MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icoopnst Structured version   Visualization version   GIF version

Theorem icoopnst 23537
Description: A half-open interval starting at 𝐴 is open in the closed interval from 𝐴 to 𝐵. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
icoopnst.1 𝐽 = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
Assertion
Ref Expression
icoopnst ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) → (𝐴[,)𝐶) ∈ 𝐽))

Proof of Theorem icoopnst
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 iooretop 23368 . . . . 5 ((𝐴 − 1)(,)𝐶) ∈ (topGen‘ran (,))
2 simp1 1132 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣 ∈ ℝ)
32a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣 ∈ ℝ))
4 ltm1 11476 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (𝐴 − 1) < 𝐴)
54adantr 483 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴 − 1) < 𝐴)
6 peano2rem 10947 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
76adantr 483 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴 − 1) ∈ ℝ)
8 ltletr 10726 . . . . . . . . . . . . . . . . 17 (((𝐴 − 1) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (((𝐴 − 1) < 𝐴𝐴𝑣) → (𝐴 − 1) < 𝑣))
983expb 1116 . . . . . . . . . . . . . . . 16 (((𝐴 − 1) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (((𝐴 − 1) < 𝐴𝐴𝑣) → (𝐴 − 1) < 𝑣))
107, 9mpancom 686 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (((𝐴 − 1) < 𝐴𝐴𝑣) → (𝐴 − 1) < 𝑣))
115, 10mpand 693 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴𝑣 → (𝐴 − 1) < 𝑣))
1211impr 457 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣)) → (𝐴 − 1) < 𝑣)
13123adantr3 1167 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶)) → (𝐴 − 1) < 𝑣)
1413ex 415 . . . . . . . . . . 11 (𝐴 ∈ ℝ → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → (𝐴 − 1) < 𝑣))
1514ad2antrr 724 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → (𝐴 − 1) < 𝑣))
16 simp3 1134 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣 < 𝐶)
1716a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣 < 𝐶))
183, 15, 173jcad 1125 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → (𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶)))
19 simp2 1133 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝐴𝑣)
2019a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝐴𝑣))
21 rexr 10681 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
22 elioc2 12793 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
2321, 22sylan 582 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
2423biimpa 479 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵))
25 ltleletr 10727 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑣 < 𝐶𝐶𝐵) → 𝑣𝐵))
26253expa 1114 . . . . . . . . . . . . . . . . . . . 20 (((𝑣 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → ((𝑣 < 𝐶𝐶𝐵) → 𝑣𝐵))
2726an31s 652 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) → ((𝑣 < 𝐶𝐶𝐵) → 𝑣𝐵))
2827imp 409 . . . . . . . . . . . . . . . . . 18 ((((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ (𝑣 < 𝐶𝐶𝐵)) → 𝑣𝐵)
2928ancom2s 648 . . . . . . . . . . . . . . . . 17 ((((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ (𝐶𝐵𝑣 < 𝐶)) → 𝑣𝐵)
3029an4s 658 . . . . . . . . . . . . . . . 16 ((((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ (𝑣 ∈ ℝ ∧ 𝑣 < 𝐶)) → 𝑣𝐵)
31303adantr2 1166 . . . . . . . . . . . . . . 15 ((((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶)) → 𝑣𝐵)
3231ex 415 . . . . . . . . . . . . . 14 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
3332anasss 469 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
34333adantr2 1166 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
3534adantll 712 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
3624, 35syldan 593 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
373, 20, 363jcad 1125 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
3818, 37jcad 515 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → ((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
39 simpl1 1187 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝑣 ∈ ℝ)
40 simpr2 1191 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝐴𝑣)
41 simpl3 1189 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝑣 < 𝐶)
4239, 40, 413jca 1124 . . . . . . . 8 (((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶))
4338, 42impbid1 227 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) ↔ ((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
44 simpll 765 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ)
4524simp1d 1138 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ)
4645rexrd 10685 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ*)
47 elico2 12794 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ*) → (𝑣 ∈ (𝐴[,)𝐶) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶)))
4844, 46, 47syl2anc 586 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ (𝐴[,)𝐶) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶)))
49 elin 4168 . . . . . . . 8 (𝑣 ∈ (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵)) ↔ (𝑣 ∈ ((𝐴 − 1)(,)𝐶) ∧ 𝑣 ∈ (𝐴[,]𝐵)))
506rexrd 10685 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ*)
5150ad2antrr 724 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴 − 1) ∈ ℝ*)
52 elioo2 12773 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℝ*𝐶 ∈ ℝ*) → (𝑣 ∈ ((𝐴 − 1)(,)𝐶) ↔ (𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶)))
5351, 46, 52syl2anc 586 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ ((𝐴 − 1)(,)𝐶) ↔ (𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶)))
54 elicc2 12795 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑣 ∈ (𝐴[,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
5554adantr 483 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ (𝐴[,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
5653, 55anbi12d 632 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ((𝐴 − 1)(,)𝐶) ∧ 𝑣 ∈ (𝐴[,]𝐵)) ↔ ((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
5749, 56syl5bb 285 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵)) ↔ ((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
5843, 48, 573bitr4d 313 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ (𝐴[,)𝐶) ↔ 𝑣 ∈ (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵))))
5958eqrdv 2819 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴[,)𝐶) = (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵)))
60 ineq1 4180 . . . . . 6 (𝑣 = ((𝐴 − 1)(,)𝐶) → (𝑣 ∩ (𝐴[,]𝐵)) = (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵)))
6160rspceeqv 3637 . . . . 5 ((((𝐴 − 1)(,)𝐶) ∈ (topGen‘ran (,)) ∧ (𝐴[,)𝐶) = (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵))) → ∃𝑣 ∈ (topGen‘ran (,))(𝐴[,)𝐶) = (𝑣 ∩ (𝐴[,]𝐵)))
621, 59, 61sylancr 589 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ∃𝑣 ∈ (topGen‘ran (,))(𝐴[,)𝐶) = (𝑣 ∩ (𝐴[,]𝐵)))
63 retop 23364 . . . . 5 (topGen‘ran (,)) ∈ Top
64 ovex 7183 . . . . 5 (𝐴[,]𝐵) ∈ V
65 elrest 16695 . . . . 5 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ∈ V) → ((𝐴[,)𝐶) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ↔ ∃𝑣 ∈ (topGen‘ran (,))(𝐴[,)𝐶) = (𝑣 ∩ (𝐴[,]𝐵))))
6663, 64, 65mp2an 690 . . . 4 ((𝐴[,)𝐶) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ↔ ∃𝑣 ∈ (topGen‘ran (,))(𝐴[,)𝐶) = (𝑣 ∩ (𝐴[,]𝐵)))
6762, 66sylibr 236 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴[,)𝐶) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
68 iccssre 12812 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
6968adantr 483 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴[,]𝐵) ⊆ ℝ)
70 eqid 2821 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
71 icoopnst.1 . . . . 5 𝐽 = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
7270, 71resubmet 23404 . . . 4 ((𝐴[,]𝐵) ⊆ ℝ → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7369, 72syl 17 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7467, 73eleqtrrd 2916 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴[,)𝐶) ∈ 𝐽)
7574ex 415 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) → (𝐴[,)𝐶) ∈ 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wrex 3139  Vcvv 3494  cin 3934  wss 3935   class class class wbr 5058   × cxp 5547  ran crn 5550  cres 5551  ccom 5553  cfv 6349  (class class class)co 7150  cr 10530  1c1 10532  *cxr 10668   < clt 10669  cle 10670  cmin 10864  (,)cioo 12732  (,]cioc 12733  [,)cico 12734  [,]cicc 12735  abscabs 14587  t crest 16688  topGenctg 16705  MetOpencmopn 20529  Topctop 21495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-rest 16690  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-top 21496  df-topon 21513  df-bases 21548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator