![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fusgrfisstep | Structured version Visualization version GIF version |
Description: Induction step in fusgrfis 28855: In a finite simple graph, the number of edges is finite if the number of edges not containing one of the vertices is finite. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 23-Oct-2020.) |
Ref | Expression |
---|---|
fusgrfisstep | ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (( I ↾ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁 ∉ 𝑝}) ∈ Fin → 𝐸 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | residfi 9337 | . 2 ⊢ (( I ↾ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁 ∉ 𝑝}) ∈ Fin ↔ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁 ∉ 𝑝} ∈ Fin) | |
2 | fusgrusgr 28847 | . . . . . 6 ⊢ (⟨𝑉, 𝐸⟩ ∈ FinUSGraph → ⟨𝑉, 𝐸⟩ ∈ USGraph) | |
3 | eqid 2731 | . . . . . . 7 ⊢ (iEdg‘⟨𝑉, 𝐸⟩) = (iEdg‘⟨𝑉, 𝐸⟩) | |
4 | eqid 2731 | . . . . . . 7 ⊢ (Edg‘⟨𝑉, 𝐸⟩) = (Edg‘⟨𝑉, 𝐸⟩) | |
5 | 3, 4 | usgredgffibi 28849 | . . . . . 6 ⊢ (⟨𝑉, 𝐸⟩ ∈ USGraph → ((Edg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ (iEdg‘⟨𝑉, 𝐸⟩) ∈ Fin)) |
6 | 2, 5 | syl 17 | . . . . 5 ⊢ (⟨𝑉, 𝐸⟩ ∈ FinUSGraph → ((Edg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ (iEdg‘⟨𝑉, 𝐸⟩) ∈ Fin)) |
7 | 6 | 3ad2ant2 1133 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ((Edg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ (iEdg‘⟨𝑉, 𝐸⟩) ∈ Fin)) |
8 | simp2 1136 | . . . . 5 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ⟨𝑉, 𝐸⟩ ∈ FinUSGraph) | |
9 | opvtxfv 28532 | . . . . . . . 8 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉) | |
10 | 9 | eqcomd 2737 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝑉 = (Vtx‘⟨𝑉, 𝐸⟩)) |
11 | 10 | eleq2d 2818 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑁 ∈ 𝑉 ↔ 𝑁 ∈ (Vtx‘⟨𝑉, 𝐸⟩))) |
12 | 11 | biimpa 476 | . . . . 5 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 𝑁 ∈ 𝑉) → 𝑁 ∈ (Vtx‘⟨𝑉, 𝐸⟩)) |
13 | eqid 2731 | . . . . . 6 ⊢ (Vtx‘⟨𝑉, 𝐸⟩) = (Vtx‘⟨𝑉, 𝐸⟩) | |
14 | eqid 2731 | . . . . . 6 ⊢ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁 ∉ 𝑝} = {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁 ∉ 𝑝} | |
15 | 13, 4, 14 | usgrfilem 28852 | . . . . 5 ⊢ ((⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁 ∈ (Vtx‘⟨𝑉, 𝐸⟩)) → ((Edg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁 ∉ 𝑝} ∈ Fin)) |
16 | 8, 12, 15 | 3imp3i2an 1344 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ((Edg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁 ∉ 𝑝} ∈ Fin)) |
17 | opiedgfv 28535 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸) | |
18 | 17 | eleq1d 2817 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ((iEdg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ 𝐸 ∈ Fin)) |
19 | 18 | 3ad2ant1 1132 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ((iEdg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ 𝐸 ∈ Fin)) |
20 | 7, 16, 19 | 3bitr3rd 310 | . . 3 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ∈ Fin ↔ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁 ∉ 𝑝} ∈ Fin)) |
21 | 20 | biimprd 247 | . 2 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ({𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁 ∉ 𝑝} ∈ Fin → 𝐸 ∈ Fin)) |
22 | 1, 21 | biimtrid 241 | 1 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (( I ↾ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁 ∉ 𝑝}) ∈ Fin → 𝐸 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 ∉ wnel 3045 {crab 3431 ⟨cop 4634 I cid 5573 ↾ cres 5678 ‘cfv 6543 Fincfn 8943 Vtxcvtx 28524 iEdgciedg 28525 Edgcedg 28575 USGraphcusgr 28677 FinUSGraphcfusgr 28841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-oadd 8474 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-dju 9900 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-xnn0 12550 df-z 12564 df-uz 12828 df-fz 13490 df-hash 14296 df-vtx 28526 df-iedg 28527 df-edg 28576 df-upgr 28610 df-uspgr 28678 df-usgr 28679 df-fusgr 28842 |
This theorem is referenced by: fusgrfis 28855 |
Copyright terms: Public domain | W3C validator |