Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  divmul Structured version   Visualization version   GIF version

Theorem divmul 11293
 Description: Relationship between division and multiplication. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 17-Feb-2014.)
Assertion
Ref Expression
divmul ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ (𝐶 · 𝐵) = 𝐴))

Proof of Theorem divmul
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 divval 11292 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) = (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴))
213expb 1114 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 / 𝐶) = (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴))
323adant2 1125 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 / 𝐶) = (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴))
43eqeq1d 2826 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴) = 𝐵))
5 simp2 1131 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐵 ∈ ℂ)
6 receu 11277 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ∃!𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴)
763expb 1114 . . 3 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ∃!𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴)
8 oveq2 7159 . . . . 5 (𝑥 = 𝐵 → (𝐶 · 𝑥) = (𝐶 · 𝐵))
98eqeq1d 2826 . . . 4 (𝑥 = 𝐵 → ((𝐶 · 𝑥) = 𝐴 ↔ (𝐶 · 𝐵) = 𝐴))
109riota2 7134 . . 3 ((𝐵 ∈ ℂ ∧ ∃!𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴) → ((𝐶 · 𝐵) = 𝐴 ↔ (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴) = 𝐵))
115, 7, 103imp3i2an 1339 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐵) = 𝐴 ↔ (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴) = 𝐵))
124, 11bitr4d 283 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ (𝐶 · 𝐵) = 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   ∧ w3a 1081   = wceq 1530   ∈ wcel 2106   ≠ wne 3020  ∃!wreu 3144  ℩crio 7108  (class class class)co 7151  ℂcc 10527  0cc0 10529   · cmul 10534   / cdiv 11289 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-po 5472  df-so 5473  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290 This theorem is referenced by:  divmul2  11294  divcan2  11298  divrec  11306  divcan3  11316  div0  11320  div1  11321  recrec  11329  rec11  11330  divdivdiv  11333  ddcan  11346  rereccl  11350  div2neg  11355  divmulzi  11383  divmuld  11430  crreczi  13582  odd2np1  15682  sqgcd  15901  oddprmdvds  16231  expgcd  39047  lighneallem4b  43603
 Copyright terms: Public domain W3C validator