 (𝜑 → (𝑅 Σg (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌))) = (𝑅 Σg (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))))))
1133adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝑅 ∈ Ring)
1146adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝐽𝑊)
11515adantlr 715 . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → 𝑌𝐵)
11623adantr 480 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽𝑌) finSupp 0 )
1171, 2, 8, 113, 114, 10, 115, 116gsummulc2 20330 . . . 4 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))) = (𝑋 · (𝑅 Σg (𝑦𝐽𝑌))))
118117mpteq2dva 5247 . . 3 (𝜑 → (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌)))) = (𝑥𝐼 ↦ (𝑋 · (𝑅 Σg (𝑦𝐽𝑌)))))
119118oveq2d 7446 . 2 (𝜑 → (𝑅 Σg (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))))) = (𝑅 Σg (𝑥𝐼 ↦ (𝑋 · (𝑅 Σg (𝑦𝐽𝑌))))))
1201, 2, 4, 6, 16, 23gsumcl 19947 . . 3 (𝜑 → (𝑅 Σg (𝑦𝐽𝑌)) ∈ 𝐵)
1211, 2, 8, 3, 5, 120, 10, 21gsummulc1 20329 . 2 (𝜑 → (𝑅 Σg (𝑥𝐼 ↦ (𝑋 · (𝑅 Σg (𝑦𝐽𝑌))))) = ((𝑅 Σg (𝑥𝐼𝑋)) · (𝑅 Σg (𝑦𝐽𝑌))))
122112, 119, 1213eqtrrd 2779 1 (𝜑 → ((𝑅 Σg (𝑥𝐼𝑋)) · (𝑅 Σg (𝑦𝐽𝑌))) = (𝑅 Σg (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  Vcvv 3477  cdif 3959   class class class wbr 5147  cmpt 5230   × cxp 5686  wf 6558  cfv 6562  (class class class)co 7430  cmpo 7432   supp csupp 8183  Fincfn 8983   finSupp cfsupp 9398  Basecbs 17244  .rcmulr 17298  0gc0g 17485   Σg cgsu 17486  Ringcrg 20250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-0g 17487  df-gsum 17488  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-mulg 19098  df-ghm 19243  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252
This theorem is referenced by:  evlslem2  22120  elrgspnlem2  33232
  Copyright terms: Public domain W3C validator