MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtcld3 Structured version   Visualization version   GIF version

Theorem ordtcld3 23147
Description: A closed interval [𝐴, 𝐵] is closed. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3 𝑋 = dom 𝑅
Assertion
Ref Expression
ordtcld3 ((𝑅𝑉𝐴𝑋𝐵𝑋) → {𝑥𝑋 ∣ (𝐴𝑅𝑥𝑥𝑅𝐵)} ∈ (Clsd‘(ordTop‘𝑅)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉   𝑥,𝑋

Proof of Theorem ordtcld3
StepHypRef Expression
1 inrab 4305 . 2 ({𝑥𝑋𝐴𝑅𝑥} ∩ {𝑥𝑋𝑥𝑅𝐵}) = {𝑥𝑋 ∣ (𝐴𝑅𝑥𝑥𝑅𝐵)}
2 ordttopon.3 . . . . 5 𝑋 = dom 𝑅
32ordtcld2 23146 . . . 4 ((𝑅𝑉𝐴𝑋) → {𝑥𝑋𝐴𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)))
433adant3 1129 . . 3 ((𝑅𝑉𝐴𝑋𝐵𝑋) → {𝑥𝑋𝐴𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)))
52ordtcld1 23145 . . 3 ((𝑅𝑉𝐵𝑋) → {𝑥𝑋𝑥𝑅𝐵} ∈ (Clsd‘(ordTop‘𝑅)))
6 incld 22991 . . 3 (({𝑥𝑋𝐴𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)) ∧ {𝑥𝑋𝑥𝑅𝐵} ∈ (Clsd‘(ordTop‘𝑅))) → ({𝑥𝑋𝐴𝑅𝑥} ∩ {𝑥𝑋𝑥𝑅𝐵}) ∈ (Clsd‘(ordTop‘𝑅)))
74, 5, 63imp3i2an 1342 . 2 ((𝑅𝑉𝐴𝑋𝐵𝑋) → ({𝑥𝑋𝐴𝑅𝑥} ∩ {𝑥𝑋𝑥𝑅𝐵}) ∈ (Clsd‘(ordTop‘𝑅)))
81, 7eqeltrrid 2830 1 ((𝑅𝑉𝐴𝑋𝐵𝑋) → {𝑥𝑋 ∣ (𝐴𝑅𝑥𝑥𝑅𝐵)} ∈ (Clsd‘(ordTop‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  {crab 3418  cin 3943   class class class wbr 5149  dom cdm 5678  cfv 6549  ordTopcordt 17484  Clsdccld 22964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-om 7872  df-1o 8487  df-er 8725  df-en 8965  df-fin 8968  df-fi 9436  df-topgen 17428  df-ordt 17486  df-top 22840  df-topon 22857  df-bases 22893  df-cld 22967
This theorem is referenced by:  iccordt  23162  ordtt1  23327
  Copyright terms: Public domain W3C validator