Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswpfx Structured version   Visualization version   GIF version

Theorem repswpfx 13901
 Description: A prefix of a repeated symbol word is a repeated symbol word. (Contributed by AV, 11-May-2020.)
Assertion
Ref Expression
repswpfx ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿))

Proof of Theorem repswpfx
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 repsw 13891 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
213adant3 1168 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
3 repswlen 13892 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
43eqcomd 2831 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0) → 𝑁 = (♯‘(𝑆 repeatS 𝑁)))
54oveq2d 6921 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0) → (0...𝑁) = (0...(♯‘(𝑆 repeatS 𝑁))))
65eleq2d 2892 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝐿 ∈ (0...𝑁) ↔ 𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁)))))
76biimp3a 1599 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → 𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁))))
8 pfxlen 13762 . . . 4 (((𝑆 repeatS 𝑁) ∈ Word 𝑉𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁)))) → (♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = 𝐿)
92, 7, 8syl2anc 581 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = 𝐿)
10 elfznn0 12727 . . . . . 6 (𝐿 ∈ (0...𝑁) → 𝐿 ∈ ℕ0)
1110anim2i 612 . . . . 5 ((𝑆𝑉𝐿 ∈ (0...𝑁)) → (𝑆𝑉𝐿 ∈ ℕ0))
12113adant2 1167 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (𝑆𝑉𝐿 ∈ ℕ0))
13 repswlen 13892 . . . 4 ((𝑆𝑉𝐿 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝐿)) = 𝐿)
1412, 13syl 17 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (♯‘(𝑆 repeatS 𝐿)) = 𝐿)
159, 14eqtr4d 2864 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = (♯‘(𝑆 repeatS 𝐿)))
16 simpl1 1248 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑆𝑉)
17 simpl2 1250 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑁 ∈ ℕ0)
18 elfzuz3 12632 . . . . . . . . 9 (𝐿 ∈ (0...𝑁) → 𝑁 ∈ (ℤ𝐿))
19183ad2ant3 1171 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ𝐿))
209fveq2d 6437 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (ℤ‘(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) = (ℤ𝐿))
2119, 20eleqtrrd 2909 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ‘(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))))
22 fzoss2 12791 . . . . . . 7 (𝑁 ∈ (ℤ‘(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) → (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) ⊆ (0..^𝑁))
2321, 22syl 17 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) ⊆ (0..^𝑁))
2423sselda 3827 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑖 ∈ (0..^𝑁))
25 repswsymb 13890 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0𝑖 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑖) = 𝑆)
2616, 17, 24, 25syl3anc 1496 . . . 4 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → ((𝑆 repeatS 𝑁)‘𝑖) = 𝑆)
272adantr 474 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
287adantr 474 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁))))
299oveq2d 6921 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) = (0..^𝐿))
3029eleq2d 2892 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) ↔ 𝑖 ∈ (0..^𝐿)))
3130biimpa 470 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑖 ∈ (0..^𝐿))
32 pfxfv 13761 . . . . 5 (((𝑆 repeatS 𝑁) ∈ Word 𝑉𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁))) ∧ 𝑖 ∈ (0..^𝐿)) → (((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝑁)‘𝑖))
3327, 28, 31, 32syl3anc 1496 . . . 4 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → (((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝑁)‘𝑖))
34103ad2ant3 1171 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → 𝐿 ∈ ℕ0)
3534adantr 474 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝐿 ∈ ℕ0)
36 repswsymb 13890 . . . . 5 ((𝑆𝑉𝐿 ∈ ℕ0𝑖 ∈ (0..^𝐿)) → ((𝑆 repeatS 𝐿)‘𝑖) = 𝑆)
3716, 35, 31, 36syl3anc 1496 . . . 4 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → ((𝑆 repeatS 𝐿)‘𝑖) = 𝑆)
3826, 33, 373eqtr4d 2871 . . 3 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → (((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖))
3938ralrimiva 3175 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → ∀𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))(((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖))
40 pfxcl 13756 . . . 4 ((𝑆 repeatS 𝑁) ∈ Word 𝑉 → ((𝑆 repeatS 𝑁) prefix 𝐿) ∈ Word 𝑉)
412, 40syl 17 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix 𝐿) ∈ Word 𝑉)
42 repsw 13891 . . . 4 ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 repeatS 𝐿) ∈ Word 𝑉)
4312, 42syl 17 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (𝑆 repeatS 𝐿) ∈ Word 𝑉)
44 eqwrd 13617 . . 3 ((((𝑆 repeatS 𝑁) prefix 𝐿) ∈ Word 𝑉 ∧ (𝑆 repeatS 𝐿) ∈ Word 𝑉) → (((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿) ↔ ((♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = (♯‘(𝑆 repeatS 𝐿)) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))(((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖))))
4541, 43, 44syl2anc 581 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿) ↔ ((♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = (♯‘(𝑆 repeatS 𝐿)) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))(((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖))))
4615, 39, 45mpbir2and 706 1 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∧ w3a 1113   = wceq 1658   ∈ wcel 2166  ∀wral 3117   ⊆ wss 3798  ‘cfv 6123  (class class class)co 6905  0cc0 10252  ℕ0cn0 11618  ℤ≥cuz 11968  ...cfz 12619  ..^cfzo 12760  ♯chash 13410  Word cword 13574   prefix cpfx 13749   repeatS creps 13884 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-hash 13411  df-word 13575  df-substr 13701  df-pfx 13750  df-reps 13885 This theorem is referenced by:  repswcshw  13933
 Copyright terms: Public domain W3C validator