MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrfisstep Structured version   Visualization version   GIF version

Theorem fusgrfisstep 26633
Description: Induction step in fusgrfis 26634: In a finite simple graph, the number of edges is finite if the number of edges not containing one of the vertices is finite. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 23-Oct-2020.)
Assertion
Ref Expression
fusgrfisstep (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → (( I ↾ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝}) ∈ Fin → 𝐸 ∈ Fin))
Distinct variable groups:   𝐸,𝑝   𝑁,𝑝   𝑉,𝑝
Allowed substitution hints:   𝑋(𝑝)   𝑌(𝑝)

Proof of Theorem fusgrfisstep
StepHypRef Expression
1 residfi 8522 . 2 (( I ↾ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝}) ∈ Fin ↔ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝} ∈ Fin)
2 fusgrusgr 26626 . . . . . 6 (⟨𝑉, 𝐸⟩ ∈ FinUSGraph → ⟨𝑉, 𝐸⟩ ∈ USGraph)
3 eqid 2825 . . . . . . 7 (iEdg‘⟨𝑉, 𝐸⟩) = (iEdg‘⟨𝑉, 𝐸⟩)
4 eqid 2825 . . . . . . 7 (Edg‘⟨𝑉, 𝐸⟩) = (Edg‘⟨𝑉, 𝐸⟩)
53, 4usgredgffibi 26628 . . . . . 6 (⟨𝑉, 𝐸⟩ ∈ USGraph → ((Edg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ (iEdg‘⟨𝑉, 𝐸⟩) ∈ Fin))
62, 5syl 17 . . . . 5 (⟨𝑉, 𝐸⟩ ∈ FinUSGraph → ((Edg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ (iEdg‘⟨𝑉, 𝐸⟩) ∈ Fin))
763ad2ant2 1168 . . . 4 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → ((Edg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ (iEdg‘⟨𝑉, 𝐸⟩) ∈ Fin))
8 simp2 1171 . . . . 5 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → ⟨𝑉, 𝐸⟩ ∈ FinUSGraph)
9 opvtxfv 26309 . . . . . . . . 9 ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
109eqcomd 2831 . . . . . . . 8 ((𝑉𝑋𝐸𝑌) → 𝑉 = (Vtx‘⟨𝑉, 𝐸⟩))
1110eleq2d 2892 . . . . . . 7 ((𝑉𝑋𝐸𝑌) → (𝑁𝑉𝑁 ∈ (Vtx‘⟨𝑉, 𝐸⟩)))
1211biimpa 470 . . . . . 6 (((𝑉𝑋𝐸𝑌) ∧ 𝑁𝑉) → 𝑁 ∈ (Vtx‘⟨𝑉, 𝐸⟩))
13123adant2 1165 . . . . 5 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → 𝑁 ∈ (Vtx‘⟨𝑉, 𝐸⟩))
14 eqid 2825 . . . . . 6 (Vtx‘⟨𝑉, 𝐸⟩) = (Vtx‘⟨𝑉, 𝐸⟩)
15 eqid 2825 . . . . . 6 {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝} = {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝}
1614, 4, 15usgrfilem 26631 . . . . 5 ((⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁 ∈ (Vtx‘⟨𝑉, 𝐸⟩)) → ((Edg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝} ∈ Fin))
178, 13, 16syl2anc 579 . . . 4 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → ((Edg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝} ∈ Fin))
18 opiedgfv 26312 . . . . . 6 ((𝑉𝑋𝐸𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
1918eleq1d 2891 . . . . 5 ((𝑉𝑋𝐸𝑌) → ((iEdg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ 𝐸 ∈ Fin))
20193ad2ant1 1167 . . . 4 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → ((iEdg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ 𝐸 ∈ Fin))
217, 17, 203bitr3rd 302 . . 3 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → (𝐸 ∈ Fin ↔ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝} ∈ Fin))
2221biimprd 240 . 2 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → ({𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝} ∈ Fin → 𝐸 ∈ Fin))
231, 22syl5bi 234 1 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → (( I ↾ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝}) ∈ Fin → 𝐸 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111  wcel 2164  wnel 3102  {crab 3121  cop 4405   I cid 5251  cres 5348  cfv 6127  Fincfn 8228  Vtxcvtx 26301  iEdgciedg 26302  Edgcedg 26352  USGraphcusgr 26455  FinUSGraphcfusgr 26620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-card 9085  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-n0 11626  df-xnn0 11698  df-z 11712  df-uz 11976  df-fz 12627  df-hash 13418  df-vtx 26303  df-iedg 26304  df-edg 26353  df-upgr 26387  df-uspgr 26456  df-usgr 26457  df-fusgr 26621
This theorem is referenced by:  fusgrfis  26634
  Copyright terms: Public domain W3C validator