Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordunel | Structured version Visualization version GIF version |
Description: The maximum of two ordinals belongs to a third if each of them do. (Contributed by NM, 18-Sep-2006.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
ordunel | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵 ∪ 𝐶) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssi 4767 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → {𝐵, 𝐶} ⊆ 𝐴) | |
2 | 1 | 3adant1 1129 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → {𝐵, 𝐶} ⊆ 𝐴) |
3 | ordelon 6320 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | |
4 | 3 | 3adant3 1131 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ On) |
5 | ordelon 6320 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ On) | |
6 | ordunpr 7731 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶}) | |
7 | 4, 5, 6 | 3imp3i2an 1344 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶}) |
8 | 2, 7 | sseldd 3932 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵 ∪ 𝐶) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2105 ∪ cun 3895 ⊆ wss 3897 {cpr 4574 Ord word 6295 Oncon0 6296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-tr 5207 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-ord 6299 df-on 6300 |
This theorem is referenced by: oaabs2 8542 dffi3 9280 unwf 9659 rankelun 9721 infxpenlem 9862 cfsmolem 10119 r1limwun 10585 wunex2 10587 |
Copyright terms: Public domain | W3C validator |