MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divmul Structured version   Visualization version   GIF version

Theorem divmul 11925
Description: Relationship between division and multiplication. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 17-Feb-2014.)
Assertion
Ref Expression
divmul ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ (𝐶 · 𝐵) = 𝐴))

Proof of Theorem divmul
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 divval 11924 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) = (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴))
213expb 1121 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 / 𝐶) = (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴))
323adant2 1132 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 / 𝐶) = (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴))
43eqeq1d 2739 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴) = 𝐵))
5 simp2 1138 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐵 ∈ ℂ)
6 receu 11908 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ∃!𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴)
763expb 1121 . . 3 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ∃!𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴)
8 oveq2 7439 . . . . 5 (𝑥 = 𝐵 → (𝐶 · 𝑥) = (𝐶 · 𝐵))
98eqeq1d 2739 . . . 4 (𝑥 = 𝐵 → ((𝐶 · 𝑥) = 𝐴 ↔ (𝐶 · 𝐵) = 𝐴))
109riota2 7413 . . 3 ((𝐵 ∈ ℂ ∧ ∃!𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴) → ((𝐶 · 𝐵) = 𝐴 ↔ (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴) = 𝐵))
115, 7, 103imp3i2an 1346 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐵) = 𝐴 ↔ (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴) = 𝐵))
124, 11bitr4d 282 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ (𝐶 · 𝐵) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  ∃!wreu 3378  crio 7387  (class class class)co 7431  cc 11153  0cc0 11155   · cmul 11160   / cdiv 11920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921
This theorem is referenced by:  divmul2  11926  divcan2  11930  divrec  11938  divcan3  11948  div0OLD  11956  div1  11957  recrec  11964  rec11  11965  divdivdiv  11968  ddcan  11981  rereccl  11985  div2neg  11990  divmulzi  12018  divmuld  12065  crreczi  14267  odd2np1  16378  sqgcd  16599  expgcd  16600  oddprmdvds  16941  lighneallem4b  47596
  Copyright terms: Public domain W3C validator