MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswpfx Structured version   Visualization version   GIF version

Theorem repswpfx 14248
Description: A prefix of a repeated symbol word is a repeated symbol word. (Contributed by AV, 11-May-2020.)
Assertion
Ref Expression
repswpfx ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿))

Proof of Theorem repswpfx
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 repsw 14238 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
213adant3 1133 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
3 repswlen 14239 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
43oveq2d 7198 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0) → (0...(♯‘(𝑆 repeatS 𝑁))) = (0...𝑁))
54eleq2d 2819 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁))) ↔ 𝐿 ∈ (0...𝑁)))
65biimp3ar 1471 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → 𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁))))
7 pfxlen 14146 . . . 4 (((𝑆 repeatS 𝑁) ∈ Word 𝑉𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁)))) → (♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = 𝐿)
82, 6, 7syl2anc 587 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = 𝐿)
9 elfznn0 13103 . . . . 5 (𝐿 ∈ (0...𝑁) → 𝐿 ∈ ℕ0)
10 repswlen 14239 . . . . 5 ((𝑆𝑉𝐿 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝐿)) = 𝐿)
119, 10sylan2 596 . . . 4 ((𝑆𝑉𝐿 ∈ (0...𝑁)) → (♯‘(𝑆 repeatS 𝐿)) = 𝐿)
12113adant2 1132 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (♯‘(𝑆 repeatS 𝐿)) = 𝐿)
138, 12eqtr4d 2777 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = (♯‘(𝑆 repeatS 𝐿)))
14 simpl1 1192 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑆𝑉)
15 simpl2 1193 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑁 ∈ ℕ0)
16 elfzuz3 13007 . . . . . . . . 9 (𝐿 ∈ (0...𝑁) → 𝑁 ∈ (ℤ𝐿))
17163ad2ant3 1136 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ𝐿))
188fveq2d 6690 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (ℤ‘(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) = (ℤ𝐿))
1917, 18eleqtrrd 2837 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ‘(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))))
20 fzoss2 13168 . . . . . . 7 (𝑁 ∈ (ℤ‘(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) → (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) ⊆ (0..^𝑁))
2119, 20syl 17 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) ⊆ (0..^𝑁))
2221sselda 3887 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑖 ∈ (0..^𝑁))
23 repswsymb 14237 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0𝑖 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑖) = 𝑆)
2414, 15, 22, 23syl3anc 1372 . . . 4 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → ((𝑆 repeatS 𝑁)‘𝑖) = 𝑆)
252adantr 484 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
266adantr 484 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁))))
278oveq2d 7198 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) = (0..^𝐿))
2827eleq2d 2819 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) ↔ 𝑖 ∈ (0..^𝐿)))
2928biimpa 480 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑖 ∈ (0..^𝐿))
30 pfxfv 14145 . . . . 5 (((𝑆 repeatS 𝑁) ∈ Word 𝑉𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁))) ∧ 𝑖 ∈ (0..^𝐿)) → (((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝑁)‘𝑖))
3125, 26, 29, 30syl3anc 1372 . . . 4 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → (((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝑁)‘𝑖))
3293ad2ant3 1136 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → 𝐿 ∈ ℕ0)
3332adantr 484 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝐿 ∈ ℕ0)
34 repswsymb 14237 . . . . 5 ((𝑆𝑉𝐿 ∈ ℕ0𝑖 ∈ (0..^𝐿)) → ((𝑆 repeatS 𝐿)‘𝑖) = 𝑆)
3514, 33, 29, 34syl3anc 1372 . . . 4 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → ((𝑆 repeatS 𝐿)‘𝑖) = 𝑆)
3624, 31, 353eqtr4d 2784 . . 3 (((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → (((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖))
3736ralrimiva 3097 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → ∀𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))(((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖))
38 pfxcl 14140 . . . 4 ((𝑆 repeatS 𝑁) ∈ Word 𝑉 → ((𝑆 repeatS 𝑁) prefix 𝐿) ∈ Word 𝑉)
392, 38syl 17 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix 𝐿) ∈ Word 𝑉)
40 repsw 14238 . . . 4 ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 repeatS 𝐿) ∈ Word 𝑉)
419, 40sylan2 596 . . 3 ((𝑆𝑉𝐿 ∈ (0...𝑁)) → (𝑆 repeatS 𝐿) ∈ Word 𝑉)
42 eqwrd 14010 . . 3 ((((𝑆 repeatS 𝑁) prefix 𝐿) ∈ Word 𝑉 ∧ (𝑆 repeatS 𝐿) ∈ Word 𝑉) → (((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿) ↔ ((♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = (♯‘(𝑆 repeatS 𝐿)) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))(((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖))))
4339, 41, 423imp3i2an 1346 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → (((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿) ↔ ((♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = (♯‘(𝑆 repeatS 𝐿)) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))(((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖))))
4413, 37, 43mpbir2and 713 1 ((𝑆𝑉𝑁 ∈ ℕ0𝐿 ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3054  wss 3853  cfv 6349  (class class class)co 7182  0cc0 10627  0cn0 11988  cuz 12336  ...cfz 12993  ..^cfzo 13136  chash 13794  Word cword 13967   prefix cpfx 14133   repeatS creps 14231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-om 7612  df-1st 7726  df-2nd 7727  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-1o 8143  df-er 8332  df-en 8568  df-dom 8569  df-sdom 8570  df-fin 8571  df-card 9453  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-nn 11729  df-n0 11989  df-z 12075  df-uz 12337  df-fz 12994  df-fzo 13137  df-hash 13795  df-word 13968  df-substr 14104  df-pfx 14134  df-reps 14232
This theorem is referenced by:  repswcshw  14275
  Copyright terms: Public domain W3C validator