MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswpfx Structured version   Visualization version   GIF version

Theorem repswpfx 14820
Description: A prefix of a repeated symbol word is a repeated symbol word. (Contributed by AV, 11-May-2020.)
Assertion
Ref Expression
repswpfx ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿))

Proof of Theorem repswpfx
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 repsw 14810 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
213adant3 1131 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
3 repswlen 14811 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
43oveq2d 7447 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0) → (0...(♯‘(𝑆 repeatS 𝑁))) = (0...𝑁))
54eleq2d 2825 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁))) ↔ 𝐿 ∈ (0...𝑁)))
65biimp3ar 1469 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → 𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁))))
7 pfxlen 14718 . . . 4 (((𝑆 repeatS 𝑁) ∈ Word 𝑉𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁)))) → (♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = 𝐿)
82, 6, 7syl2anc 584 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = 𝐿)
9 elfznn0 13657 . . . . 5 (𝐿 ∈ (0...𝑁) → 𝐿 ∈ ℕ0)
10 repswlen 14811 . . . . 5 ((𝑆𝑉𝐿 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝐿)) = 𝐿)
119, 10sylan2 593 . . . 4 ((𝑆𝑉𝐿 ∈ (0...𝑁)) → (♯‘(𝑆 repeatS 𝐿)) = 𝐿)
12113adant2 1130 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (♯‘(𝑆 repeatS 𝐿)) = 𝐿)
138, 12eqtr4d 2778 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = (♯‘(𝑆 repeatS 𝐿)))
14 simpl1 1190 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑆𝑉)
15 simpl2 1191 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑁 ∈ ℕ0)
16 elfzuz3 13558 . . . . . . . . 9 (𝐿 ∈ (0...𝑁) → 𝑁 ∈ (ℤ𝐿))
17163ad2ant3 1134 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ𝐿))
188fveq2d 6911 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (ℤ‘(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) = (ℤ𝐿))
1917, 18eleqtrrd 2842 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ‘(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))))
20 fzoss2 13724 . . . . . . 7 (𝑁 ∈ (ℤ‘(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) → (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) ⊆ (0..^𝑁))
2119, 20syl 17 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) ⊆ (0..^𝑁))
2221sselda 3995 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑖 ∈ (0..^𝑁))
23 repswsymb 14809 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0𝑖 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑖) = 𝑆)
2414, 15, 22, 23syl3anc 1370 . . . 4 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → ((𝑆 repeatS 𝑁)‘𝑖) = 𝑆)
252adantr 480 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
266adantr 480 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁))))
278oveq2d 7447 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) = (0..^𝐿))
2827eleq2d 2825 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) ↔ 𝑖 ∈ (0..^𝐿)))
2928biimpa 476 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑖 ∈ (0..^𝐿))
30 pfxfv 14717 . . . . 5 (((𝑆 repeatS 𝑁) ∈ Word 𝑉𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁))) ∧ 𝑖 ∈ (0..^𝐿)) → (((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝑁)‘𝑖))
3125, 26, 29, 30syl3anc 1370 . . . 4 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → (((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝑁)‘𝑖))
3293ad2ant3 1134 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → 𝐿 ∈ ℕ0)
3332adantr 480 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝐿 ∈ ℕ0)
34 repswsymb 14809 . . . . 5 ((𝑆𝑉𝐿 ∈ ℕ0𝑖 ∈ (0..^𝐿)) → ((𝑆 repeatS 𝐿)‘𝑖) = 𝑆)
3514, 33, 29, 34syl3anc 1370 . . . 4 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → ((𝑆 repeatS 𝐿)‘𝑖) = 𝑆)
3624, 31, 353eqtr4d 2785 . . 3 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → (((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖))
3736ralrimiva 3144 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → ∀𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))(((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖))
38 pfxcl 14712 . . . 4 ((𝑆 repeatS 𝑁) ∈ Word 𝑉 → ((𝑆 repeatS 𝑁) prefix 𝐿) ∈ Word 𝑉)
392, 38syl 17 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix 𝐿) ∈ Word 𝑉)
40 repsw 14810 . . . 4 ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 repeatS 𝐿) ∈ Word 𝑉)
419, 40sylan2 593 . . 3 ((𝑆𝑉𝐿 ∈ (0...𝑁)) → (𝑆 repeatS 𝐿) ∈ Word 𝑉)
42 eqwrd 14592 . . 3 ((((𝑆 repeatS 𝑁) prefix 𝐿) ∈ Word 𝑉 ∧ (𝑆 repeatS 𝐿) ∈ Word 𝑉) → (((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿) ↔ ((♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = (♯‘(𝑆 repeatS 𝐿)) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))(((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖))))
4339, 41, 423imp3i2an 1344 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿) ↔ ((♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = (♯‘(𝑆 repeatS 𝐿)) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))(((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖))))
4413, 37, 43mpbir2and 713 1 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wss 3963  cfv 6563  (class class class)co 7431  0cc0 11153  0cn0 12524  cuz 12876  ...cfz 13544  ..^cfzo 13691  chash 14366  Word cword 14549   prefix cpfx 14705   repeatS creps 14803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-substr 14676  df-pfx 14706  df-reps 14804
This theorem is referenced by:  repswcshw  14847
  Copyright terms: Public domain W3C validator