Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  divmul Structured version   Visualization version   GIF version

Theorem divmul 11020
 Description: Relationship between division and multiplication. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 17-Feb-2014.)
Assertion
Ref Expression
divmul ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ (𝐶 · 𝐵) = 𝐴))

Proof of Theorem divmul
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 divval 11019 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) = (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴))
213expb 1153 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 / 𝐶) = (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴))
323adant2 1165 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 / 𝐶) = (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴))
43eqeq1d 2827 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴) = 𝐵))
5 simp2 1171 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐵 ∈ ℂ)
6 receu 11004 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ∃!𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴)
763expb 1153 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ∃!𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴)
873adant2 1165 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ∃!𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴)
9 oveq2 6918 . . . . 5 (𝑥 = 𝐵 → (𝐶 · 𝑥) = (𝐶 · 𝐵))
109eqeq1d 2827 . . . 4 (𝑥 = 𝐵 → ((𝐶 · 𝑥) = 𝐴 ↔ (𝐶 · 𝐵) = 𝐴))
1110riota2 6893 . . 3 ((𝐵 ∈ ℂ ∧ ∃!𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴) → ((𝐶 · 𝐵) = 𝐴 ↔ (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴) = 𝐵))
125, 8, 11syl2anc 579 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐵) = 𝐴 ↔ (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴) = 𝐵))
134, 12bitr4d 274 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ (𝐶 · 𝐵) = 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∧ w3a 1111   = wceq 1656   ∈ wcel 2164   ≠ wne 2999  ∃!wreu 3119  ℩crio 6870  (class class class)co 6910  ℂcc 10257  0cc0 10259   · cmul 10264   / cdiv 11016 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-po 5265  df-so 5266  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017 This theorem is referenced by:  divmul2  11021  divcan2  11025  divrec  11033  divcan3  11043  div0  11047  div1  11048  recrec  11055  rec11  11056  divdivdiv  11059  ddcan  11072  rereccl  11076  div2neg  11081  divmulzi  11109  divmuld  11156  crreczi  13290  odd2np1  15446  sqgcd  15658  oddprmdvds  15985  lighneallem4b  42370
 Copyright terms: Public domain W3C validator