| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtcld3 | Structured version Visualization version GIF version | ||
| Description: A closed interval [𝐴, 𝐵] is closed. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| ordttopon.3 | ⊢ 𝑋 = dom 𝑅 |
| Ref | Expression |
|---|---|
| ordtcld3 | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ (𝐴𝑅𝑥 ∧ 𝑥𝑅𝐵)} ∈ (Clsd‘(ordTop‘𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inrab 4282 | . 2 ⊢ ({𝑥 ∈ 𝑋 ∣ 𝐴𝑅𝑥} ∩ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝐵}) = {𝑥 ∈ 𝑋 ∣ (𝐴𝑅𝑥 ∧ 𝑥𝑅𝐵)} | |
| 2 | ordttopon.3 | . . . . 5 ⊢ 𝑋 = dom 𝑅 | |
| 3 | 2 | ordtcld2 23092 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝐴𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅))) |
| 4 | 3 | 3adant3 1132 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝐴𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅))) |
| 5 | 2 | ordtcld1 23091 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝐵} ∈ (Clsd‘(ordTop‘𝑅))) |
| 6 | incld 22937 | . . 3 ⊢ (({𝑥 ∈ 𝑋 ∣ 𝐴𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)) ∧ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝐵} ∈ (Clsd‘(ordTop‘𝑅))) → ({𝑥 ∈ 𝑋 ∣ 𝐴𝑅𝑥} ∩ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝐵}) ∈ (Clsd‘(ordTop‘𝑅))) | |
| 7 | 4, 5, 6 | 3imp3i2an 1346 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ({𝑥 ∈ 𝑋 ∣ 𝐴𝑅𝑥} ∩ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝐵}) ∈ (Clsd‘(ordTop‘𝑅))) |
| 8 | 1, 7 | eqeltrrid 2834 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ (𝐴𝑅𝑥 ∧ 𝑥𝑅𝐵)} ∈ (Clsd‘(ordTop‘𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3408 ∩ cin 3916 class class class wbr 5110 dom cdm 5641 ‘cfv 6514 ordTopcordt 17469 Clsdccld 22910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-2o 8438 df-en 8922 df-fin 8925 df-fi 9369 df-topgen 17413 df-ordt 17471 df-top 22788 df-topon 22805 df-bases 22840 df-cld 22913 |
| This theorem is referenced by: iccordt 23108 ordtt1 23273 |
| Copyright terms: Public domain | W3C validator |