MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icoopnst Structured version   Visualization version   GIF version

Theorem icoopnst 24008
Description: A half-open interval starting at 𝐴 is open in the closed interval from 𝐴 to 𝐵. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
icoopnst.1 𝐽 = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
Assertion
Ref Expression
icoopnst ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) → (𝐴[,)𝐶) ∈ 𝐽))

Proof of Theorem icoopnst
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 iooretop 23835 . . . . 5 ((𝐴 − 1)(,)𝐶) ∈ (topGen‘ran (,))
2 simp1 1134 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣 ∈ ℝ)
32a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣 ∈ ℝ))
4 ltm1 11747 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (𝐴 − 1) < 𝐴)
54adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴 − 1) < 𝐴)
6 peano2rem 11218 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
76adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴 − 1) ∈ ℝ)
8 ltletr 10997 . . . . . . . . . . . . . . . . 17 (((𝐴 − 1) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (((𝐴 − 1) < 𝐴𝐴𝑣) → (𝐴 − 1) < 𝑣))
983expb 1118 . . . . . . . . . . . . . . . 16 (((𝐴 − 1) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (((𝐴 − 1) < 𝐴𝐴𝑣) → (𝐴 − 1) < 𝑣))
107, 9mpancom 684 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (((𝐴 − 1) < 𝐴𝐴𝑣) → (𝐴 − 1) < 𝑣))
115, 10mpand 691 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴𝑣 → (𝐴 − 1) < 𝑣))
1211impr 454 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣)) → (𝐴 − 1) < 𝑣)
13123adantr3 1169 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶)) → (𝐴 − 1) < 𝑣)
1413ex 412 . . . . . . . . . . 11 (𝐴 ∈ ℝ → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → (𝐴 − 1) < 𝑣))
1514ad2antrr 722 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → (𝐴 − 1) < 𝑣))
16 simp3 1136 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣 < 𝐶)
1716a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣 < 𝐶))
183, 15, 173jcad 1127 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → (𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶)))
19 simp2 1135 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝐴𝑣)
2019a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝐴𝑣))
21 rexr 10952 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
22 elioc2 13071 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
2321, 22sylan 579 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
2423biimpa 476 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵))
25 ltleletr 10998 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑣 < 𝐶𝐶𝐵) → 𝑣𝐵))
26253expa 1116 . . . . . . . . . . . . . . . . . . . 20 (((𝑣 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → ((𝑣 < 𝐶𝐶𝐵) → 𝑣𝐵))
2726an31s 650 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) → ((𝑣 < 𝐶𝐶𝐵) → 𝑣𝐵))
2827imp 406 . . . . . . . . . . . . . . . . . 18 ((((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ (𝑣 < 𝐶𝐶𝐵)) → 𝑣𝐵)
2928ancom2s 646 . . . . . . . . . . . . . . . . 17 ((((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ (𝐶𝐵𝑣 < 𝐶)) → 𝑣𝐵)
3029an4s 656 . . . . . . . . . . . . . . . 16 ((((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ (𝑣 ∈ ℝ ∧ 𝑣 < 𝐶)) → 𝑣𝐵)
31303adantr2 1168 . . . . . . . . . . . . . . 15 ((((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶)) → 𝑣𝐵)
3231ex 412 . . . . . . . . . . . . . 14 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
3332anasss 466 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
34333adantr2 1168 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
3534adantll 710 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
3624, 35syldan 590 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
373, 20, 363jcad 1127 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
3818, 37jcad 512 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → ((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
39 simpl1 1189 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝑣 ∈ ℝ)
40 simpr2 1193 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝐴𝑣)
41 simpl3 1191 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝑣 < 𝐶)
4239, 40, 413jca 1126 . . . . . . . 8 (((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶))
4338, 42impbid1 224 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) ↔ ((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
44 simpll 763 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ)
4524simp1d 1140 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ)
4645rexrd 10956 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ*)
47 elico2 13072 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ*) → (𝑣 ∈ (𝐴[,)𝐶) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶)))
4844, 46, 47syl2anc 583 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ (𝐴[,)𝐶) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶)))
49 elin 3899 . . . . . . . 8 (𝑣 ∈ (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵)) ↔ (𝑣 ∈ ((𝐴 − 1)(,)𝐶) ∧ 𝑣 ∈ (𝐴[,]𝐵)))
506rexrd 10956 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ*)
5150ad2antrr 722 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴 − 1) ∈ ℝ*)
52 elioo2 13049 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℝ*𝐶 ∈ ℝ*) → (𝑣 ∈ ((𝐴 − 1)(,)𝐶) ↔ (𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶)))
5351, 46, 52syl2anc 583 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ ((𝐴 − 1)(,)𝐶) ↔ (𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶)))
54 elicc2 13073 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑣 ∈ (𝐴[,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
5554adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ (𝐴[,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
5653, 55anbi12d 630 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ((𝐴 − 1)(,)𝐶) ∧ 𝑣 ∈ (𝐴[,]𝐵)) ↔ ((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
5749, 56syl5bb 282 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵)) ↔ ((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
5843, 48, 573bitr4d 310 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ (𝐴[,)𝐶) ↔ 𝑣 ∈ (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵))))
5958eqrdv 2736 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴[,)𝐶) = (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵)))
60 ineq1 4136 . . . . . 6 (𝑣 = ((𝐴 − 1)(,)𝐶) → (𝑣 ∩ (𝐴[,]𝐵)) = (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵)))
6160rspceeqv 3567 . . . . 5 ((((𝐴 − 1)(,)𝐶) ∈ (topGen‘ran (,)) ∧ (𝐴[,)𝐶) = (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵))) → ∃𝑣 ∈ (topGen‘ran (,))(𝐴[,)𝐶) = (𝑣 ∩ (𝐴[,]𝐵)))
621, 59, 61sylancr 586 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ∃𝑣 ∈ (topGen‘ran (,))(𝐴[,)𝐶) = (𝑣 ∩ (𝐴[,]𝐵)))
63 retop 23831 . . . . 5 (topGen‘ran (,)) ∈ Top
64 ovex 7288 . . . . 5 (𝐴[,]𝐵) ∈ V
65 elrest 17055 . . . . 5 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ∈ V) → ((𝐴[,)𝐶) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ↔ ∃𝑣 ∈ (topGen‘ran (,))(𝐴[,)𝐶) = (𝑣 ∩ (𝐴[,]𝐵))))
6663, 64, 65mp2an 688 . . . 4 ((𝐴[,)𝐶) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ↔ ∃𝑣 ∈ (topGen‘ran (,))(𝐴[,)𝐶) = (𝑣 ∩ (𝐴[,]𝐵)))
6762, 66sylibr 233 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴[,)𝐶) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
68 iccssre 13090 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
6968adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴[,]𝐵) ⊆ ℝ)
70 eqid 2738 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
71 icoopnst.1 . . . . 5 𝐽 = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
7270, 71resubmet 23871 . . . 4 ((𝐴[,]𝐵) ⊆ ℝ → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7369, 72syl 17 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7467, 73eleqtrrd 2842 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴[,)𝐶) ∈ 𝐽)
7574ex 412 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) → (𝐴[,)𝐶) ∈ 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  Vcvv 3422  cin 3882  wss 3883   class class class wbr 5070   × cxp 5578  ran crn 5581  cres 5582  ccom 5584  cfv 6418  (class class class)co 7255  cr 10801  1c1 10803  *cxr 10939   < clt 10940  cle 10941  cmin 11135  (,)cioo 13008  (,]cioc 13009  [,)cico 13010  [,]cicc 13011  abscabs 14873  t crest 17048  topGenctg 17065  MetOpencmopn 20500  Topctop 21950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator