MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunel Structured version   Visualization version   GIF version

Theorem ordunel 7606
Description: The maximum of two ordinals belongs to a third if each of them do. (Contributed by NM, 18-Sep-2006.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
ordunel ((Ord 𝐴𝐵𝐴𝐶𝐴) → (𝐵𝐶) ∈ 𝐴)

Proof of Theorem ordunel
StepHypRef Expression
1 prssi 4734 . . 3 ((𝐵𝐴𝐶𝐴) → {𝐵, 𝐶} ⊆ 𝐴)
213adant1 1132 . 2 ((Ord 𝐴𝐵𝐴𝐶𝐴) → {𝐵, 𝐶} ⊆ 𝐴)
3 ordelon 6237 . . . 4 ((Ord 𝐴𝐵𝐴) → 𝐵 ∈ On)
433adant3 1134 . . 3 ((Ord 𝐴𝐵𝐴𝐶𝐴) → 𝐵 ∈ On)
5 ordelon 6237 . . 3 ((Ord 𝐴𝐶𝐴) → 𝐶 ∈ On)
6 ordunpr 7605 . . 3 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶) ∈ {𝐵, 𝐶})
74, 5, 63imp3i2an 1347 . 2 ((Ord 𝐴𝐵𝐴𝐶𝐴) → (𝐵𝐶) ∈ {𝐵, 𝐶})
82, 7sseldd 3902 1 ((Ord 𝐴𝐵𝐴𝐶𝐴) → (𝐵𝐶) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1089  wcel 2110  cun 3864  wss 3866  {cpr 4543  Ord word 6212  Oncon0 6213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-11 2158  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-tr 5162  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-ord 6216  df-on 6217
This theorem is referenced by:  oaabs2  8374  dffi3  9047  unwf  9426  rankelun  9488  infxpenlem  9627  cfsmolem  9884  r1limwun  10350  wunex2  10352
  Copyright terms: Public domain W3C validator