Proof of Theorem gsumccat
| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 7417 |
. . . 4
⊢ (𝑊 = ∅ → (𝑊 ++ 𝑋) = (∅ ++ 𝑋)) |
| 2 | 1 | oveq2d 7426 |
. . 3
⊢ (𝑊 = ∅ → (𝐺 Σg
(𝑊 ++ 𝑋)) = (𝐺 Σg (∅ ++
𝑋))) |
| 3 | | oveq2 7418 |
. . . . 5
⊢ (𝑊 = ∅ → (𝐺 Σg
𝑊) = (𝐺 Σg
∅)) |
| 4 | | eqid 2736 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 5 | 4 | gsum0 18667 |
. . . . 5
⊢ (𝐺 Σg
∅) = (0g‘𝐺) |
| 6 | 3, 5 | eqtrdi 2787 |
. . . 4
⊢ (𝑊 = ∅ → (𝐺 Σg
𝑊) =
(0g‘𝐺)) |
| 7 | 6 | oveq1d 7425 |
. . 3
⊢ (𝑊 = ∅ → ((𝐺 Σg
𝑊) + (𝐺 Σg 𝑋)) = ((0g‘𝐺) + (𝐺 Σg 𝑋))) |
| 8 | 2, 7 | eqeq12d 2752 |
. 2
⊢ (𝑊 = ∅ → ((𝐺 Σg
(𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) ↔ (𝐺 Σg (∅ ++
𝑋)) =
((0g‘𝐺)
+ (𝐺 Σg
𝑋)))) |
| 9 | | oveq2 7418 |
. . . . 5
⊢ (𝑋 = ∅ → (𝑊 ++ 𝑋) = (𝑊 ++ ∅)) |
| 10 | 9 | oveq2d 7426 |
. . . 4
⊢ (𝑋 = ∅ → (𝐺 Σg
(𝑊 ++ 𝑋)) = (𝐺 Σg (𝑊 ++ ∅))) |
| 11 | | oveq2 7418 |
. . . . . 6
⊢ (𝑋 = ∅ → (𝐺 Σg
𝑋) = (𝐺 Σg
∅)) |
| 12 | 11, 5 | eqtrdi 2787 |
. . . . 5
⊢ (𝑋 = ∅ → (𝐺 Σg
𝑋) =
(0g‘𝐺)) |
| 13 | 12 | oveq2d 7426 |
. . . 4
⊢ (𝑋 = ∅ → ((𝐺 Σg
𝑊) + (𝐺 Σg 𝑋)) = ((𝐺 Σg 𝑊) + (0g‘𝐺))) |
| 14 | 10, 13 | eqeq12d 2752 |
. . 3
⊢ (𝑋 = ∅ → ((𝐺 Σg
(𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) ↔ (𝐺 Σg (𝑊 ++ ∅)) = ((𝐺 Σg
𝑊) + (0g‘𝐺)))) |
| 15 | | mndsgrp 18723 |
. . . . . 6
⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp) |
| 16 | 15 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) → 𝐺 ∈ Smgrp) |
| 17 | 16 | ad2antrr 726 |
. . . 4
⊢ ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑋 ≠ ∅) → 𝐺 ∈ Smgrp) |
| 18 | | 3simpc 1150 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) → (𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵)) |
| 19 | 18 | ad2antrr 726 |
. . . 4
⊢ ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑋 ≠ ∅) → (𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵)) |
| 20 | | simpr 484 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑊 ≠ ∅) |
| 21 | 20 | anim1i 615 |
. . . 4
⊢ ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑋 ≠ ∅) → (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) |
| 22 | | gsumccat.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐺) |
| 23 | | gsumccat.p |
. . . . 5
⊢ + =
(+g‘𝐺) |
| 24 | 22, 23 | gsumsgrpccat 18823 |
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋))) |
| 25 | 17, 19, 21, 24 | syl3anc 1373 |
. . 3
⊢ ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑋 ≠ ∅) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋))) |
| 26 | | simpl2 1193 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑊 ∈ Word 𝐵) |
| 27 | | ccatrid 14610 |
. . . . . 6
⊢ (𝑊 ∈ Word 𝐵 → (𝑊 ++ ∅) = 𝑊) |
| 28 | 26, 27 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝑊 ++ ∅) = 𝑊) |
| 29 | 28 | oveq2d 7426 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐺 Σg (𝑊 ++ ∅)) = (𝐺 Σg
𝑊)) |
| 30 | | simpl1 1192 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝐺 ∈ Mnd) |
| 31 | 22 | gsumwcl 18822 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝐺 Σg 𝑊) ∈ 𝐵) |
| 32 | 31 | 3adant3 1132 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) → (𝐺 Σg 𝑊) ∈ 𝐵) |
| 33 | 32 | adantr 480 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) ∈ 𝐵) |
| 34 | 22, 23, 4 | mndrid 18738 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ (𝐺 Σg
𝑊) ∈ 𝐵) → ((𝐺 Σg 𝑊) + (0g‘𝐺)) = (𝐺 Σg 𝑊)) |
| 35 | 30, 33, 34 | syl2anc 584 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → ((𝐺 Σg 𝑊) + (0g‘𝐺)) = (𝐺 Σg 𝑊)) |
| 36 | 29, 35 | eqtr4d 2774 |
. . 3
⊢ (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐺 Σg (𝑊 ++ ∅)) = ((𝐺 Σg
𝑊) + (0g‘𝐺))) |
| 37 | 14, 25, 36 | pm2.61ne 3018 |
. 2
⊢ (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋))) |
| 38 | | ccatlid 14609 |
. . . . 5
⊢ (𝑋 ∈ Word 𝐵 → (∅ ++ 𝑋) = 𝑋) |
| 39 | 38 | 3ad2ant3 1135 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) → (∅ ++ 𝑋) = 𝑋) |
| 40 | 39 | oveq2d 7426 |
. . 3
⊢ ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) → (𝐺 Σg (∅ ++
𝑋)) = (𝐺 Σg 𝑋)) |
| 41 | | simp1 1136 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) → 𝐺 ∈ Mnd) |
| 42 | 22 | gsumwcl 18822 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ Word 𝐵) → (𝐺 Σg 𝑋) ∈ 𝐵) |
| 43 | 22, 23, 4 | mndlid 18737 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ (𝐺 Σg
𝑋) ∈ 𝐵) → ((0g‘𝐺) + (𝐺 Σg 𝑋)) = (𝐺 Σg 𝑋)) |
| 44 | 41, 42, 43 | 3imp3i2an 1346 |
. . 3
⊢ ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) → ((0g‘𝐺) + (𝐺 Σg 𝑋)) = (𝐺 Σg 𝑋)) |
| 45 | 40, 44 | eqtr4d 2774 |
. 2
⊢ ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) → (𝐺 Σg (∅ ++
𝑋)) =
((0g‘𝐺)
+ (𝐺 Σg
𝑋))) |
| 46 | 8, 37, 45 | pm2.61ne 3018 |
1
⊢ ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋))) |