MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moddi Structured version   Visualization version   GIF version

Theorem moddi 13976
Description: Distribute multiplication over a modulo operation. (Contributed by NM, 11-Nov-2008.)
Assertion
Ref Expression
moddi ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · (𝐵 mod 𝐶)) = ((𝐴 · 𝐵) mod (𝐴 · 𝐶)))

Proof of Theorem moddi
StepHypRef Expression
1 rpcn 13042 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
213ad2ant1 1132 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℂ)
3 recn 11242 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
433ad2ant2 1133 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℂ)
5 rpre 13040 . . . . . . . 8 (𝐶 ∈ ℝ+𝐶 ∈ ℝ)
65adantl 481 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
7 refldivcl 13859 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐵 / 𝐶)) ∈ ℝ)
86, 7remulcld 11288 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℝ)
98recnd 11286 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℂ)
1093adant1 1129 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℂ)
112, 4, 10subdid 11716 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))) = ((𝐴 · 𝐵) − (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶))))))
12 rpcnne0 13050 . . . . . . . . 9 (𝐶 ∈ ℝ+ → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
13123ad2ant3 1134 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
14 rpcnne0 13050 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
15143ad2ant1 1132 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
16 divcan5 11966 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐴 · 𝐵) / (𝐴 · 𝐶)) = (𝐵 / 𝐶))
174, 13, 15, 16syl3anc 1370 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 · 𝐵) / (𝐴 · 𝐶)) = (𝐵 / 𝐶))
1817fveq2d 6910 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))) = (⌊‘(𝐵 / 𝐶)))
1918oveq2d 7446 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶)))) = ((𝐴 · 𝐶) · (⌊‘(𝐵 / 𝐶))))
20 rpcn 13042 . . . . . . 7 (𝐶 ∈ ℝ+𝐶 ∈ ℂ)
21203ad2ant3 1134 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
22 rerpdivcl 13062 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 / 𝐶) ∈ ℝ)
23 reflcl 13832 . . . . . . . . 9 ((𝐵 / 𝐶) ∈ ℝ → (⌊‘(𝐵 / 𝐶)) ∈ ℝ)
2423recnd 11286 . . . . . . . 8 ((𝐵 / 𝐶) ∈ ℝ → (⌊‘(𝐵 / 𝐶)) ∈ ℂ)
2522, 24syl 17 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐵 / 𝐶)) ∈ ℂ)
26253adant1 1129 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐵 / 𝐶)) ∈ ℂ)
272, 21, 26mulassd 11281 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 · 𝐶) · (⌊‘(𝐵 / 𝐶))) = (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶)))))
2819, 27eqtr2d 2775 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶)))) = ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶)))))
2928oveq2d 7446 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 · 𝐵) − (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶))))) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
3011, 29eqtrd 2774 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
31 modval 13907 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 mod 𝐶) = (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
32313adant1 1129 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 mod 𝐶) = (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
3332oveq2d 7446 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · (𝐵 mod 𝐶)) = (𝐴 · (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))))
34 rpre 13040 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
35 remulcl 11237 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
3634, 35sylan 580 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
37363adant3 1131 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ)
38 rpmulcl 13055 . . 3 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴 · 𝐶) ∈ ℝ+)
39 modval 13907 . . 3 (((𝐴 · 𝐵) ∈ ℝ ∧ (𝐴 · 𝐶) ∈ ℝ+) → ((𝐴 · 𝐵) mod (𝐴 · 𝐶)) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
4037, 38, 393imp3i2an 1344 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 · 𝐵) mod (𝐴 · 𝐶)) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
4130, 33, 403eqtr4d 2784 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · (𝐵 mod 𝐶)) = ((𝐴 · 𝐵) mod (𝐴 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152   · cmul 11157  cmin 11489   / cdiv 11917  +crp 13031  cfl 13826   mod cmo 13905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fl 13828  df-mod 13906
This theorem is referenced by:  dirkertrigeq  46056
  Copyright terms: Public domain W3C validator