MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunel Structured version   Visualization version   GIF version

Theorem ordunel 7358
Description: The maximum of two ordinals belongs to a third if each of them do. (Contributed by NM, 18-Sep-2006.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
ordunel ((Ord 𝐴𝐵𝐴𝐶𝐴) → (𝐵𝐶) ∈ 𝐴)

Proof of Theorem ordunel
StepHypRef Expression
1 prssi 4628 . . 3 ((𝐵𝐴𝐶𝐴) → {𝐵, 𝐶} ⊆ 𝐴)
213adant1 1110 . 2 ((Ord 𝐴𝐵𝐴𝐶𝐴) → {𝐵, 𝐶} ⊆ 𝐴)
3 ordelon 6053 . . . 4 ((Ord 𝐴𝐵𝐴) → 𝐵 ∈ On)
433adant3 1112 . . 3 ((Ord 𝐴𝐵𝐴𝐶𝐴) → 𝐵 ∈ On)
5 ordelon 6053 . . 3 ((Ord 𝐴𝐶𝐴) → 𝐶 ∈ On)
6 ordunpr 7357 . . 3 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶) ∈ {𝐵, 𝐶})
74, 5, 63imp3i2an 1325 . 2 ((Ord 𝐴𝐵𝐴𝐶𝐴) → (𝐵𝐶) ∈ {𝐵, 𝐶})
82, 7sseldd 3860 1 ((Ord 𝐴𝐵𝐴𝐶𝐴) → (𝐵𝐶) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1068  wcel 2050  cun 3828  wss 3830  {cpr 4443  Ord word 6028  Oncon0 6029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3418  df-sbc 3683  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-br 4930  df-opab 4992  df-tr 5031  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-ord 6032  df-on 6033
This theorem is referenced by:  oaabs2  8072  dffi3  8690  unwf  9033  rankelun  9095  infxpenlem  9233  cfsmolem  9490  r1limwun  9956  wunex2  9958
  Copyright terms: Public domain W3C validator