MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunel Structured version   Visualization version   GIF version

Theorem ordunel 7732
Description: The maximum of two ordinals belongs to a third if each of them do. (Contributed by NM, 18-Sep-2006.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
ordunel ((Ord 𝐴𝐵𝐴𝐶𝐴) → (𝐵𝐶) ∈ 𝐴)

Proof of Theorem ordunel
StepHypRef Expression
1 prssi 4767 . . 3 ((𝐵𝐴𝐶𝐴) → {𝐵, 𝐶} ⊆ 𝐴)
213adant1 1129 . 2 ((Ord 𝐴𝐵𝐴𝐶𝐴) → {𝐵, 𝐶} ⊆ 𝐴)
3 ordelon 6320 . . . 4 ((Ord 𝐴𝐵𝐴) → 𝐵 ∈ On)
433adant3 1131 . . 3 ((Ord 𝐴𝐵𝐴𝐶𝐴) → 𝐵 ∈ On)
5 ordelon 6320 . . 3 ((Ord 𝐴𝐶𝐴) → 𝐶 ∈ On)
6 ordunpr 7731 . . 3 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶) ∈ {𝐵, 𝐶})
74, 5, 63imp3i2an 1344 . 2 ((Ord 𝐴𝐵𝐴𝐶𝐴) → (𝐵𝐶) ∈ {𝐵, 𝐶})
82, 7sseldd 3932 1 ((Ord 𝐴𝐵𝐴𝐶𝐴) → (𝐵𝐶) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2105  cun 3895  wss 3897  {cpr 4574  Ord word 6295  Oncon0 6296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-tr 5207  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-ord 6299  df-on 6300
This theorem is referenced by:  oaabs2  8542  dffi3  9280  unwf  9659  rankelun  9721  infxpenlem  9862  cfsmolem  10119  r1limwun  10585  wunex2  10587
  Copyright terms: Public domain W3C validator