![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sleadd1im | Structured version Visualization version GIF version |
Description: Surreal less-than or equal cancels under addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
Ref | Expression |
---|---|
sleadd1im | âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â ((ðī +s ðķ) âĪs (ðĩ +s ðķ) â ðī âĪs ðĩ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltadd1im 27465 | . . . 4 âĒ ((ðĩ â No ⧠ðī â No ⧠ðķ â No ) â (ðĩ <s ðī â (ðĩ +s ðķ) <s (ðī +s ðķ))) | |
2 | 1 | 3com12 1123 | . . 3 âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â (ðĩ <s ðī â (ðĩ +s ðķ) <s (ðī +s ðķ))) |
3 | sltnle 27253 | . . . . 5 âĒ ((ðĩ â No ⧠ðī â No ) â (ðĩ <s ðī â ÂŽ ðī âĪs ðĩ)) | |
4 | 3 | ancoms 459 | . . . 4 âĒ ((ðī â No ⧠ðĩ â No ) â (ðĩ <s ðī â ÂŽ ðī âĪs ðĩ)) |
5 | 4 | 3adant3 1132 | . . 3 âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â (ðĩ <s ðī â ÂŽ ðī âĪs ðĩ)) |
6 | addscl 27462 | . . . . 5 âĒ ((ðĩ â No ⧠ðķ â No ) â (ðĩ +s ðķ) â No ) | |
7 | 6 | 3adant1 1130 | . . . 4 âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â (ðĩ +s ðķ) â No ) |
8 | addscl 27462 | . . . 4 âĒ ((ðī â No ⧠ðķ â No ) â (ðī +s ðķ) â No ) | |
9 | sltnle 27253 | . . . 4 âĒ (((ðĩ +s ðķ) â No ⧠(ðī +s ðķ) â No ) â ((ðĩ +s ðķ) <s (ðī +s ðķ) â ÂŽ (ðī +s ðķ) âĪs (ðĩ +s ðķ))) | |
10 | 7, 8, 9 | 3imp3i2an 1345 | . . 3 âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â ((ðĩ +s ðķ) <s (ðī +s ðķ) â ÂŽ (ðī +s ðķ) âĪs (ðĩ +s ðķ))) |
11 | 2, 5, 10 | 3imtr3d 292 | . 2 âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â (ÂŽ ðī âĪs ðĩ â ÂŽ (ðī +s ðķ) âĪs (ðĩ +s ðķ))) |
12 | 11 | con4d 115 | 1 âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â ((ðī +s ðķ) âĪs (ðĩ +s ðķ) â ðī âĪs ðĩ)) |
Colors of variables: wff setvar class |
Syntax hints: ÂŽ wn 3 â wi 4 â wb 205 ⧠w3a 1087 â wcel 2106 class class class wbr 5148 (class class class)co 7408 No csur 27140 <s cslt 27141 âĪs csle 27244 +s cadds 27440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-1o 8465 df-2o 8466 df-nadd 8664 df-no 27143 df-slt 27144 df-bday 27145 df-sle 27245 df-sslt 27280 df-scut 27282 df-0s 27322 df-made 27339 df-old 27340 df-left 27342 df-right 27343 df-norec2 27430 df-adds 27441 |
This theorem is referenced by: sleadd2im 27468 sleadd1 27469 |
Copyright terms: Public domain | W3C validator |