MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumdixp Structured version   Visualization version   GIF version

Theorem gsumdixp 18996
Description: Distribute a binary product of sums to a sum of binary products in a ring. (Contributed by Mario Carneiro, 8-Mar-2015.) (Revised by AV, 10-Jul-2019.)
Hypotheses
Ref Expression
gsumdixp.b 𝐵 = (Base‘𝑅)
gsumdixp.t · = (.r𝑅)
gsumdixp.z 0 = (0g𝑅)
gsumdixp.i (𝜑𝐼𝑉)
gsumdixp.j (𝜑𝐽𝑊)
gsumdixp.r (𝜑𝑅 ∈ Ring)
gsumdixp.x ((𝜑𝑥𝐼) → 𝑋𝐵)
gsumdixp.y ((𝜑𝑦𝐽) → 𝑌𝐵)
gsumdixp.xf (𝜑 → (𝑥𝐼𝑋) finSupp 0 )
gsumdixp.yf (𝜑 → (𝑦𝐽𝑌) finSupp 0 )
Assertion
Ref Expression
gsumdixp (𝜑 → ((𝑅 Σg (𝑥𝐼𝑋)) · (𝑅 Σg (𝑦𝐽𝑌))) = (𝑅 Σg (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌))))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐼,𝑦   𝑥,𝐽,𝑦   𝑥,𝑅   𝑥, · ,𝑦   𝑦,𝑋   𝑥,𝑌
Allowed substitution hints:   𝑅(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥)   𝑌(𝑦)   0 (𝑥,𝑦)

Proof of Theorem gsumdixp
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumdixp.b . . . 4 𝐵 = (Base‘𝑅)
2 gsumdixp.z . . . 4 0 = (0g𝑅)
3 gsumdixp.r . . . . 5 (𝜑𝑅 ∈ Ring)
4 ringcmn 18968 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
53, 4syl 17 . . . 4 (𝜑𝑅 ∈ CMnd)
6 gsumdixp.i . . . 4 (𝜑𝐼𝑉)
7 gsumdixp.j . . . . 5 (𝜑𝐽𝑊)
87adantr 474 . . . 4 ((𝜑𝑖𝐼) → 𝐽𝑊)
93adantr 474 . . . . 5 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑅 ∈ Ring)
10 gsumdixp.x . . . . . . 7 ((𝜑𝑥𝐼) → 𝑋𝐵)
1110fmpttd 6649 . . . . . 6 (𝜑 → (𝑥𝐼𝑋):𝐼𝐵)
12 simpl 476 . . . . . 6 ((𝑖𝐼𝑗𝐽) → 𝑖𝐼)
13 ffvelrn 6621 . . . . . 6 (((𝑥𝐼𝑋):𝐼𝐵𝑖𝐼) → ((𝑥𝐼𝑋)‘𝑖) ∈ 𝐵)
1411, 12, 13syl2an 589 . . . . 5 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ((𝑥𝐼𝑋)‘𝑖) ∈ 𝐵)
15 gsumdixp.y . . . . . . 7 ((𝜑𝑦𝐽) → 𝑌𝐵)
1615fmpttd 6649 . . . . . 6 (𝜑 → (𝑦𝐽𝑌):𝐽𝐵)
17 simpr 479 . . . . . 6 ((𝑖𝐼𝑗𝐽) → 𝑗𝐽)
18 ffvelrn 6621 . . . . . 6 (((𝑦𝐽𝑌):𝐽𝐵𝑗𝐽) → ((𝑦𝐽𝑌)‘𝑗) ∈ 𝐵)
1916, 17, 18syl2an 589 . . . . 5 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ((𝑦𝐽𝑌)‘𝑗) ∈ 𝐵)
20 gsumdixp.t . . . . . 6 · = (.r𝑅)
211, 20ringcl 18948 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑥𝐼𝑋)‘𝑖) ∈ 𝐵 ∧ ((𝑦𝐽𝑌)‘𝑗) ∈ 𝐵) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) ∈ 𝐵)
229, 14, 19, 21syl3anc 1439 . . . 4 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) ∈ 𝐵)
23 gsumdixp.xf . . . . . 6 (𝜑 → (𝑥𝐼𝑋) finSupp 0 )
2423fsuppimpd 8570 . . . . 5 (𝜑 → ((𝑥𝐼𝑋) supp 0 ) ∈ Fin)
25 gsumdixp.yf . . . . . 6 (𝜑 → (𝑦𝐽𝑌) finSupp 0 )
2625fsuppimpd 8570 . . . . 5 (𝜑 → ((𝑦𝐽𝑌) supp 0 ) ∈ Fin)
27 xpfi 8519 . . . . 5 ((((𝑥𝐼𝑋) supp 0 ) ∈ Fin ∧ ((𝑦𝐽𝑌) supp 0 ) ∈ Fin) → (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )) ∈ Fin)
2824, 26, 27syl2anc 579 . . . 4 (𝜑 → (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )) ∈ Fin)
29 ianor 967 . . . . . . 7 (¬ (𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∧ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) ↔ (¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∨ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )))
30 brxp 5401 . . . . . . 7 (𝑖(((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))𝑗 ↔ (𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∧ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )))
3129, 30xchnxbir 325 . . . . . 6 𝑖(((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))𝑗 ↔ (¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∨ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )))
32 simprl 761 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑖𝐼)
33 eldif 3802 . . . . . . . . . . . 12 (𝑖 ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) ↔ (𝑖𝐼 ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )))
3433biimpri 220 . . . . . . . . . . 11 ((𝑖𝐼 ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → 𝑖 ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )))
3532, 34sylan 575 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → 𝑖 ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )))
3611adantr 474 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (𝑥𝐼𝑋):𝐼𝐵)
37 ssidd 3843 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ((𝑥𝐼𝑋) supp 0 ) ⊆ ((𝑥𝐼𝑋) supp 0 ))
386adantr 474 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝐼𝑉)
392fvexi 6460 . . . . . . . . . . . 12 0 ∈ V
4039a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 0 ∈ V)
4136, 37, 38, 40suppssr 7608 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ 𝑖 ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 ))) → ((𝑥𝐼𝑋)‘𝑖) = 0 )
4235, 41syldan 585 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → ((𝑥𝐼𝑋)‘𝑖) = 0 )
4342oveq1d 6937 . . . . . . . 8 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = ( 0 · ((𝑦𝐽𝑌)‘𝑗)))
441, 20, 2ringlz 18974 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑦𝐽𝑌)‘𝑗) ∈ 𝐵) → ( 0 · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
459, 19, 44syl2anc 579 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ( 0 · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
4645adantr 474 . . . . . . . 8 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → ( 0 · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
4743, 46eqtrd 2814 . . . . . . 7 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
48 simprr 763 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑗𝐽)
49 eldif 3802 . . . . . . . . . . . 12 (𝑗 ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )) ↔ (𝑗𝐽 ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )))
5049biimpri 220 . . . . . . . . . . 11 ((𝑗𝐽 ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → 𝑗 ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))
5148, 50sylan 575 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → 𝑗 ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))
5216adantr 474 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (𝑦𝐽𝑌):𝐽𝐵)
53 ssidd 3843 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ((𝑦𝐽𝑌) supp 0 ) ⊆ ((𝑦𝐽𝑌) supp 0 ))
547adantr 474 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝐽𝑊)
5552, 53, 54, 40suppssr 7608 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ 𝑗 ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))) → ((𝑦𝐽𝑌)‘𝑗) = 0 )
5651, 55syldan 585 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → ((𝑦𝐽𝑌)‘𝑗) = 0 )
5756oveq2d 6938 . . . . . . . 8 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = (((𝑥𝐼𝑋)‘𝑖) · 0 ))
581, 20, 2ringrz 18975 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑥𝐼𝑋)‘𝑖) ∈ 𝐵) → (((𝑥𝐼𝑋)‘𝑖) · 0 ) = 0 )
599, 14, 58syl2anc 579 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (((𝑥𝐼𝑋)‘𝑖) · 0 ) = 0 )
6059adantr 474 . . . . . . . 8 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · 0 ) = 0 )
6157, 60eqtrd 2814 . . . . . . 7 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
6247, 61jaodan 943 . . . . . 6 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ (¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∨ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 ))) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
6331, 62sylan2b 587 . . . . 5 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖(((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))𝑗) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
6463anasss 460 . . . 4 ((𝜑 ∧ ((𝑖𝐼𝑗𝐽) ∧ ¬ 𝑖(((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))𝑗)) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
651, 2, 5, 6, 8, 22, 28, 64gsum2d2 18759 . . 3 (𝜑 → (𝑅 Σg (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))) = (𝑅 Σg (𝑖𝐼 ↦ (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))))))
66 nffvmpt1 6457 . . . . . . 7 𝑥((𝑥𝐼𝑋)‘𝑖)
67 nfcv 2934 . . . . . . 7 𝑥 ·
68 nfcv 2934 . . . . . . 7 𝑥((𝑦𝐽𝑌)‘𝑗)
6966, 67, 68nfov 6952 . . . . . 6 𝑥(((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))
70 nfcv 2934 . . . . . . 7 𝑦((𝑥𝐼𝑋)‘𝑖)
71 nfcv 2934 . . . . . . 7 𝑦 ·
72 nffvmpt1 6457 . . . . . . 7 𝑦((𝑦𝐽𝑌)‘𝑗)
7370, 71, 72nfov 6952 . . . . . 6 𝑦(((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))
74 nfcv 2934 . . . . . 6 𝑖(((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))
75 nfcv 2934 . . . . . 6 𝑗(((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))
76 fveq2 6446 . . . . . . 7 (𝑖 = 𝑥 → ((𝑥𝐼𝑋)‘𝑖) = ((𝑥𝐼𝑋)‘𝑥))
77 fveq2 6446 . . . . . . 7 (𝑗 = 𝑦 → ((𝑦𝐽𝑌)‘𝑗) = ((𝑦𝐽𝑌)‘𝑦))
7876, 77oveqan12d 6941 . . . . . 6 ((𝑖 = 𝑥𝑗 = 𝑦) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))
7969, 73, 74, 75, 78cbvmpt2 7011 . . . . 5 (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑥𝐼, 𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))
80 simp2 1128 . . . . . . . 8 ((𝜑𝑥𝐼𝑦𝐽) → 𝑥𝐼)
81103adant3 1123 . . . . . . . 8 ((𝜑𝑥𝐼𝑦𝐽) → 𝑋𝐵)
82 eqid 2778 . . . . . . . . 9 (𝑥𝐼𝑋) = (𝑥𝐼𝑋)
8382fvmpt2 6552 . . . . . . . 8 ((𝑥𝐼𝑋𝐵) → ((𝑥𝐼𝑋)‘𝑥) = 𝑋)
8480, 81, 83syl2anc 579 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → ((𝑥𝐼𝑋)‘𝑥) = 𝑋)
85 simp3 1129 . . . . . . . 8 ((𝜑𝑥𝐼𝑦𝐽) → 𝑦𝐽)
86 eqid 2778 . . . . . . . . 9 (𝑦𝐽𝑌) = (𝑦𝐽𝑌)
8786fvmpt2 6552 . . . . . . . 8 ((𝑦𝐽𝑌𝐵) → ((𝑦𝐽𝑌)‘𝑦) = 𝑌)
8885, 15, 873imp3i2an 1407 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → ((𝑦𝐽𝑌)‘𝑦) = 𝑌)
8984, 88oveq12d 6940 . . . . . 6 ((𝜑𝑥𝐼𝑦𝐽) → (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)) = (𝑋 · 𝑌))
9089mpt2eq3dva 6996 . . . . 5 (𝜑 → (𝑥𝐼, 𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))) = (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)))
9179, 90syl5eq 2826 . . . 4 (𝜑 → (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)))
9291oveq2d 6938 . . 3 (𝜑 → (𝑅 Σg (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))) = (𝑅 Σg (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌))))
93 nfcv 2934 . . . . . . 7 𝑥𝑅
94 nfcv 2934 . . . . . . 7 𝑥 Σg
95 nfcv 2934 . . . . . . . 8 𝑥𝐽
9695, 69nfmpt 4981 . . . . . . 7 𝑥(𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
9793, 94, 96nfov 6952 . . . . . 6 𝑥(𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))))
98 nfcv 2934 . . . . . 6 𝑖(𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))))
9976oveq1d 6937 . . . . . . . . 9 (𝑖 = 𝑥 → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗)))
10099mpteq2dv 4980 . . . . . . . 8 (𝑖 = 𝑥 → (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗))))
101 nfcv 2934 . . . . . . . . . 10 𝑦((𝑥𝐼𝑋)‘𝑥)
102101, 71, 72nfov 6952 . . . . . . . . 9 𝑦(((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗))
10377oveq2d 6938 . . . . . . . . 9 (𝑗 = 𝑦 → (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗)) = (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))
104102, 75, 103cbvmpt 4984 . . . . . . . 8 (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))
105100, 104syl6eq 2830 . . . . . . 7 (𝑖 = 𝑥 → (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))))
106105oveq2d 6938 . . . . . 6 (𝑖 = 𝑥 → (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))) = (𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))))
10797, 98, 106cbvmpt 4984 . . . . 5 (𝑖𝐼 ↦ (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))))
108893expa 1108 . . . . . . . 8 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)) = (𝑋 · 𝑌))
109108mpteq2dva 4979 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))) = (𝑦𝐽 ↦ (𝑋 · 𝑌)))
110109oveq2d 6938 . . . . . 6 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))) = (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))))
111110mpteq2dva 4979 . . . . 5 (𝜑 → (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌)))))
112107, 111syl5eq 2826 . . . 4 (𝜑 → (𝑖𝐼 ↦ (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌)))))
113112oveq2d 6938 . . 3 (𝜑 → (𝑅 Σg (𝑖𝐼 ↦ (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))))) = (𝑅 Σg (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))))))
11465, 92, 1133eqtr3d 2822 . 2 (𝜑 → (𝑅 Σg (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌))) = (𝑅 Σg (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))))))
115 eqid 2778 . . . . 5 (+g𝑅) = (+g𝑅)
1163adantr 474 . . . . 5 ((𝜑𝑥𝐼) → 𝑅 ∈ Ring)
1177adantr 474 . . . . 5 ((𝜑𝑥𝐼) → 𝐽𝑊)
11815adantlr 705 . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → 𝑌𝐵)
11925adantr 474 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽𝑌) finSupp 0 )
1201, 2, 115, 20, 116, 117, 10, 118, 119gsummulc2 18994 . . . 4 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))) = (𝑋 · (𝑅 Σg (𝑦𝐽𝑌))))
121120mpteq2dva 4979 . . 3 (𝜑 → (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌)))) = (𝑥𝐼 ↦ (𝑋 · (𝑅 Σg (𝑦𝐽𝑌)))))
122121oveq2d 6938 . 2 (𝜑 → (𝑅 Σg (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))))) = (𝑅 Σg (𝑥𝐼 ↦ (𝑋 · (𝑅 Σg (𝑦𝐽𝑌))))))
1231, 2, 5, 7, 16, 25gsumcl 18702 . . 3 (𝜑 → (𝑅 Σg (𝑦𝐽𝑌)) ∈ 𝐵)
1241, 2, 115, 20, 3, 6, 123, 10, 23gsummulc1 18993 . 2 (𝜑 → (𝑅 Σg (𝑥𝐼 ↦ (𝑋 · (𝑅 Σg (𝑦𝐽𝑌))))) = ((𝑅 Σg (𝑥𝐼𝑋)) · (𝑅 Σg (𝑦𝐽𝑌))))
125114, 122, 1243eqtrrd 2819 1 (𝜑 → ((𝑅 Σg (𝑥𝐼𝑋)) · (𝑅 Σg (𝑦𝐽𝑌))) = (𝑅 Σg (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  wo 836  w3a 1071   = wceq 1601  wcel 2107  Vcvv 3398  cdif 3789   class class class wbr 4886  cmpt 4965   × cxp 5353  wf 6131  cfv 6135  (class class class)co 6922  cmpt2 6924   supp csupp 7576  Fincfn 8241   finSupp cfsupp 8563  Basecbs 16255  +gcplusg 16338  .rcmulr 16339  0gc0g 16486   Σg cgsu 16487  CMndccmn 18579  Ringcrg 18934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-fzo 12785  df-seq 13120  df-hash 13436  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-0g 16488  df-gsum 16489  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mhm 17721  df-submnd 17722  df-grp 17812  df-minusg 17813  df-mulg 17928  df-ghm 18042  df-cntz 18133  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936
This theorem is referenced by:  evlslem2  19908
  Copyright terms: Public domain W3C validator