MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrfisstep Structured version   Visualization version   GIF version

Theorem fusgrfisstep 29308
Description: Induction step in fusgrfis 29309: In a finite simple graph, the number of edges is finite if the number of edges not containing one of the vertices is finite. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 23-Oct-2020.)
Assertion
Ref Expression
fusgrfisstep (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → (( I ↾ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝}) ∈ Fin → 𝐸 ∈ Fin))
Distinct variable groups:   𝐸,𝑝   𝑁,𝑝   𝑉,𝑝
Allowed substitution hints:   𝑋(𝑝)   𝑌(𝑝)

Proof of Theorem fusgrfisstep
StepHypRef Expression
1 residfi 9350 . 2 (( I ↾ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝}) ∈ Fin ↔ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝} ∈ Fin)
2 fusgrusgr 29301 . . . . . 6 (⟨𝑉, 𝐸⟩ ∈ FinUSGraph → ⟨𝑉, 𝐸⟩ ∈ USGraph)
3 eqid 2735 . . . . . . 7 (iEdg‘⟨𝑉, 𝐸⟩) = (iEdg‘⟨𝑉, 𝐸⟩)
4 eqid 2735 . . . . . . 7 (Edg‘⟨𝑉, 𝐸⟩) = (Edg‘⟨𝑉, 𝐸⟩)
53, 4usgredgffibi 29303 . . . . . 6 (⟨𝑉, 𝐸⟩ ∈ USGraph → ((Edg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ (iEdg‘⟨𝑉, 𝐸⟩) ∈ Fin))
62, 5syl 17 . . . . 5 (⟨𝑉, 𝐸⟩ ∈ FinUSGraph → ((Edg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ (iEdg‘⟨𝑉, 𝐸⟩) ∈ Fin))
763ad2ant2 1134 . . . 4 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → ((Edg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ (iEdg‘⟨𝑉, 𝐸⟩) ∈ Fin))
8 simp2 1137 . . . . 5 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → ⟨𝑉, 𝐸⟩ ∈ FinUSGraph)
9 opvtxfv 28983 . . . . . . . 8 ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
109eqcomd 2741 . . . . . . 7 ((𝑉𝑋𝐸𝑌) → 𝑉 = (Vtx‘⟨𝑉, 𝐸⟩))
1110eleq2d 2820 . . . . . 6 ((𝑉𝑋𝐸𝑌) → (𝑁𝑉𝑁 ∈ (Vtx‘⟨𝑉, 𝐸⟩)))
1211biimpa 476 . . . . 5 (((𝑉𝑋𝐸𝑌) ∧ 𝑁𝑉) → 𝑁 ∈ (Vtx‘⟨𝑉, 𝐸⟩))
13 eqid 2735 . . . . . 6 (Vtx‘⟨𝑉, 𝐸⟩) = (Vtx‘⟨𝑉, 𝐸⟩)
14 eqid 2735 . . . . . 6 {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝} = {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝}
1513, 4, 14usgrfilem 29306 . . . . 5 ((⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁 ∈ (Vtx‘⟨𝑉, 𝐸⟩)) → ((Edg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝} ∈ Fin))
168, 12, 153imp3i2an 1346 . . . 4 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → ((Edg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝} ∈ Fin))
17 opiedgfv 28986 . . . . . 6 ((𝑉𝑋𝐸𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
1817eleq1d 2819 . . . . 5 ((𝑉𝑋𝐸𝑌) → ((iEdg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ 𝐸 ∈ Fin))
19183ad2ant1 1133 . . . 4 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → ((iEdg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ 𝐸 ∈ Fin))
207, 16, 193bitr3rd 310 . . 3 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → (𝐸 ∈ Fin ↔ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝} ∈ Fin))
2120biimprd 248 . 2 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → ({𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝} ∈ Fin → 𝐸 ∈ Fin))
221, 21biimtrid 242 1 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → (( I ↾ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝}) ∈ Fin → 𝐸 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2108  wnel 3036  {crab 3415  cop 4607   I cid 5547  cres 5656  cfv 6531  Fincfn 8959  Vtxcvtx 28975  iEdgciedg 28976  Edgcedg 29026  USGraphcusgr 29128  FinUSGraphcfusgr 29295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349  df-vtx 28977  df-iedg 28978  df-edg 29027  df-upgr 29061  df-uspgr 29129  df-usgr 29130  df-fusgr 29296
This theorem is referenced by:  fusgrfis  29309
  Copyright terms: Public domain W3C validator