![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtcld3 | Structured version Visualization version GIF version |
Description: A closed interval [𝐴, 𝐵] is closed. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
ordttopon.3 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
ordtcld3 | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ (𝐴𝑅𝑥 ∧ 𝑥𝑅𝐵)} ∈ (Clsd‘(ordTop‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inrab 4305 | . 2 ⊢ ({𝑥 ∈ 𝑋 ∣ 𝐴𝑅𝑥} ∩ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝐵}) = {𝑥 ∈ 𝑋 ∣ (𝐴𝑅𝑥 ∧ 𝑥𝑅𝐵)} | |
2 | ordttopon.3 | . . . . 5 ⊢ 𝑋 = dom 𝑅 | |
3 | 2 | ordtcld2 23146 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝐴𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅))) |
4 | 3 | 3adant3 1129 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝐴𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅))) |
5 | 2 | ordtcld1 23145 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝐵} ∈ (Clsd‘(ordTop‘𝑅))) |
6 | incld 22991 | . . 3 ⊢ (({𝑥 ∈ 𝑋 ∣ 𝐴𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)) ∧ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝐵} ∈ (Clsd‘(ordTop‘𝑅))) → ({𝑥 ∈ 𝑋 ∣ 𝐴𝑅𝑥} ∩ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝐵}) ∈ (Clsd‘(ordTop‘𝑅))) | |
7 | 4, 5, 6 | 3imp3i2an 1342 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ({𝑥 ∈ 𝑋 ∣ 𝐴𝑅𝑥} ∩ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝐵}) ∈ (Clsd‘(ordTop‘𝑅))) |
8 | 1, 7 | eqeltrrid 2830 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ (𝐴𝑅𝑥 ∧ 𝑥𝑅𝐵)} ∈ (Clsd‘(ordTop‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {crab 3418 ∩ cin 3943 class class class wbr 5149 dom cdm 5678 ‘cfv 6549 ordTopcordt 17484 Clsdccld 22964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-om 7872 df-1o 8487 df-er 8725 df-en 8965 df-fin 8968 df-fi 9436 df-topgen 17428 df-ordt 17486 df-top 22840 df-topon 22857 df-bases 22893 df-cld 22967 |
This theorem is referenced by: iccordt 23162 ordtt1 23327 |
Copyright terms: Public domain | W3C validator |