MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icoopnst Structured version   Visualization version   GIF version

Theorem icoopnst 24098
Description: A half-open interval starting at 𝐴 is open in the closed interval from 𝐴 to 𝐵. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
icoopnst.1 𝐽 = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
Assertion
Ref Expression
icoopnst ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) → (𝐴[,)𝐶) ∈ 𝐽))

Proof of Theorem icoopnst
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 iooretop 23925 . . . . 5 ((𝐴 − 1)(,)𝐶) ∈ (topGen‘ran (,))
2 simp1 1135 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣 ∈ ℝ)
32a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣 ∈ ℝ))
4 ltm1 11815 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (𝐴 − 1) < 𝐴)
54adantr 481 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴 − 1) < 𝐴)
6 peano2rem 11286 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
76adantr 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴 − 1) ∈ ℝ)
8 ltletr 11065 . . . . . . . . . . . . . . . . 17 (((𝐴 − 1) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (((𝐴 − 1) < 𝐴𝐴𝑣) → (𝐴 − 1) < 𝑣))
983expb 1119 . . . . . . . . . . . . . . . 16 (((𝐴 − 1) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (((𝐴 − 1) < 𝐴𝐴𝑣) → (𝐴 − 1) < 𝑣))
107, 9mpancom 685 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (((𝐴 − 1) < 𝐴𝐴𝑣) → (𝐴 − 1) < 𝑣))
115, 10mpand 692 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴𝑣 → (𝐴 − 1) < 𝑣))
1211impr 455 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣)) → (𝐴 − 1) < 𝑣)
13123adantr3 1170 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶)) → (𝐴 − 1) < 𝑣)
1413ex 413 . . . . . . . . . . 11 (𝐴 ∈ ℝ → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → (𝐴 − 1) < 𝑣))
1514ad2antrr 723 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → (𝐴 − 1) < 𝑣))
16 simp3 1137 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣 < 𝐶)
1716a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣 < 𝐶))
183, 15, 173jcad 1128 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → (𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶)))
19 simp2 1136 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝐴𝑣)
2019a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝐴𝑣))
21 rexr 11020 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
22 elioc2 13139 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
2321, 22sylan 580 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
2423biimpa 477 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵))
25 ltleletr 11066 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑣 < 𝐶𝐶𝐵) → 𝑣𝐵))
26253expa 1117 . . . . . . . . . . . . . . . . . . . 20 (((𝑣 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → ((𝑣 < 𝐶𝐶𝐵) → 𝑣𝐵))
2726an31s 651 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) → ((𝑣 < 𝐶𝐶𝐵) → 𝑣𝐵))
2827imp 407 . . . . . . . . . . . . . . . . . 18 ((((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ (𝑣 < 𝐶𝐶𝐵)) → 𝑣𝐵)
2928ancom2s 647 . . . . . . . . . . . . . . . . 17 ((((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ (𝐶𝐵𝑣 < 𝐶)) → 𝑣𝐵)
3029an4s 657 . . . . . . . . . . . . . . . 16 ((((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ (𝑣 ∈ ℝ ∧ 𝑣 < 𝐶)) → 𝑣𝐵)
31303adantr2 1169 . . . . . . . . . . . . . . 15 ((((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶)) → 𝑣𝐵)
3231ex 413 . . . . . . . . . . . . . 14 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
3332anasss 467 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
34333adantr2 1169 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
3534adantll 711 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
3624, 35syldan 591 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
373, 20, 363jcad 1128 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
3818, 37jcad 513 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → ((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
39 simpl1 1190 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝑣 ∈ ℝ)
40 simpr2 1194 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝐴𝑣)
41 simpl3 1192 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝑣 < 𝐶)
4239, 40, 413jca 1127 . . . . . . . 8 (((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶))
4338, 42impbid1 224 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) ↔ ((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
44 simpll 764 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ)
4524simp1d 1141 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ)
4645rexrd 11024 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ*)
47 elico2 13140 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ*) → (𝑣 ∈ (𝐴[,)𝐶) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶)))
4844, 46, 47syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ (𝐴[,)𝐶) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶)))
49 elin 3908 . . . . . . . 8 (𝑣 ∈ (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵)) ↔ (𝑣 ∈ ((𝐴 − 1)(,)𝐶) ∧ 𝑣 ∈ (𝐴[,]𝐵)))
506rexrd 11024 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ*)
5150ad2antrr 723 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴 − 1) ∈ ℝ*)
52 elioo2 13117 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℝ*𝐶 ∈ ℝ*) → (𝑣 ∈ ((𝐴 − 1)(,)𝐶) ↔ (𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶)))
5351, 46, 52syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ ((𝐴 − 1)(,)𝐶) ↔ (𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶)))
54 elicc2 13141 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑣 ∈ (𝐴[,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
5554adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ (𝐴[,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
5653, 55anbi12d 631 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ((𝐴 − 1)(,)𝐶) ∧ 𝑣 ∈ (𝐴[,]𝐵)) ↔ ((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
5749, 56syl5bb 283 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵)) ↔ ((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
5843, 48, 573bitr4d 311 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ (𝐴[,)𝐶) ↔ 𝑣 ∈ (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵))))
5958eqrdv 2738 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴[,)𝐶) = (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵)))
60 ineq1 4145 . . . . . 6 (𝑣 = ((𝐴 − 1)(,)𝐶) → (𝑣 ∩ (𝐴[,]𝐵)) = (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵)))
6160rspceeqv 3576 . . . . 5 ((((𝐴 − 1)(,)𝐶) ∈ (topGen‘ran (,)) ∧ (𝐴[,)𝐶) = (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵))) → ∃𝑣 ∈ (topGen‘ran (,))(𝐴[,)𝐶) = (𝑣 ∩ (𝐴[,]𝐵)))
621, 59, 61sylancr 587 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ∃𝑣 ∈ (topGen‘ran (,))(𝐴[,)𝐶) = (𝑣 ∩ (𝐴[,]𝐵)))
63 retop 23921 . . . . 5 (topGen‘ran (,)) ∈ Top
64 ovex 7302 . . . . 5 (𝐴[,]𝐵) ∈ V
65 elrest 17134 . . . . 5 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ∈ V) → ((𝐴[,)𝐶) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ↔ ∃𝑣 ∈ (topGen‘ran (,))(𝐴[,)𝐶) = (𝑣 ∩ (𝐴[,]𝐵))))
6663, 64, 65mp2an 689 . . . 4 ((𝐴[,)𝐶) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ↔ ∃𝑣 ∈ (topGen‘ran (,))(𝐴[,)𝐶) = (𝑣 ∩ (𝐴[,]𝐵)))
6762, 66sylibr 233 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴[,)𝐶) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
68 iccssre 13158 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
6968adantr 481 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴[,]𝐵) ⊆ ℝ)
70 eqid 2740 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
71 icoopnst.1 . . . . 5 𝐽 = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
7270, 71resubmet 23961 . . . 4 ((𝐴[,]𝐵) ⊆ ℝ → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7369, 72syl 17 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7467, 73eleqtrrd 2844 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴[,)𝐶) ∈ 𝐽)
7574ex 413 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) → (𝐴[,)𝐶) ∈ 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wrex 3067  Vcvv 3431  cin 3891  wss 3892   class class class wbr 5079   × cxp 5587  ran crn 5590  cres 5591  ccom 5593  cfv 6431  (class class class)co 7269  cr 10869  1c1 10871  *cxr 11007   < clt 11008  cle 11009  cmin 11203  (,)cioo 13076  (,]cioc 13077  [,)cico 13078  [,]cicc 13079  abscabs 14941  t crest 17127  topGenctg 17144  MetOpencmopn 20583  Topctop 22038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947  ax-pre-sup 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-er 8479  df-map 8598  df-en 8715  df-dom 8716  df-sdom 8717  df-sup 9177  df-inf 9178  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-2 12034  df-3 12035  df-n0 12232  df-z 12318  df-uz 12580  df-q 12686  df-rp 12728  df-xneg 12845  df-xadd 12846  df-xmul 12847  df-ioo 13080  df-ioc 13081  df-ico 13082  df-icc 13083  df-seq 13718  df-exp 13779  df-cj 14806  df-re 14807  df-im 14808  df-sqrt 14942  df-abs 14943  df-rest 17129  df-topgen 17150  df-psmet 20585  df-xmet 20586  df-met 20587  df-bl 20588  df-mopn 20589  df-top 22039  df-topon 22056  df-bases 22092
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator