MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrlem5pr Structured version   Visualization version   GIF version

Theorem distrlem5pr 10772
Description: Lemma for distributive law for positive reals. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
distrlem5pr ((𝐴P𝐵P𝐶P) → ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ⊆ (𝐴 ·P (𝐵 +P 𝐶)))

Proof of Theorem distrlem5pr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclpr 10765 . . . . 5 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
213adant3 1131 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐵) ∈ P)
3 mulclpr 10765 . . . 4 ((𝐴P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
4 df-plp 10728 . . . . 5 +P = (𝑥P, 𝑦P ↦ {𝑓 ∣ ∃𝑔𝑥𝑦 𝑓 = (𝑔 +Q )})
5 addclnq 10690 . . . . 5 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
64, 5genpelv 10745 . . . 4 (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → (𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ↔ ∃𝑣 ∈ (𝐴 ·P 𝐵)∃𝑢 ∈ (𝐴 ·P 𝐶)𝑤 = (𝑣 +Q 𝑢)))
72, 3, 63imp3i2an 1344 . . 3 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ↔ ∃𝑣 ∈ (𝐴 ·P 𝐵)∃𝑢 ∈ (𝐴 ·P 𝐶)𝑤 = (𝑣 +Q 𝑢)))
8 df-mp 10729 . . . . . . . 8 ·P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑔𝑤𝑣 𝑥 = (𝑔 ·Q )})
9 mulclnq 10692 . . . . . . . 8 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
108, 9genpelv 10745 . . . . . . 7 ((𝐴P𝐶P) → (𝑢 ∈ (𝐴 ·P 𝐶) ↔ ∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧)))
11103adant2 1130 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑢 ∈ (𝐴 ·P 𝐶) ↔ ∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧)))
1211anbi2d 629 . . . . 5 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (𝐴 ·P 𝐵) ∧ 𝑢 ∈ (𝐴 ·P 𝐶)) ↔ (𝑣 ∈ (𝐴 ·P 𝐵) ∧ ∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧))))
13 df-mp 10729 . . . . . . . . 9 ·P = (𝑤P, 𝑣P ↦ {𝑓 ∣ ∃𝑔𝑤𝑣 𝑓 = (𝑔 ·Q )})
1413, 9genpelv 10745 . . . . . . . 8 ((𝐴P𝐵P) → (𝑣 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦)))
15143adant3 1131 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦)))
16 distrlem4pr 10771 . . . . . . . . . . . . . . 15 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
17 oveq12 7278 . . . . . . . . . . . . . . . . . 18 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑣 +Q 𝑢) = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
1817eqeq2d 2749 . . . . . . . . . . . . . . . . 17 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) ↔ 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
19 eleq1 2826 . . . . . . . . . . . . . . . . 17 (𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
2018, 19syl6bi 252 . . . . . . . . . . . . . . . 16 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))))
2120imp 407 . . . . . . . . . . . . . . 15 (((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) ∧ 𝑤 = (𝑣 +Q 𝑢)) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
2216, 21syl5ibrcom 246 . . . . . . . . . . . . . 14 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) ∧ 𝑤 = (𝑣 +Q 𝑢)) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))
2322exp4b 431 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶)) → ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
2423com3l 89 . . . . . . . . . . . 12 (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶)) → ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
2524exp4b 431 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐵) → ((𝑓𝐴𝑧𝐶) → (𝑣 = (𝑥 ·Q 𝑦) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))))
2625com23 86 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐵) → (𝑣 = (𝑥 ·Q 𝑦) → ((𝑓𝐴𝑧𝐶) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))))
2726rexlimivv 3220 . . . . . . . . 9 (∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦) → ((𝑓𝐴𝑧𝐶) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)))))))
2827rexlimdvv 3221 . . . . . . . 8 (∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦) → (∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
2928com3r 87 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦) → (∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
3015, 29sylbid 239 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (𝐴 ·P 𝐵) → (∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
3130impd 411 . . . . 5 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (𝐴 ·P 𝐵) ∧ ∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)))))
3212, 31sylbid 239 . . . 4 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (𝐴 ·P 𝐵) ∧ 𝑢 ∈ (𝐴 ·P 𝐶)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)))))
3332rexlimdvv 3221 . . 3 ((𝐴P𝐵P𝐶P) → (∃𝑣 ∈ (𝐴 ·P 𝐵)∃𝑢 ∈ (𝐴 ·P 𝐶)𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))
347, 33sylbid 239 . 2 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))
3534ssrdv 3928 1 ((𝐴P𝐵P𝐶P) → ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ⊆ (𝐴 ·P (𝐵 +P 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  wss 3888  (class class class)co 7269   +Q cplq 10600   ·Q cmq 10601  Pcnp 10604   +P cpp 10606   ·P cmp 10607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7580  ax-inf2 9388
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5486  df-eprel 5492  df-po 5500  df-so 5501  df-fr 5541  df-we 5543  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-pred 6197  df-ord 6264  df-on 6265  df-lim 6266  df-suc 6267  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-f1 6433  df-fo 6434  df-f1o 6435  df-fv 6436  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-oadd 8290  df-omul 8291  df-er 8487  df-ni 10617  df-pli 10618  df-mi 10619  df-lti 10620  df-plpq 10653  df-mpq 10654  df-ltpq 10655  df-enq 10656  df-nq 10657  df-erq 10658  df-plq 10659  df-mq 10660  df-1nq 10661  df-rq 10662  df-ltnq 10663  df-np 10726  df-plp 10728  df-mp 10729
This theorem is referenced by:  distrpr  10773
  Copyright terms: Public domain W3C validator