MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumccat Structured version   Visualization version   GIF version

Theorem gsumccat 18000
Description: Homomorphic property of composites. Second formula in [Lang] p. 4. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 26-Dec-2023.)
Hypotheses
Ref Expression
gsumccat.b 𝐵 = (Base‘𝐺)
gsumccat.p + = (+g𝐺)
Assertion
Ref Expression
gsumccat ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))

Proof of Theorem gsumccat
StepHypRef Expression
1 oveq1 7157 . . . 4 (𝑊 = ∅ → (𝑊 ++ 𝑋) = (∅ ++ 𝑋))
21oveq2d 7166 . . 3 (𝑊 = ∅ → (𝐺 Σg (𝑊 ++ 𝑋)) = (𝐺 Σg (∅ ++ 𝑋)))
3 oveq2 7158 . . . . 5 (𝑊 = ∅ → (𝐺 Σg 𝑊) = (𝐺 Σg ∅))
4 eqid 2821 . . . . . 6 (0g𝐺) = (0g𝐺)
54gsum0 17888 . . . . 5 (𝐺 Σg ∅) = (0g𝐺)
63, 5syl6eq 2872 . . . 4 (𝑊 = ∅ → (𝐺 Σg 𝑊) = (0g𝐺))
76oveq1d 7165 . . 3 (𝑊 = ∅ → ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) = ((0g𝐺) + (𝐺 Σg 𝑋)))
82, 7eqeq12d 2837 . 2 (𝑊 = ∅ → ((𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) ↔ (𝐺 Σg (∅ ++ 𝑋)) = ((0g𝐺) + (𝐺 Σg 𝑋))))
9 oveq2 7158 . . . . 5 (𝑋 = ∅ → (𝑊 ++ 𝑋) = (𝑊 ++ ∅))
109oveq2d 7166 . . . 4 (𝑋 = ∅ → (𝐺 Σg (𝑊 ++ 𝑋)) = (𝐺 Σg (𝑊 ++ ∅)))
11 oveq2 7158 . . . . . 6 (𝑋 = ∅ → (𝐺 Σg 𝑋) = (𝐺 Σg ∅))
1211, 5syl6eq 2872 . . . . 5 (𝑋 = ∅ → (𝐺 Σg 𝑋) = (0g𝐺))
1312oveq2d 7166 . . . 4 (𝑋 = ∅ → ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) = ((𝐺 Σg 𝑊) + (0g𝐺)))
1410, 13eqeq12d 2837 . . 3 (𝑋 = ∅ → ((𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) ↔ (𝐺 Σg (𝑊 ++ ∅)) = ((𝐺 Σg 𝑊) + (0g𝐺))))
15 mndsgrp 17911 . . . . . 6 (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)
16153ad2ant1 1129 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → 𝐺 ∈ Smgrp)
1716ad2antrr 724 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑋 ≠ ∅) → 𝐺 ∈ Smgrp)
18 3simpc 1146 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵))
1918ad2antrr 724 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑋 ≠ ∅) → (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵))
20 simpr 487 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑊 ≠ ∅)
2120anim1i 616 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑋 ≠ ∅) → (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅))
22 gsumccat.b . . . . 5 𝐵 = (Base‘𝐺)
23 gsumccat.p . . . . 5 + = (+g𝐺)
2422, 23gsumsgrpccat 17998 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))
2517, 19, 21, 24syl3anc 1367 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑋 ≠ ∅) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))
26 simpl2 1188 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑊 ∈ Word 𝐵)
27 ccatrid 13935 . . . . . 6 (𝑊 ∈ Word 𝐵 → (𝑊 ++ ∅) = 𝑊)
2826, 27syl 17 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝑊 ++ ∅) = 𝑊)
2928oveq2d 7166 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐺 Σg (𝑊 ++ ∅)) = (𝐺 Σg 𝑊))
30 simpl1 1187 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝐺 ∈ Mnd)
3122gsumwcl 17997 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝐺 Σg 𝑊) ∈ 𝐵)
32313adant3 1128 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg 𝑊) ∈ 𝐵)
3332adantr 483 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) ∈ 𝐵)
3422, 23, 4mndrid 17926 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝐺 Σg 𝑊) ∈ 𝐵) → ((𝐺 Σg 𝑊) + (0g𝐺)) = (𝐺 Σg 𝑊))
3530, 33, 34syl2anc 586 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → ((𝐺 Σg 𝑊) + (0g𝐺)) = (𝐺 Σg 𝑊))
3629, 35eqtr4d 2859 . . 3 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐺 Σg (𝑊 ++ ∅)) = ((𝐺 Σg 𝑊) + (0g𝐺)))
3714, 25, 36pm2.61ne 3102 . 2 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))
38 ccatlid 13934 . . . . 5 (𝑋 ∈ Word 𝐵 → (∅ ++ 𝑋) = 𝑋)
39383ad2ant3 1131 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (∅ ++ 𝑋) = 𝑋)
4039oveq2d 7166 . . 3 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg (∅ ++ 𝑋)) = (𝐺 Σg 𝑋))
41 simp1 1132 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → 𝐺 ∈ Mnd)
4222gsumwcl 17997 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑋 ∈ Word 𝐵) → (𝐺 Σg 𝑋) ∈ 𝐵)
4322, 23, 4mndlid 17925 . . . 4 ((𝐺 ∈ Mnd ∧ (𝐺 Σg 𝑋) ∈ 𝐵) → ((0g𝐺) + (𝐺 Σg 𝑋)) = (𝐺 Σg 𝑋))
4441, 42, 433imp3i2an 1341 . . 3 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → ((0g𝐺) + (𝐺 Σg 𝑋)) = (𝐺 Σg 𝑋))
4540, 44eqtr4d 2859 . 2 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg (∅ ++ 𝑋)) = ((0g𝐺) + (𝐺 Σg 𝑋)))
468, 37, 45pm2.61ne 3102 1 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  c0 4290  cfv 6349  (class class class)co 7150  Word cword 13855   ++ cconcat 13916  Basecbs 16477  +gcplusg 16559  0gc0g 16707   Σg cgsu 16708  Smgrpcsgrp 17894  Mndcmnd 17905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-word 13856  df-concat 13917  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-gsum 16710  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951
This theorem is referenced by:  gsumws2  18001  gsumccatsn  18002  gsumspl  18003  gsumwspan  18005  frmdgsum  18021  frmdup1  18023  gsumwrev  18488  psgnunilem5  18616  psgnuni  18621  frgpuplem  18892  frgpup1  18895  psgnghm  20718  cyc3genpm  30789  mrsubccat  32760  gsumws3  40542  gsumws4  40543
  Copyright terms: Public domain W3C validator