Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordunel | Structured version Visualization version GIF version |
Description: The maximum of two ordinals belongs to a third if each of them do. (Contributed by NM, 18-Sep-2006.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
ordunel | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵 ∪ 𝐶) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssi 4751 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → {𝐵, 𝐶} ⊆ 𝐴) | |
2 | 1 | 3adant1 1128 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → {𝐵, 𝐶} ⊆ 𝐴) |
3 | ordelon 6275 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | |
4 | 3 | 3adant3 1130 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ On) |
5 | ordelon 6275 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ On) | |
6 | ordunpr 7648 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶}) | |
7 | 4, 5, 6 | 3imp3i2an 1343 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶}) |
8 | 2, 7 | sseldd 3918 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵 ∪ 𝐶) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 ∈ wcel 2108 ∪ cun 3881 ⊆ wss 3883 {cpr 4560 Ord word 6250 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 |
This theorem is referenced by: oaabs2 8439 dffi3 9120 unwf 9499 rankelun 9561 infxpenlem 9700 cfsmolem 9957 r1limwun 10423 wunex2 10425 |
Copyright terms: Public domain | W3C validator |