Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fusgrfisstep | Structured version Visualization version GIF version |
Description: Induction step in fusgrfis 27927: In a finite simple graph, the number of edges is finite if the number of edges not containing one of the vertices is finite. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 23-Oct-2020.) |
Ref | Expression |
---|---|
fusgrfisstep | ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (( I ↾ {𝑝 ∈ (Edg‘〈𝑉, 𝐸〉) ∣ 𝑁 ∉ 𝑝}) ∈ Fin → 𝐸 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | residfi 9190 | . 2 ⊢ (( I ↾ {𝑝 ∈ (Edg‘〈𝑉, 𝐸〉) ∣ 𝑁 ∉ 𝑝}) ∈ Fin ↔ {𝑝 ∈ (Edg‘〈𝑉, 𝐸〉) ∣ 𝑁 ∉ 𝑝} ∈ Fin) | |
2 | fusgrusgr 27919 | . . . . . 6 ⊢ (〈𝑉, 𝐸〉 ∈ FinUSGraph → 〈𝑉, 𝐸〉 ∈ USGraph) | |
3 | eqid 2736 | . . . . . . 7 ⊢ (iEdg‘〈𝑉, 𝐸〉) = (iEdg‘〈𝑉, 𝐸〉) | |
4 | eqid 2736 | . . . . . . 7 ⊢ (Edg‘〈𝑉, 𝐸〉) = (Edg‘〈𝑉, 𝐸〉) | |
5 | 3, 4 | usgredgffibi 27921 | . . . . . 6 ⊢ (〈𝑉, 𝐸〉 ∈ USGraph → ((Edg‘〈𝑉, 𝐸〉) ∈ Fin ↔ (iEdg‘〈𝑉, 𝐸〉) ∈ Fin)) |
6 | 2, 5 | syl 17 | . . . . 5 ⊢ (〈𝑉, 𝐸〉 ∈ FinUSGraph → ((Edg‘〈𝑉, 𝐸〉) ∈ Fin ↔ (iEdg‘〈𝑉, 𝐸〉) ∈ Fin)) |
7 | 6 | 3ad2ant2 1133 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ((Edg‘〈𝑉, 𝐸〉) ∈ Fin ↔ (iEdg‘〈𝑉, 𝐸〉) ∈ Fin)) |
8 | simp2 1136 | . . . . 5 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → 〈𝑉, 𝐸〉 ∈ FinUSGraph) | |
9 | opvtxfv 27604 | . . . . . . . 8 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
10 | 9 | eqcomd 2742 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝑉 = (Vtx‘〈𝑉, 𝐸〉)) |
11 | 10 | eleq2d 2822 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑁 ∈ 𝑉 ↔ 𝑁 ∈ (Vtx‘〈𝑉, 𝐸〉))) |
12 | 11 | biimpa 477 | . . . . 5 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 𝑁 ∈ 𝑉) → 𝑁 ∈ (Vtx‘〈𝑉, 𝐸〉)) |
13 | eqid 2736 | . . . . . 6 ⊢ (Vtx‘〈𝑉, 𝐸〉) = (Vtx‘〈𝑉, 𝐸〉) | |
14 | eqid 2736 | . . . . . 6 ⊢ {𝑝 ∈ (Edg‘〈𝑉, 𝐸〉) ∣ 𝑁 ∉ 𝑝} = {𝑝 ∈ (Edg‘〈𝑉, 𝐸〉) ∣ 𝑁 ∉ 𝑝} | |
15 | 13, 4, 14 | usgrfilem 27924 | . . . . 5 ⊢ ((〈𝑉, 𝐸〉 ∈ FinUSGraph ∧ 𝑁 ∈ (Vtx‘〈𝑉, 𝐸〉)) → ((Edg‘〈𝑉, 𝐸〉) ∈ Fin ↔ {𝑝 ∈ (Edg‘〈𝑉, 𝐸〉) ∣ 𝑁 ∉ 𝑝} ∈ Fin)) |
16 | 8, 12, 15 | 3imp3i2an 1344 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ((Edg‘〈𝑉, 𝐸〉) ∈ Fin ↔ {𝑝 ∈ (Edg‘〈𝑉, 𝐸〉) ∣ 𝑁 ∉ 𝑝} ∈ Fin)) |
17 | opiedgfv 27607 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
18 | 17 | eleq1d 2821 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ((iEdg‘〈𝑉, 𝐸〉) ∈ Fin ↔ 𝐸 ∈ Fin)) |
19 | 18 | 3ad2ant1 1132 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ((iEdg‘〈𝑉, 𝐸〉) ∈ Fin ↔ 𝐸 ∈ Fin)) |
20 | 7, 16, 19 | 3bitr3rd 309 | . . 3 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ∈ Fin ↔ {𝑝 ∈ (Edg‘〈𝑉, 𝐸〉) ∣ 𝑁 ∉ 𝑝} ∈ Fin)) |
21 | 20 | biimprd 247 | . 2 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ({𝑝 ∈ (Edg‘〈𝑉, 𝐸〉) ∣ 𝑁 ∉ 𝑝} ∈ Fin → 𝐸 ∈ Fin)) |
22 | 1, 21 | biimtrid 241 | 1 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (( I ↾ {𝑝 ∈ (Edg‘〈𝑉, 𝐸〉) ∣ 𝑁 ∉ 𝑝}) ∈ Fin → 𝐸 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2105 ∉ wnel 3046 {crab 3403 〈cop 4578 I cid 5511 ↾ cres 5616 ‘cfv 6473 Fincfn 8796 Vtxcvtx 27596 iEdgciedg 27597 Edgcedg 27647 USGraphcusgr 27749 FinUSGraphcfusgr 27913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-2o 8360 df-oadd 8363 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-dju 9750 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-2 12129 df-n0 12327 df-xnn0 12399 df-z 12413 df-uz 12676 df-fz 13333 df-hash 14138 df-vtx 27598 df-iedg 27599 df-edg 27648 df-upgr 27682 df-uspgr 27750 df-usgr 27751 df-fusgr 27914 |
This theorem is referenced by: fusgrfis 27927 |
Copyright terms: Public domain | W3C validator |