MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswpfx Structured version   Visualization version   GIF version

Theorem repswpfx 14139
Description: A prefix of a repeated symbol word is a repeated symbol word. (Contributed by AV, 11-May-2020.)
Assertion
Ref Expression
repswpfx ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿))

Proof of Theorem repswpfx
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 repsw 14129 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
213adant3 1126 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
3 repswlen 14130 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
43oveq2d 7164 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0) → (0...(♯‘(𝑆 repeatS 𝑁))) = (0...𝑁))
54eleq2d 2896 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁))) ↔ 𝐿 ∈ (0...𝑁)))
65biimp3ar 1463 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → 𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁))))
7 pfxlen 14037 . . . 4 (((𝑆 repeatS 𝑁) ∈ Word 𝑉𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁)))) → (♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = 𝐿)
82, 6, 7syl2anc 586 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = 𝐿)
9 elfznn0 12992 . . . . 5 (𝐿 ∈ (0...𝑁) → 𝐿 ∈ ℕ0)
10 repswlen 14130 . . . . 5 ((𝑆𝑉𝐿 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝐿)) = 𝐿)
119, 10sylan2 594 . . . 4 ((𝑆𝑉𝐿 ∈ (0...𝑁)) → (♯‘(𝑆 repeatS 𝐿)) = 𝐿)
12113adant2 1125 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (♯‘(𝑆 repeatS 𝐿)) = 𝐿)
138, 12eqtr4d 2857 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = (♯‘(𝑆 repeatS 𝐿)))
14 simpl1 1185 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑆𝑉)
15 simpl2 1186 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑁 ∈ ℕ0)
16 elfzuz3 12897 . . . . . . . . 9 (𝐿 ∈ (0...𝑁) → 𝑁 ∈ (ℤ𝐿))
17163ad2ant3 1129 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ𝐿))
188fveq2d 6667 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (ℤ‘(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) = (ℤ𝐿))
1917, 18eleqtrrd 2914 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ‘(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))))
20 fzoss2 13057 . . . . . . 7 (𝑁 ∈ (ℤ‘(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) → (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) ⊆ (0..^𝑁))
2119, 20syl 17 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) ⊆ (0..^𝑁))
2221sselda 3965 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑖 ∈ (0..^𝑁))
23 repswsymb 14128 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0𝑖 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑖) = 𝑆)
2414, 15, 22, 23syl3anc 1365 . . . 4 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → ((𝑆 repeatS 𝑁)‘𝑖) = 𝑆)
252adantr 483 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
266adantr 483 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁))))
278oveq2d 7164 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) = (0..^𝐿))
2827eleq2d 2896 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) ↔ 𝑖 ∈ (0..^𝐿)))
2928biimpa 479 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑖 ∈ (0..^𝐿))
30 pfxfv 14036 . . . . 5 (((𝑆 repeatS 𝑁) ∈ Word 𝑉𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁))) ∧ 𝑖 ∈ (0..^𝐿)) → (((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝑁)‘𝑖))
3125, 26, 29, 30syl3anc 1365 . . . 4 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → (((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝑁)‘𝑖))
3293ad2ant3 1129 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → 𝐿 ∈ ℕ0)
3332adantr 483 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝐿 ∈ ℕ0)
34 repswsymb 14128 . . . . 5 ((𝑆𝑉𝐿 ∈ ℕ0𝑖 ∈ (0..^𝐿)) → ((𝑆 repeatS 𝐿)‘𝑖) = 𝑆)
3514, 33, 29, 34syl3anc 1365 . . . 4 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → ((𝑆 repeatS 𝐿)‘𝑖) = 𝑆)
3624, 31, 353eqtr4d 2864 . . 3 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → (((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖))
3736ralrimiva 3180 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → ∀𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))(((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖))
38 pfxcl 14031 . . . 4 ((𝑆 repeatS 𝑁) ∈ Word 𝑉 → ((𝑆 repeatS 𝑁) prefix 𝐿) ∈ Word 𝑉)
392, 38syl 17 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix 𝐿) ∈ Word 𝑉)
40 repsw 14129 . . . 4 ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 repeatS 𝐿) ∈ Word 𝑉)
419, 40sylan2 594 . . 3 ((𝑆𝑉𝐿 ∈ (0...𝑁)) → (𝑆 repeatS 𝐿) ∈ Word 𝑉)
42 eqwrd 13901 . . 3 ((((𝑆 repeatS 𝑁) prefix 𝐿) ∈ Word 𝑉 ∧ (𝑆 repeatS 𝐿) ∈ Word 𝑉) → (((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿) ↔ ((♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = (♯‘(𝑆 repeatS 𝐿)) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))(((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖))))
4339, 41, 423imp3i2an 1339 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿) ↔ ((♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = (♯‘(𝑆 repeatS 𝐿)) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))(((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖))))
4413, 37, 43mpbir2and 711 1 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1081   = wceq 1530  wcel 2107  wral 3136  wss 3934  cfv 6348  (class class class)co 7148  0cc0 10529  0cn0 11889  cuz 12235  ...cfz 12884  ..^cfzo 13025  chash 13682  Word cword 13853   prefix cpfx 14024   repeatS creps 14122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-hash 13683  df-word 13854  df-substr 13995  df-pfx 14025  df-reps 14123
This theorem is referenced by:  repswcshw  14166
  Copyright terms: Public domain W3C validator