MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrlem5pr Structured version   Visualization version   GIF version

Theorem distrlem5pr 11096
Description: Lemma for distributive law for positive reals. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
distrlem5pr ((𝐴P𝐵P𝐶P) → ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ⊆ (𝐴 ·P (𝐵 +P 𝐶)))

Proof of Theorem distrlem5pr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclpr 11089 . . . . 5 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
213adant3 1132 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐵) ∈ P)
3 mulclpr 11089 . . . 4 ((𝐴P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
4 df-plp 11052 . . . . 5 +P = (𝑥P, 𝑦P ↦ {𝑓 ∣ ∃𝑔𝑥𝑦 𝑓 = (𝑔 +Q )})
5 addclnq 11014 . . . . 5 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
64, 5genpelv 11069 . . . 4 (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → (𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ↔ ∃𝑣 ∈ (𝐴 ·P 𝐵)∃𝑢 ∈ (𝐴 ·P 𝐶)𝑤 = (𝑣 +Q 𝑢)))
72, 3, 63imp3i2an 1345 . . 3 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ↔ ∃𝑣 ∈ (𝐴 ·P 𝐵)∃𝑢 ∈ (𝐴 ·P 𝐶)𝑤 = (𝑣 +Q 𝑢)))
8 df-mp 11053 . . . . . . . 8 ·P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑔𝑤𝑣 𝑥 = (𝑔 ·Q )})
9 mulclnq 11016 . . . . . . . 8 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
108, 9genpelv 11069 . . . . . . 7 ((𝐴P𝐶P) → (𝑢 ∈ (𝐴 ·P 𝐶) ↔ ∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧)))
11103adant2 1131 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑢 ∈ (𝐴 ·P 𝐶) ↔ ∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧)))
1211anbi2d 629 . . . . 5 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (𝐴 ·P 𝐵) ∧ 𝑢 ∈ (𝐴 ·P 𝐶)) ↔ (𝑣 ∈ (𝐴 ·P 𝐵) ∧ ∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧))))
13 df-mp 11053 . . . . . . . . 9 ·P = (𝑤P, 𝑣P ↦ {𝑓 ∣ ∃𝑔𝑤𝑣 𝑓 = (𝑔 ·Q )})
1413, 9genpelv 11069 . . . . . . . 8 ((𝐴P𝐵P) → (𝑣 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦)))
15143adant3 1132 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦)))
16 distrlem4pr 11095 . . . . . . . . . . . . . . 15 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
17 oveq12 7457 . . . . . . . . . . . . . . . . . 18 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑣 +Q 𝑢) = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
1817eqeq2d 2751 . . . . . . . . . . . . . . . . 17 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) ↔ 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
19 eleq1 2832 . . . . . . . . . . . . . . . . 17 (𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
2018, 19biimtrdi 253 . . . . . . . . . . . . . . . 16 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))))
2120imp 406 . . . . . . . . . . . . . . 15 (((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) ∧ 𝑤 = (𝑣 +Q 𝑢)) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
2216, 21syl5ibrcom 247 . . . . . . . . . . . . . 14 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) ∧ 𝑤 = (𝑣 +Q 𝑢)) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))
2322exp4b 430 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶)) → ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
2423com3l 89 . . . . . . . . . . . 12 (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶)) → ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
2524exp4b 430 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐵) → ((𝑓𝐴𝑧𝐶) → (𝑣 = (𝑥 ·Q 𝑦) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))))
2625com23 86 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐵) → (𝑣 = (𝑥 ·Q 𝑦) → ((𝑓𝐴𝑧𝐶) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))))
2726rexlimivv 3207 . . . . . . . . 9 (∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦) → ((𝑓𝐴𝑧𝐶) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)))))))
2827rexlimdvv 3218 . . . . . . . 8 (∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦) → (∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
2928com3r 87 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦) → (∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
3015, 29sylbid 240 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (𝐴 ·P 𝐵) → (∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
3130impd 410 . . . . 5 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (𝐴 ·P 𝐵) ∧ ∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)))))
3212, 31sylbid 240 . . . 4 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (𝐴 ·P 𝐵) ∧ 𝑢 ∈ (𝐴 ·P 𝐶)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)))))
3332rexlimdvv 3218 . . 3 ((𝐴P𝐵P𝐶P) → (∃𝑣 ∈ (𝐴 ·P 𝐵)∃𝑢 ∈ (𝐴 ·P 𝐶)𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))
347, 33sylbid 240 . 2 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))
3534ssrdv 4014 1 ((𝐴P𝐵P𝐶P) → ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ⊆ (𝐴 ·P (𝐵 +P 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  wss 3976  (class class class)co 7448   +Q cplq 10924   ·Q cmq 10925  Pcnp 10928   +P cpp 10930   ·P cmp 10931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527  df-er 8763  df-ni 10941  df-pli 10942  df-mi 10943  df-lti 10944  df-plpq 10977  df-mpq 10978  df-ltpq 10979  df-enq 10980  df-nq 10981  df-erq 10982  df-plq 10983  df-mq 10984  df-1nq 10985  df-rq 10986  df-ltnq 10987  df-np 11050  df-plp 11052  df-mp 11053
This theorem is referenced by:  distrpr  11097
  Copyright terms: Public domain W3C validator