| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fusgrfisstep | Structured version Visualization version GIF version | ||
| Description: Induction step in fusgrfis 29310: In a finite simple graph, the number of edges is finite if the number of edges not containing one of the vertices is finite. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 23-Oct-2020.) |
| Ref | Expression |
|---|---|
| fusgrfisstep | ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (( I ↾ {𝑝 ∈ (Edg‘〈𝑉, 𝐸〉) ∣ 𝑁 ∉ 𝑝}) ∈ Fin → 𝐸 ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | residfi 9229 | . 2 ⊢ (( I ↾ {𝑝 ∈ (Edg‘〈𝑉, 𝐸〉) ∣ 𝑁 ∉ 𝑝}) ∈ Fin ↔ {𝑝 ∈ (Edg‘〈𝑉, 𝐸〉) ∣ 𝑁 ∉ 𝑝} ∈ Fin) | |
| 2 | fusgrusgr 29302 | . . . . . 6 ⊢ (〈𝑉, 𝐸〉 ∈ FinUSGraph → 〈𝑉, 𝐸〉 ∈ USGraph) | |
| 3 | eqid 2733 | . . . . . . 7 ⊢ (iEdg‘〈𝑉, 𝐸〉) = (iEdg‘〈𝑉, 𝐸〉) | |
| 4 | eqid 2733 | . . . . . . 7 ⊢ (Edg‘〈𝑉, 𝐸〉) = (Edg‘〈𝑉, 𝐸〉) | |
| 5 | 3, 4 | usgredgffibi 29304 | . . . . . 6 ⊢ (〈𝑉, 𝐸〉 ∈ USGraph → ((Edg‘〈𝑉, 𝐸〉) ∈ Fin ↔ (iEdg‘〈𝑉, 𝐸〉) ∈ Fin)) |
| 6 | 2, 5 | syl 17 | . . . . 5 ⊢ (〈𝑉, 𝐸〉 ∈ FinUSGraph → ((Edg‘〈𝑉, 𝐸〉) ∈ Fin ↔ (iEdg‘〈𝑉, 𝐸〉) ∈ Fin)) |
| 7 | 6 | 3ad2ant2 1134 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ((Edg‘〈𝑉, 𝐸〉) ∈ Fin ↔ (iEdg‘〈𝑉, 𝐸〉) ∈ Fin)) |
| 8 | simp2 1137 | . . . . 5 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → 〈𝑉, 𝐸〉 ∈ FinUSGraph) | |
| 9 | opvtxfv 28984 | . . . . . . . 8 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
| 10 | 9 | eqcomd 2739 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝑉 = (Vtx‘〈𝑉, 𝐸〉)) |
| 11 | 10 | eleq2d 2819 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑁 ∈ 𝑉 ↔ 𝑁 ∈ (Vtx‘〈𝑉, 𝐸〉))) |
| 12 | 11 | biimpa 476 | . . . . 5 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 𝑁 ∈ 𝑉) → 𝑁 ∈ (Vtx‘〈𝑉, 𝐸〉)) |
| 13 | eqid 2733 | . . . . . 6 ⊢ (Vtx‘〈𝑉, 𝐸〉) = (Vtx‘〈𝑉, 𝐸〉) | |
| 14 | eqid 2733 | . . . . . 6 ⊢ {𝑝 ∈ (Edg‘〈𝑉, 𝐸〉) ∣ 𝑁 ∉ 𝑝} = {𝑝 ∈ (Edg‘〈𝑉, 𝐸〉) ∣ 𝑁 ∉ 𝑝} | |
| 15 | 13, 4, 14 | usgrfilem 29307 | . . . . 5 ⊢ ((〈𝑉, 𝐸〉 ∈ FinUSGraph ∧ 𝑁 ∈ (Vtx‘〈𝑉, 𝐸〉)) → ((Edg‘〈𝑉, 𝐸〉) ∈ Fin ↔ {𝑝 ∈ (Edg‘〈𝑉, 𝐸〉) ∣ 𝑁 ∉ 𝑝} ∈ Fin)) |
| 16 | 8, 12, 15 | 3imp3i2an 1346 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ((Edg‘〈𝑉, 𝐸〉) ∈ Fin ↔ {𝑝 ∈ (Edg‘〈𝑉, 𝐸〉) ∣ 𝑁 ∉ 𝑝} ∈ Fin)) |
| 17 | opiedgfv 28987 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
| 18 | 17 | eleq1d 2818 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ((iEdg‘〈𝑉, 𝐸〉) ∈ Fin ↔ 𝐸 ∈ Fin)) |
| 19 | 18 | 3ad2ant1 1133 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ((iEdg‘〈𝑉, 𝐸〉) ∈ Fin ↔ 𝐸 ∈ Fin)) |
| 20 | 7, 16, 19 | 3bitr3rd 310 | . . 3 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ∈ Fin ↔ {𝑝 ∈ (Edg‘〈𝑉, 𝐸〉) ∣ 𝑁 ∉ 𝑝} ∈ Fin)) |
| 21 | 20 | biimprd 248 | . 2 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ({𝑝 ∈ (Edg‘〈𝑉, 𝐸〉) ∣ 𝑁 ∉ 𝑝} ∈ Fin → 𝐸 ∈ Fin)) |
| 22 | 1, 21 | biimtrid 242 | 1 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (( I ↾ {𝑝 ∈ (Edg‘〈𝑉, 𝐸〉) ∣ 𝑁 ∉ 𝑝}) ∈ Fin → 𝐸 ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 ∉ wnel 3033 {crab 3396 〈cop 4581 I cid 5513 ↾ cres 5621 ‘cfv 6486 Fincfn 8875 Vtxcvtx 28976 iEdgciedg 28977 Edgcedg 29027 USGraphcusgr 29129 FinUSGraphcfusgr 29296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-dju 9801 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-n0 12389 df-xnn0 12462 df-z 12476 df-uz 12739 df-fz 13410 df-hash 14240 df-vtx 28978 df-iedg 28979 df-edg 29028 df-upgr 29062 df-uspgr 29130 df-usgr 29131 df-fusgr 29297 |
| This theorem is referenced by: fusgrfis 29310 |
| Copyright terms: Public domain | W3C validator |