MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icoopnst Structured version   Visualization version   GIF version

Theorem icoopnst 24983
Description: A half-open interval starting at 𝐴 is open in the closed interval from 𝐴 to 𝐵. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
icoopnst.1 𝐽 = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
Assertion
Ref Expression
icoopnst ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) → (𝐴[,)𝐶) ∈ 𝐽))

Proof of Theorem icoopnst
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 iooretop 24802 . . . . 5 ((𝐴 − 1)(,)𝐶) ∈ (topGen‘ran (,))
2 simp1 1135 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣 ∈ ℝ)
32a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣 ∈ ℝ))
4 ltm1 12107 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (𝐴 − 1) < 𝐴)
54adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴 − 1) < 𝐴)
6 peano2rem 11574 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
76adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴 − 1) ∈ ℝ)
8 ltletr 11351 . . . . . . . . . . . . . . . . 17 (((𝐴 − 1) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (((𝐴 − 1) < 𝐴𝐴𝑣) → (𝐴 − 1) < 𝑣))
983expb 1119 . . . . . . . . . . . . . . . 16 (((𝐴 − 1) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (((𝐴 − 1) < 𝐴𝐴𝑣) → (𝐴 − 1) < 𝑣))
107, 9mpancom 688 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (((𝐴 − 1) < 𝐴𝐴𝑣) → (𝐴 − 1) < 𝑣))
115, 10mpand 695 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴𝑣 → (𝐴 − 1) < 𝑣))
1211impr 454 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣)) → (𝐴 − 1) < 𝑣)
13123adantr3 1170 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶)) → (𝐴 − 1) < 𝑣)
1413ex 412 . . . . . . . . . . 11 (𝐴 ∈ ℝ → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → (𝐴 − 1) < 𝑣))
1514ad2antrr 726 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → (𝐴 − 1) < 𝑣))
16 simp3 1137 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣 < 𝐶)
1716a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣 < 𝐶))
183, 15, 173jcad 1128 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → (𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶)))
19 simp2 1136 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝐴𝑣)
2019a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝐴𝑣))
21 rexr 11305 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
22 elioc2 13447 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
2321, 22sylan 580 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
2423biimpa 476 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵))
25 ltleletr 11352 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑣 < 𝐶𝐶𝐵) → 𝑣𝐵))
26253expa 1117 . . . . . . . . . . . . . . . . . . . 20 (((𝑣 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → ((𝑣 < 𝐶𝐶𝐵) → 𝑣𝐵))
2726an31s 654 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) → ((𝑣 < 𝐶𝐶𝐵) → 𝑣𝐵))
2827imp 406 . . . . . . . . . . . . . . . . . 18 ((((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ (𝑣 < 𝐶𝐶𝐵)) → 𝑣𝐵)
2928ancom2s 650 . . . . . . . . . . . . . . . . 17 ((((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ (𝐶𝐵𝑣 < 𝐶)) → 𝑣𝐵)
3029an4s 660 . . . . . . . . . . . . . . . 16 ((((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ (𝑣 ∈ ℝ ∧ 𝑣 < 𝐶)) → 𝑣𝐵)
31303adantr2 1169 . . . . . . . . . . . . . . 15 ((((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶)) → 𝑣𝐵)
3231ex 412 . . . . . . . . . . . . . 14 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
3332anasss 466 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
34333adantr2 1169 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
3534adantll 714 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
3624, 35syldan 591 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → 𝑣𝐵))
373, 20, 363jcad 1128 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
3818, 37jcad 512 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) → ((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
39 simpl1 1190 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝑣 ∈ ℝ)
40 simpr2 1194 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝐴𝑣)
41 simpl3 1192 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝑣 < 𝐶)
4239, 40, 413jca 1127 . . . . . . . 8 (((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶))
4338, 42impbid1 225 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶) ↔ ((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
44 simpll 767 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ)
4524simp1d 1141 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ)
4645rexrd 11309 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ*)
47 elico2 13448 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ*) → (𝑣 ∈ (𝐴[,)𝐶) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶)))
4844, 46, 47syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ (𝐴[,)𝐶) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣 < 𝐶)))
49 elin 3979 . . . . . . . 8 (𝑣 ∈ (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵)) ↔ (𝑣 ∈ ((𝐴 − 1)(,)𝐶) ∧ 𝑣 ∈ (𝐴[,]𝐵)))
506rexrd 11309 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ*)
5150ad2antrr 726 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴 − 1) ∈ ℝ*)
52 elioo2 13425 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℝ*𝐶 ∈ ℝ*) → (𝑣 ∈ ((𝐴 − 1)(,)𝐶) ↔ (𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶)))
5351, 46, 52syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ ((𝐴 − 1)(,)𝐶) ↔ (𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶)))
54 elicc2 13449 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑣 ∈ (𝐴[,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
5554adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ (𝐴[,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
5653, 55anbi12d 632 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ((𝑣 ∈ ((𝐴 − 1)(,)𝐶) ∧ 𝑣 ∈ (𝐴[,]𝐵)) ↔ ((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
5749, 56bitrid 283 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵)) ↔ ((𝑣 ∈ ℝ ∧ (𝐴 − 1) < 𝑣𝑣 < 𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
5843, 48, 573bitr4d 311 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝑣 ∈ (𝐴[,)𝐶) ↔ 𝑣 ∈ (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵))))
5958eqrdv 2733 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴[,)𝐶) = (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵)))
60 ineq1 4221 . . . . . 6 (𝑣 = ((𝐴 − 1)(,)𝐶) → (𝑣 ∩ (𝐴[,]𝐵)) = (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵)))
6160rspceeqv 3645 . . . . 5 ((((𝐴 − 1)(,)𝐶) ∈ (topGen‘ran (,)) ∧ (𝐴[,)𝐶) = (((𝐴 − 1)(,)𝐶) ∩ (𝐴[,]𝐵))) → ∃𝑣 ∈ (topGen‘ran (,))(𝐴[,)𝐶) = (𝑣 ∩ (𝐴[,]𝐵)))
621, 59, 61sylancr 587 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → ∃𝑣 ∈ (topGen‘ran (,))(𝐴[,)𝐶) = (𝑣 ∩ (𝐴[,]𝐵)))
63 retop 24798 . . . . 5 (topGen‘ran (,)) ∈ Top
64 ovex 7464 . . . . 5 (𝐴[,]𝐵) ∈ V
65 elrest 17474 . . . . 5 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ∈ V) → ((𝐴[,)𝐶) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ↔ ∃𝑣 ∈ (topGen‘ran (,))(𝐴[,)𝐶) = (𝑣 ∩ (𝐴[,]𝐵))))
6663, 64, 65mp2an 692 . . . 4 ((𝐴[,)𝐶) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ↔ ∃𝑣 ∈ (topGen‘ran (,))(𝐴[,)𝐶) = (𝑣 ∩ (𝐴[,]𝐵)))
6762, 66sylibr 234 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴[,)𝐶) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
68 iccssre 13466 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
6968adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴[,]𝐵) ⊆ ℝ)
70 eqid 2735 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
71 icoopnst.1 . . . . 5 𝐽 = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
7270, 71resubmet 24838 . . . 4 ((𝐴[,]𝐵) ⊆ ℝ → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7369, 72syl 17 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7467, 73eleqtrrd 2842 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐴[,)𝐶) ∈ 𝐽)
7574ex 412 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) → (𝐴[,)𝐶) ∈ 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wrex 3068  Vcvv 3478  cin 3962  wss 3963   class class class wbr 5148   × cxp 5687  ran crn 5690  cres 5691  ccom 5693  cfv 6563  (class class class)co 7431  cr 11152  1c1 11154  *cxr 11292   < clt 11293  cle 11294  cmin 11490  (,)cioo 13384  (,]cioc 13385  [,)cico 13386  [,]cicc 13387  abscabs 15270  t crest 17467  topGenctg 17484  MetOpencmopn 21372  Topctop 22915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-rest 17469  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-top 22916  df-topon 22933  df-bases 22969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator