MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswpfx Structured version   Visualization version   GIF version

Theorem repswpfx 14694
Description: A prefix of a repeated symbol word is a repeated symbol word. (Contributed by AV, 11-May-2020.)
Assertion
Ref Expression
repswpfx ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿))

Proof of Theorem repswpfx
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 repsw 14684 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
213adant3 1132 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
3 repswlen 14685 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
43oveq2d 7368 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0) → (0...(♯‘(𝑆 repeatS 𝑁))) = (0...𝑁))
54eleq2d 2819 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁))) ↔ 𝐿 ∈ (0...𝑁)))
65biimp3ar 1472 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → 𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁))))
7 pfxlen 14593 . . . 4 (((𝑆 repeatS 𝑁) ∈ Word 𝑉𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁)))) → (♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = 𝐿)
82, 6, 7syl2anc 584 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = 𝐿)
9 elfznn0 13522 . . . . 5 (𝐿 ∈ (0...𝑁) → 𝐿 ∈ ℕ0)
10 repswlen 14685 . . . . 5 ((𝑆𝑉𝐿 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝐿)) = 𝐿)
119, 10sylan2 593 . . . 4 ((𝑆𝑉𝐿 ∈ (0...𝑁)) → (♯‘(𝑆 repeatS 𝐿)) = 𝐿)
12113adant2 1131 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (♯‘(𝑆 repeatS 𝐿)) = 𝐿)
138, 12eqtr4d 2771 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = (♯‘(𝑆 repeatS 𝐿)))
14 simpl1 1192 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑆𝑉)
15 simpl2 1193 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑁 ∈ ℕ0)
16 elfzuz3 13423 . . . . . . . . 9 (𝐿 ∈ (0...𝑁) → 𝑁 ∈ (ℤ𝐿))
17163ad2ant3 1135 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ𝐿))
188fveq2d 6832 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (ℤ‘(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) = (ℤ𝐿))
1917, 18eleqtrrd 2836 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ‘(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))))
20 fzoss2 13589 . . . . . . 7 (𝑁 ∈ (ℤ‘(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) → (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) ⊆ (0..^𝑁))
2119, 20syl 17 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) ⊆ (0..^𝑁))
2221sselda 3930 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑖 ∈ (0..^𝑁))
23 repswsymb 14683 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0𝑖 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑖) = 𝑆)
2414, 15, 22, 23syl3anc 1373 . . . 4 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → ((𝑆 repeatS 𝑁)‘𝑖) = 𝑆)
252adantr 480 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
266adantr 480 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁))))
278oveq2d 7368 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) = (0..^𝐿))
2827eleq2d 2819 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) ↔ 𝑖 ∈ (0..^𝐿)))
2928biimpa 476 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑖 ∈ (0..^𝐿))
30 pfxfv 14592 . . . . 5 (((𝑆 repeatS 𝑁) ∈ Word 𝑉𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁))) ∧ 𝑖 ∈ (0..^𝐿)) → (((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝑁)‘𝑖))
3125, 26, 29, 30syl3anc 1373 . . . 4 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → (((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝑁)‘𝑖))
3293ad2ant3 1135 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → 𝐿 ∈ ℕ0)
3332adantr 480 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝐿 ∈ ℕ0)
34 repswsymb 14683 . . . . 5 ((𝑆𝑉𝐿 ∈ ℕ0𝑖 ∈ (0..^𝐿)) → ((𝑆 repeatS 𝐿)‘𝑖) = 𝑆)
3514, 33, 29, 34syl3anc 1373 . . . 4 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → ((𝑆 repeatS 𝐿)‘𝑖) = 𝑆)
3624, 31, 353eqtr4d 2778 . . 3 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → (((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖))
3736ralrimiva 3125 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → ∀𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))(((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖))
38 pfxcl 14587 . . . 4 ((𝑆 repeatS 𝑁) ∈ Word 𝑉 → ((𝑆 repeatS 𝑁) prefix 𝐿) ∈ Word 𝑉)
392, 38syl 17 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix 𝐿) ∈ Word 𝑉)
40 repsw 14684 . . . 4 ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 repeatS 𝐿) ∈ Word 𝑉)
419, 40sylan2 593 . . 3 ((𝑆𝑉𝐿 ∈ (0...𝑁)) → (𝑆 repeatS 𝐿) ∈ Word 𝑉)
42 eqwrd 14466 . . 3 ((((𝑆 repeatS 𝑁) prefix 𝐿) ∈ Word 𝑉 ∧ (𝑆 repeatS 𝐿) ∈ Word 𝑉) → (((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿) ↔ ((♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = (♯‘(𝑆 repeatS 𝐿)) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))(((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖))))
4339, 41, 423imp3i2an 1346 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿) ↔ ((♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = (♯‘(𝑆 repeatS 𝐿)) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))(((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖))))
4413, 37, 43mpbir2and 713 1 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wss 3898  cfv 6486  (class class class)co 7352  0cc0 11013  0cn0 12388  cuz 12738  ...cfz 13409  ..^cfzo 13556  chash 14239  Word cword 14422   prefix cpfx 14580   repeatS creps 14677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-hash 14240  df-word 14423  df-substr 14551  df-pfx 14581  df-reps 14678
This theorem is referenced by:  repswcshw  14721
  Copyright terms: Public domain W3C validator