| Step | Hyp | Ref
| Expression |
| 1 | | repsw 14813 |
. . . . 5
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) ∈ Word 𝑉) |
| 2 | 1 | 3adant3 1133 |
. . . 4
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) → (𝑆 repeatS 𝑁) ∈ Word 𝑉) |
| 3 | | repswlen 14814 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) →
(♯‘(𝑆 repeatS
𝑁)) = 𝑁) |
| 4 | 3 | oveq2d 7447 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) →
(0...(♯‘(𝑆
repeatS 𝑁))) = (0...𝑁)) |
| 5 | 4 | eleq2d 2827 |
. . . . 5
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝐿 ∈
(0...(♯‘(𝑆
repeatS 𝑁))) ↔ 𝐿 ∈ (0...𝑁))) |
| 6 | 5 | biimp3ar 1472 |
. . . 4
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) → 𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁)))) |
| 7 | | pfxlen 14721 |
. . . 4
⊢ (((𝑆 repeatS 𝑁) ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁)))) → (♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = 𝐿) |
| 8 | 2, 6, 7 | syl2anc 584 |
. . 3
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) → (♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = 𝐿) |
| 9 | | elfznn0 13660 |
. . . . 5
⊢ (𝐿 ∈ (0...𝑁) → 𝐿 ∈
ℕ0) |
| 10 | | repswlen 14814 |
. . . . 5
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) →
(♯‘(𝑆 repeatS
𝐿)) = 𝐿) |
| 11 | 9, 10 | sylan2 593 |
. . . 4
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ (0...𝑁)) → (♯‘(𝑆 repeatS 𝐿)) = 𝐿) |
| 12 | 11 | 3adant2 1132 |
. . 3
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) → (♯‘(𝑆 repeatS 𝐿)) = 𝐿) |
| 13 | 8, 12 | eqtr4d 2780 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) → (♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = (♯‘(𝑆 repeatS 𝐿))) |
| 14 | | simpl1 1192 |
. . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑆 ∈ 𝑉) |
| 15 | | simpl2 1193 |
. . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑁 ∈
ℕ0) |
| 16 | | elfzuz3 13561 |
. . . . . . . . 9
⊢ (𝐿 ∈ (0...𝑁) → 𝑁 ∈ (ℤ≥‘𝐿)) |
| 17 | 16 | 3ad2ant3 1136 |
. . . . . . . 8
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ≥‘𝐿)) |
| 18 | 8 | fveq2d 6910 |
. . . . . . . 8
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) →
(ℤ≥‘(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) = (ℤ≥‘𝐿)) |
| 19 | 17, 18 | eleqtrrd 2844 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) → 𝑁 ∈
(ℤ≥‘(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) |
| 20 | | fzoss2 13727 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) → (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) ⊆ (0..^𝑁)) |
| 21 | 19, 20 | syl 17 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) → (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) ⊆ (0..^𝑁)) |
| 22 | 21 | sselda 3983 |
. . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑖 ∈ (0..^𝑁)) |
| 23 | | repswsymb 14812 |
. . . . 5
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑖) = 𝑆) |
| 24 | 14, 15, 22, 23 | syl3anc 1373 |
. . . 4
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → ((𝑆 repeatS 𝑁)‘𝑖) = 𝑆) |
| 25 | 2 | adantr 480 |
. . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → (𝑆 repeatS 𝑁) ∈ Word 𝑉) |
| 26 | 6 | adantr 480 |
. . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁)))) |
| 27 | 8 | oveq2d 7447 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) → (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) = (0..^𝐿)) |
| 28 | 27 | eleq2d 2827 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) → (𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿))) ↔ 𝑖 ∈ (0..^𝐿))) |
| 29 | 28 | biimpa 476 |
. . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝑖 ∈ (0..^𝐿)) |
| 30 | | pfxfv 14720 |
. . . . 5
⊢ (((𝑆 repeatS 𝑁) ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘(𝑆 repeatS 𝑁))) ∧ 𝑖 ∈ (0..^𝐿)) → (((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝑁)‘𝑖)) |
| 31 | 25, 26, 29, 30 | syl3anc 1373 |
. . . 4
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → (((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝑁)‘𝑖)) |
| 32 | 9 | 3ad2ant3 1136 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) → 𝐿 ∈
ℕ0) |
| 33 | 32 | adantr 480 |
. . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → 𝐿 ∈
ℕ0) |
| 34 | | repswsymb 14812 |
. . . . 5
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0 ∧ 𝑖 ∈ (0..^𝐿)) → ((𝑆 repeatS 𝐿)‘𝑖) = 𝑆) |
| 35 | 14, 33, 29, 34 | syl3anc 1373 |
. . . 4
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → ((𝑆 repeatS 𝐿)‘𝑖) = 𝑆) |
| 36 | 24, 31, 35 | 3eqtr4d 2787 |
. . 3
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) ∧ 𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))) → (((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖)) |
| 37 | 36 | ralrimiva 3146 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) → ∀𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))(((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖)) |
| 38 | | pfxcl 14715 |
. . . 4
⊢ ((𝑆 repeatS 𝑁) ∈ Word 𝑉 → ((𝑆 repeatS 𝑁) prefix 𝐿) ∈ Word 𝑉) |
| 39 | 2, 38 | syl 17 |
. . 3
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix 𝐿) ∈ Word 𝑉) |
| 40 | | repsw 14813 |
. . . 4
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝑆 repeatS 𝐿) ∈ Word 𝑉) |
| 41 | 9, 40 | sylan2 593 |
. . 3
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ (0...𝑁)) → (𝑆 repeatS 𝐿) ∈ Word 𝑉) |
| 42 | | eqwrd 14595 |
. . 3
⊢ ((((𝑆 repeatS 𝑁) prefix 𝐿) ∈ Word 𝑉 ∧ (𝑆 repeatS 𝐿) ∈ Word 𝑉) → (((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿) ↔ ((♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = (♯‘(𝑆 repeatS 𝐿)) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))(((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖)))) |
| 43 | 39, 41, 42 | 3imp3i2an 1346 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) → (((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿) ↔ ((♯‘((𝑆 repeatS 𝑁) prefix 𝐿)) = (♯‘(𝑆 repeatS 𝐿)) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑆 repeatS 𝑁) prefix 𝐿)))(((𝑆 repeatS 𝑁) prefix 𝐿)‘𝑖) = ((𝑆 repeatS 𝐿)‘𝑖)))) |
| 44 | 13, 37, 43 | mpbir2and 713 |
1
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿)) |