![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordunel | Structured version Visualization version GIF version |
Description: The maximum of two ordinals belongs to a third if each of them do. (Contributed by NM, 18-Sep-2006.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
ordunel | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵 ∪ 𝐶) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssi 4825 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → {𝐵, 𝐶} ⊆ 𝐴) | |
2 | 1 | 3adant1 1131 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → {𝐵, 𝐶} ⊆ 𝐴) |
3 | ordelon 6389 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | |
4 | 3 | 3adant3 1133 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ On) |
5 | ordelon 6389 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ On) | |
6 | ordunpr 7814 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶}) | |
7 | 4, 5, 6 | 3imp3i2an 1346 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶}) |
8 | 2, 7 | sseldd 3984 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵 ∪ 𝐶) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 ∈ wcel 2107 ∪ cun 3947 ⊆ wss 3949 {cpr 4631 Ord word 6364 Oncon0 6365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-ord 6368 df-on 6369 |
This theorem is referenced by: oaabs2 8648 dffi3 9426 unwf 9805 rankelun 9867 infxpenlem 10008 cfsmolem 10265 r1limwun 10731 wunex2 10733 |
Copyright terms: Public domain | W3C validator |