MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icoopnst Structured version   Visualization version   GIF version

Theorem icoopnst 24858
Description: A half-open interval starting at 𝐴 is open in the closed interval from 𝐴 to 𝐵. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
icoopnst.1 𝐽 = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
Assertion
Ref Expression
icoopnst ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) → (𝐴[,)𝐶) ∈ 𝐽))

Proof of Theorem icoopnst
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 iooretop 24675 . . . . 5 ((𝐴 − 1)(,)𝐶) ∈ (topGen‘ran (,))
2 simp1 1136 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣 ∈ ℝ)
32a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣 ∈ ℝ))
4 ltm1 11958 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (𝐴 − 1) < 𝐴)
54adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴 − 1) < 𝐴)
6 peano2rem 11423 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
76adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴 − 1) ∈ ℝ)
8 ltletr 11200 . . . . . . . . . . . . . . . . 17 (((𝐴 − 1) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (((𝐴 − 1) < 𝐴𝐴𝑣) → (𝐴 − 1) < 𝑣))
983expb 1120 . . . . . . . . . . . . . . . 16 (((𝐴 − 1) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (((𝐴 − 1) < 𝐴𝐴𝑣) → (𝐴 − 1) < 𝑣))
107, 9mpancom 688 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (((𝐴 − 1) < 𝐴𝐴𝑣) → (𝐴 − 1) < 𝑣))
115, 10mpand 695 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴𝑣 → (𝐴 − 1) < 𝑣))
1211impr 454 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣)) → (𝐴 − 1) < 𝑣)
13123adantr3 1172 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶)) → (𝐴 − 1) < 𝑣)
1413ex 412 . . . . . . . . . . 11 (𝐴 ∈ ℝ → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → (𝐴 − 1) < 𝑣))
1514ad2antrr 726 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → (𝐴 − 1) < 𝑣))
16 simp3 1138 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣 < 𝐶)
1716a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣 < 𝐶))
183, 15, 173jcad 1129 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → (𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶)))
19 simp2 1137 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝐴𝑣)
2019a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝐴𝑣))
21 rexr 11153 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
22 elioc2 13304 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
2321, 22sylan 580 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
2423biimpa 476 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵))
25 ltleletr 11201 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑣 < 𝐶𝐶𝐵) → 𝑣𝐵))
26253expa 1118 . . . . . . . . . . . . . . . . . . . 20 (((𝑣 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → ((𝑣 < 𝐶𝐶𝐵) → 𝑣𝐵))
2726an31s 654 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) → ((𝑣 < 𝐶𝐶𝐵) → 𝑣𝐵))
2827imp 406 . . . . . . . . . . . . . . . . . 18 ((((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ (𝑣 < 𝐶𝐶𝐵)) → 𝑣𝐵)
2928ancom2s 650 . . . . . . . . . . . . . . . . 17 ((((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ (𝐶𝐵𝑣 < 𝐶)) → 𝑣𝐵)
3029an4s 660 . . . . . . . . . . . . . . . 16 ((((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ (𝑣 ∈ ℝ ∧ 𝑣 < 𝐶)) → 𝑣𝐵)
31303adantr2 1171 . . . . . . . . . . . . . . 15 ((((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶)) → 𝑣𝐵)
3231ex 412 . . . . . . . . . . . . . 14 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
3332anasss 466 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
34333adantr2 1171 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
3534adantll 714 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
3624, 35syldan 591 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
373, 20, 363jcad 1129 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
3818, 37jcad 512 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → ((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
39 simpl1 1192 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝑣 ∈ ℝ)
40 simpr2 1196 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝐴𝑣)
41 simpl3 1194 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝑣 < 𝐶)
4239, 40, 413jca 1128 . . . . . . . 8 (((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶))
4338, 42impbid1 225 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) ↔ ((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
44 simpll 766 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ)
4524simp1d 1142 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ)
4645rexrd 11157 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ*)
47 elico2 13305 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ*) → (𝑣 ∈ (𝐴[,)𝐶) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶)))
4844, 46, 47syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ (𝐴[,)𝐶) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶)))
49 elin 3913 . . . . . . . 8 (𝑣 ∈ (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵)) ↔ (𝑣 ∈ ((𝐴 − 1)(,)𝐶) ∧ 𝑣 ∈ (𝐴[,]𝐵)))
506rexrd 11157 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ*)
5150ad2antrr 726 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴 − 1) ∈ ℝ*)
52 elioo2 13281 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℝ*𝐶 ∈ ℝ*) → (𝑣 ∈ ((𝐴 − 1)(,)𝐶) ↔ (𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶)))
5351, 46, 52syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ ((𝐴 − 1)(,)𝐶) ↔ (𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶)))
54 elicc2 13306 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑣 ∈ (𝐴[,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
5554adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ (𝐴[,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
5653, 55anbi12d 632 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ((𝐴 − 1)(,)𝐶) ∧ 𝑣 ∈ (𝐴[,]𝐵)) ↔ ((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
5749, 56bitrid 283 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵)) ↔ ((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
5843, 48, 573bitr4d 311 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ (𝐴[,)𝐶) ↔ 𝑣 ∈ (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵))))
5958eqrdv 2729 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴[,)𝐶) = (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵)))
60 ineq1 4158 . . . . . 6 (𝑣 = ((𝐴 − 1)(,)𝐶) → (𝑣 ∩ (𝐴[,]𝐵)) = (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵)))
6160rspceeqv 3595 . . . . 5 ((((𝐴 − 1)(,)𝐶) ∈ (topGen‘ran (,)) ∧ (𝐴[,)𝐶) = (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵))) → ∃𝑣 ∈ (topGen‘ran (,))(𝐴[,)𝐶) = (𝑣 ∩ (𝐴[,]𝐵)))
621, 59, 61sylancr 587 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ∃𝑣 ∈ (topGen‘ran (,))(𝐴[,)𝐶) = (𝑣 ∩ (𝐴[,]𝐵)))
63 retop 24671 . . . . 5 (topGen‘ran (,)) ∈ Top
64 ovex 7374 . . . . 5 (𝐴[,]𝐵) ∈ V
65 elrest 17326 . . . . 5 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ∈ V) → ((𝐴[,)𝐶) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ↔ ∃𝑣 ∈ (topGen‘ran (,))(𝐴[,)𝐶) = (𝑣 ∩ (𝐴[,]𝐵))))
6663, 64, 65mp2an 692 . . . 4 ((𝐴[,)𝐶) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ↔ ∃𝑣 ∈ (topGen‘ran (,))(𝐴[,)𝐶) = (𝑣 ∩ (𝐴[,]𝐵)))
6762, 66sylibr 234 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴[,)𝐶) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
68 iccssre 13324 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
6968adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴[,]𝐵) ⊆ ℝ)
70 eqid 2731 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
71 icoopnst.1 . . . . 5 𝐽 = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
7270, 71resubmet 24712 . . . 4 ((𝐴[,]𝐵) ⊆ ℝ → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7369, 72syl 17 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7467, 73eleqtrrd 2834 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴[,)𝐶) ∈ 𝐽)
7574ex 412 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) → (𝐴[,)𝐶) ∈ 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  cin 3896  wss 3897   class class class wbr 5086   × cxp 5609  ran crn 5612  cres 5613  ccom 5615  cfv 6476  (class class class)co 7341  cr 11000  1c1 11002  *cxr 11140   < clt 11141  cle 11142  cmin 11339  (,)cioo 13240  (,]cioc 13241  [,)cico 13242  [,]cicc 13243  abscabs 15136  t crest 17319  topGenctg 17336  MetOpencmopn 21276  Topctop 22803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-rest 17321  df-topgen 17342  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-top 22804  df-topon 22821  df-bases 22856
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator