MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrlem5pr Structured version   Visualization version   GIF version

Theorem distrlem5pr 10438
Description: Lemma for distributive law for positive reals. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
distrlem5pr ((𝐴P𝐵P𝐶P) → ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ⊆ (𝐴 ·P (𝐵 +P 𝐶)))

Proof of Theorem distrlem5pr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclpr 10431 . . . . 5 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
213adant3 1129 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐵) ∈ P)
3 mulclpr 10431 . . . 4 ((𝐴P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
4 df-plp 10394 . . . . 5 +P = (𝑥P, 𝑦P ↦ {𝑓 ∣ ∃𝑔𝑥𝑦 𝑓 = (𝑔 +Q )})
5 addclnq 10356 . . . . 5 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
64, 5genpelv 10411 . . . 4 (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → (𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ↔ ∃𝑣 ∈ (𝐴 ·P 𝐵)∃𝑢 ∈ (𝐴 ·P 𝐶)𝑤 = (𝑣 +Q 𝑢)))
72, 3, 63imp3i2an 1342 . . 3 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ↔ ∃𝑣 ∈ (𝐴 ·P 𝐵)∃𝑢 ∈ (𝐴 ·P 𝐶)𝑤 = (𝑣 +Q 𝑢)))
8 df-mp 10395 . . . . . . . 8 ·P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑔𝑤𝑣 𝑥 = (𝑔 ·Q )})
9 mulclnq 10358 . . . . . . . 8 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
108, 9genpelv 10411 . . . . . . 7 ((𝐴P𝐶P) → (𝑢 ∈ (𝐴 ·P 𝐶) ↔ ∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧)))
11103adant2 1128 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑢 ∈ (𝐴 ·P 𝐶) ↔ ∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧)))
1211anbi2d 631 . . . . 5 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (𝐴 ·P 𝐵) ∧ 𝑢 ∈ (𝐴 ·P 𝐶)) ↔ (𝑣 ∈ (𝐴 ·P 𝐵) ∧ ∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧))))
13 df-mp 10395 . . . . . . . . 9 ·P = (𝑤P, 𝑣P ↦ {𝑓 ∣ ∃𝑔𝑤𝑣 𝑓 = (𝑔 ·Q )})
1413, 9genpelv 10411 . . . . . . . 8 ((𝐴P𝐵P) → (𝑣 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦)))
15143adant3 1129 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦)))
16 distrlem4pr 10437 . . . . . . . . . . . . . . 15 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
17 oveq12 7144 . . . . . . . . . . . . . . . . . 18 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑣 +Q 𝑢) = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
1817eqeq2d 2809 . . . . . . . . . . . . . . . . 17 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) ↔ 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
19 eleq1 2877 . . . . . . . . . . . . . . . . 17 (𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
2018, 19syl6bi 256 . . . . . . . . . . . . . . . 16 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))))
2120imp 410 . . . . . . . . . . . . . . 15 (((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) ∧ 𝑤 = (𝑣 +Q 𝑢)) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
2216, 21syl5ibrcom 250 . . . . . . . . . . . . . 14 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) ∧ 𝑤 = (𝑣 +Q 𝑢)) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))
2322exp4b 434 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶)) → ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
2423com3l 89 . . . . . . . . . . . 12 (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶)) → ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
2524exp4b 434 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐵) → ((𝑓𝐴𝑧𝐶) → (𝑣 = (𝑥 ·Q 𝑦) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))))
2625com23 86 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐵) → (𝑣 = (𝑥 ·Q 𝑦) → ((𝑓𝐴𝑧𝐶) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))))
2726rexlimivv 3251 . . . . . . . . 9 (∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦) → ((𝑓𝐴𝑧𝐶) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)))))))
2827rexlimdvv 3252 . . . . . . . 8 (∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦) → (∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
2928com3r 87 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (∃𝑥𝐴𝑦𝐵 𝑣 = (𝑥 ·Q 𝑦) → (∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
3015, 29sylbid 243 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (𝐴 ·P 𝐵) → (∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))))
3130impd 414 . . . . 5 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (𝐴 ·P 𝐵) ∧ ∃𝑓𝐴𝑧𝐶 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)))))
3212, 31sylbid 243 . . . 4 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (𝐴 ·P 𝐵) ∧ 𝑢 ∈ (𝐴 ·P 𝐶)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)))))
3332rexlimdvv 3252 . . 3 ((𝐴P𝐵P𝐶P) → (∃𝑣 ∈ (𝐴 ·P 𝐵)∃𝑢 ∈ (𝐴 ·P 𝐶)𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))
347, 33sylbid 243 . 2 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) → 𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶))))
3534ssrdv 3921 1 ((𝐴P𝐵P𝐶P) → ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ⊆ (𝐴 ·P (𝐵 +P 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107  wss 3881  (class class class)co 7135   +Q cplq 10266   ·Q cmq 10267  Pcnp 10270   +P cpp 10272   ·P cmp 10273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-omul 8090  df-er 8272  df-ni 10283  df-pli 10284  df-mi 10285  df-lti 10286  df-plpq 10319  df-mpq 10320  df-ltpq 10321  df-enq 10322  df-nq 10323  df-erq 10324  df-plq 10325  df-mq 10326  df-1nq 10327  df-rq 10328  df-ltnq 10329  df-np 10392  df-plp 10394  df-mp 10395
This theorem is referenced by:  distrpr  10439
  Copyright terms: Public domain W3C validator