![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordunel | Structured version Visualization version GIF version |
Description: The maximum of two ordinals belongs to a third if each of them do. (Contributed by NM, 18-Sep-2006.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
ordunel | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵 ∪ 𝐶) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssi 4786 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → {𝐵, 𝐶} ⊆ 𝐴) | |
2 | 1 | 3adant1 1131 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → {𝐵, 𝐶} ⊆ 𝐴) |
3 | ordelon 6346 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | |
4 | 3 | 3adant3 1133 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ On) |
5 | ordelon 6346 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ On) | |
6 | ordunpr 7766 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶}) | |
7 | 4, 5, 6 | 3imp3i2an 1346 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶}) |
8 | 2, 7 | sseldd 3950 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵 ∪ 𝐶) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 ∈ wcel 2107 ∪ cun 3913 ⊆ wss 3915 {cpr 4593 Ord word 6321 Oncon0 6322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-tr 5228 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-ord 6325 df-on 6326 |
This theorem is referenced by: oaabs2 8600 dffi3 9374 unwf 9753 rankelun 9815 infxpenlem 9956 cfsmolem 10213 r1limwun 10679 wunex2 10681 |
Copyright terms: Public domain | W3C validator |