MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodprop2d Structured version   Visualization version   GIF version

Theorem lmodprop2d 20944
Description: If two structures have the same components (properties), one is a left module iff the other one is. This version of lmodpropd 20945 also breaks up the components of the scalar ring. (Contributed by Mario Carneiro, 27-Jun-2015.)
Hypotheses
Ref Expression
lmodprop2d.b1 (𝜑𝐵 = (Base‘𝐾))
lmodprop2d.b2 (𝜑𝐵 = (Base‘𝐿))
lmodprop2d.f 𝐹 = (Scalar‘𝐾)
lmodprop2d.g 𝐺 = (Scalar‘𝐿)
lmodprop2d.p1 (𝜑𝑃 = (Base‘𝐹))
lmodprop2d.p2 (𝜑𝑃 = (Base‘𝐺))
lmodprop2d.1 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lmodprop2d.2 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))
lmodprop2d.3 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(.r𝐹)𝑦) = (𝑥(.r𝐺)𝑦))
lmodprop2d.4 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
Assertion
Ref Expression
lmodprop2d (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦

Proof of Theorem lmodprop2d
Dummy variables 𝑟 𝑞 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmodgrp 20887 . . . 4 (𝐾 ∈ LMod → 𝐾 ∈ Grp)
21a1i 11 . . 3 (𝜑 → (𝐾 ∈ LMod → 𝐾 ∈ Grp))
3 eqid 2740 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 eqid 2740 . . . . . 6 (+g𝐾) = (+g𝐾)
5 eqid 2740 . . . . . 6 ( ·𝑠𝐾) = ( ·𝑠𝐾)
6 lmodprop2d.f . . . . . 6 𝐹 = (Scalar‘𝐾)
7 eqid 2740 . . . . . 6 (Base‘𝐹) = (Base‘𝐹)
8 eqid 2740 . . . . . 6 (+g𝐹) = (+g𝐹)
9 eqid 2740 . . . . . 6 (.r𝐹) = (.r𝐹)
10 eqid 2740 . . . . . 6 (1r𝐹) = (1r𝐹)
113, 4, 5, 6, 7, 8, 9, 10islmod 20884 . . . . 5 (𝐾 ∈ LMod ↔ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ (Base‘𝐹)∀𝑟 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾) ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤))))
1211simp2bi 1146 . . . 4 (𝐾 ∈ LMod → 𝐹 ∈ Ring)
1312a1i 11 . . 3 (𝜑 → (𝐾 ∈ LMod → 𝐹 ∈ Ring))
14 simplr 768 . . . . . . 7 (((𝜑𝐾 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝐾 ∈ LMod)
15 simprl 770 . . . . . . . 8 (((𝜑𝐾 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝑥𝑃)
16 lmodprop2d.p1 . . . . . . . . 9 (𝜑𝑃 = (Base‘𝐹))
1716ad2antrr 725 . . . . . . . 8 (((𝜑𝐾 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝑃 = (Base‘𝐹))
1815, 17eleqtrd 2846 . . . . . . 7 (((𝜑𝐾 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝑥 ∈ (Base‘𝐹))
19 simprr 772 . . . . . . . 8 (((𝜑𝐾 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝑦𝐵)
20 lmodprop2d.b1 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝐾))
2120ad2antrr 725 . . . . . . . 8 (((𝜑𝐾 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝐵 = (Base‘𝐾))
2219, 21eleqtrd 2846 . . . . . . 7 (((𝜑𝐾 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝑦 ∈ (Base‘𝐾))
233, 6, 5, 7lmodvscl 20898 . . . . . . 7 ((𝐾 ∈ LMod ∧ 𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥( ·𝑠𝐾)𝑦) ∈ (Base‘𝐾))
2414, 18, 22, 23syl3anc 1371 . . . . . 6 (((𝜑𝐾 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ (Base‘𝐾))
2524, 21eleqtrrd 2847 . . . . 5 (((𝜑𝐾 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)
2625ralrimivva 3208 . . . 4 ((𝜑𝐾 ∈ LMod) → ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)
2726ex 412 . . 3 (𝜑 → (𝐾 ∈ LMod → ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵))
282, 13, 273jcad 1129 . 2 (𝜑 → (𝐾 ∈ LMod → (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)))
29 lmodgrp 20887 . . . 4 (𝐿 ∈ LMod → 𝐿 ∈ Grp)
30 lmodprop2d.b2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
31 lmodprop2d.1 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
3220, 30, 31grppropd 18991 . . . 4 (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
3329, 32imbitrrid 246 . . 3 (𝜑 → (𝐿 ∈ LMod → 𝐾 ∈ Grp))
34 eqid 2740 . . . . . 6 (Base‘𝐿) = (Base‘𝐿)
35 eqid 2740 . . . . . 6 (+g𝐿) = (+g𝐿)
36 eqid 2740 . . . . . 6 ( ·𝑠𝐿) = ( ·𝑠𝐿)
37 lmodprop2d.g . . . . . 6 𝐺 = (Scalar‘𝐿)
38 eqid 2740 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
39 eqid 2740 . . . . . 6 (+g𝐺) = (+g𝐺)
40 eqid 2740 . . . . . 6 (.r𝐺) = (.r𝐺)
41 eqid 2740 . . . . . 6 (1r𝐺) = (1r𝐺)
4234, 35, 36, 37, 38, 39, 40, 41islmod 20884 . . . . 5 (𝐿 ∈ LMod ↔ (𝐿 ∈ Grp ∧ 𝐺 ∈ Ring ∧ ∀𝑞 ∈ (Base‘𝐺)∀𝑟 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑤) ∈ (Base‘𝐿) ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))))
4342simp2bi 1146 . . . 4 (𝐿 ∈ LMod → 𝐺 ∈ Ring)
44 lmodprop2d.p2 . . . . 5 (𝜑𝑃 = (Base‘𝐺))
45 lmodprop2d.2 . . . . 5 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))
46 lmodprop2d.3 . . . . 5 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(.r𝐹)𝑦) = (𝑥(.r𝐺)𝑦))
4716, 44, 45, 46ringpropd 20311 . . . 4 (𝜑 → (𝐹 ∈ Ring ↔ 𝐺 ∈ Ring))
4843, 47imbitrrid 246 . . 3 (𝜑 → (𝐿 ∈ LMod → 𝐹 ∈ Ring))
49 simplr 768 . . . . . . 7 (((𝜑𝐿 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝐿 ∈ LMod)
50 simprl 770 . . . . . . . 8 (((𝜑𝐿 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝑥𝑃)
5144ad2antrr 725 . . . . . . . 8 (((𝜑𝐿 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝑃 = (Base‘𝐺))
5250, 51eleqtrd 2846 . . . . . . 7 (((𝜑𝐿 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝑥 ∈ (Base‘𝐺))
53 simprr 772 . . . . . . . 8 (((𝜑𝐿 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝑦𝐵)
5430ad2antrr 725 . . . . . . . 8 (((𝜑𝐿 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝐵 = (Base‘𝐿))
5553, 54eleqtrd 2846 . . . . . . 7 (((𝜑𝐿 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝑦 ∈ (Base‘𝐿))
5634, 37, 36, 38lmodvscl 20898 . . . . . . 7 ((𝐿 ∈ LMod ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐿)) → (𝑥( ·𝑠𝐿)𝑦) ∈ (Base‘𝐿))
5749, 52, 55, 56syl3anc 1371 . . . . . 6 (((𝜑𝐿 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐿)𝑦) ∈ (Base‘𝐿))
58 lmodprop2d.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
5958adantlr 714 . . . . . 6 (((𝜑𝐿 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
6057, 59, 543eltr4d 2859 . . . . 5 (((𝜑𝐿 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)
6160ralrimivva 3208 . . . 4 ((𝜑𝐿 ∈ LMod) → ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)
6261ex 412 . . 3 (𝜑 → (𝐿 ∈ LMod → ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵))
6333, 48, 623jcad 1129 . 2 (𝜑 → (𝐿 ∈ LMod → (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)))
6432adantr 480 . . . . 5 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
6547adantr 480 . . . . 5 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (𝐹 ∈ Ring ↔ 𝐺 ∈ Ring))
66 simpll 766 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝜑)
67 simprlr 779 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝑟𝑃)
68 simprrr 781 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝑤𝐵)
6958oveqrspc2v 7475 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟𝑃𝑤𝐵)) → (𝑟( ·𝑠𝐾)𝑤) = (𝑟( ·𝑠𝐿)𝑤))
7066, 67, 68, 69syl12anc 836 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)𝑤) = (𝑟( ·𝑠𝐿)𝑤))
7170eleq1d 2829 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ↔ (𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵))
72 simplr1 1215 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝐾 ∈ Grp)
7320ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝐵 = (Base‘𝐾))
7468, 73eleqtrd 2846 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝑤 ∈ (Base‘𝐾))
75 simprrl 780 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝑧𝐵)
7675, 73eleqtrd 2846 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝑧 ∈ (Base‘𝐾))
773, 4grpcl 18981 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Grp ∧ 𝑤 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑤(+g𝐾)𝑧) ∈ (Base‘𝐾))
7872, 74, 76, 77syl3anc 1371 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑤(+g𝐾)𝑧) ∈ (Base‘𝐾))
7978, 73eleqtrrd 2847 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑤(+g𝐾)𝑧) ∈ 𝐵)
8058oveqrspc2v 7475 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟𝑃 ∧ (𝑤(+g𝐾)𝑧) ∈ 𝐵)) → (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = (𝑟( ·𝑠𝐿)(𝑤(+g𝐾)𝑧)))
8166, 67, 79, 80syl12anc 836 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = (𝑟( ·𝑠𝐿)(𝑤(+g𝐾)𝑧)))
8231oveqrspc2v 7475 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑤𝐵𝑧𝐵)) → (𝑤(+g𝐾)𝑧) = (𝑤(+g𝐿)𝑧))
8366, 68, 75, 82syl12anc 836 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑤(+g𝐾)𝑧) = (𝑤(+g𝐿)𝑧))
8483oveq2d 7464 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐿)(𝑤(+g𝐾)𝑧)) = (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)))
8581, 84eqtrd 2780 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)))
86 simplr3 1217 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)
87 ovrspc2v 7474 . . . . . . . . . . . . . . 15 (((𝑟𝑃𝑤𝐵) ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵) → (𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵)
8867, 68, 86, 87syl21anc 837 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵)
89 ovrspc2v 7474 . . . . . . . . . . . . . . 15 (((𝑟𝑃𝑧𝐵) ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵) → (𝑟( ·𝑠𝐾)𝑧) ∈ 𝐵)
9067, 75, 86, 89syl21anc 837 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)𝑧) ∈ 𝐵)
9131oveqrspc2v 7475 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)𝑧) ∈ 𝐵)) → ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐿)(𝑟( ·𝑠𝐾)𝑧)))
9266, 88, 90, 91syl12anc 836 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐿)(𝑟( ·𝑠𝐾)𝑧)))
9358oveqrspc2v 7475 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟𝑃𝑧𝐵)) → (𝑟( ·𝑠𝐾)𝑧) = (𝑟( ·𝑠𝐿)𝑧))
9466, 67, 75, 93syl12anc 836 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)𝑧) = (𝑟( ·𝑠𝐿)𝑧))
9570, 94oveq12d 7466 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑟( ·𝑠𝐾)𝑤)(+g𝐿)(𝑟( ·𝑠𝐾)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)))
9692, 95eqtrd 2780 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)))
9785, 96eqeq12d 2756 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ↔ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧))))
98 simplr2 1216 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝐹 ∈ Ring)
99 simprll 778 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝑞𝑃)
10016ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝑃 = (Base‘𝐹))
10199, 100eleqtrd 2846 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝑞 ∈ (Base‘𝐹))
10267, 100eleqtrd 2846 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝑟 ∈ (Base‘𝐹))
1037, 8ringacl 20301 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Ring ∧ 𝑞 ∈ (Base‘𝐹) ∧ 𝑟 ∈ (Base‘𝐹)) → (𝑞(+g𝐹)𝑟) ∈ (Base‘𝐹))
10498, 101, 102, 103syl3anc 1371 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑞(+g𝐹)𝑟) ∈ (Base‘𝐹))
105104, 100eleqtrrd 2847 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑞(+g𝐹)𝑟) ∈ 𝑃)
10658oveqrspc2v 7475 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑞(+g𝐹)𝑟) ∈ 𝑃𝑤𝐵)) → ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞(+g𝐹)𝑟)( ·𝑠𝐿)𝑤))
10766, 105, 68, 106syl12anc 836 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞(+g𝐹)𝑟)( ·𝑠𝐿)𝑤))
10845oveqrspc2v 7475 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑞𝑃𝑟𝑃)) → (𝑞(+g𝐹)𝑟) = (𝑞(+g𝐺)𝑟))
109108ad2ant2r 746 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑞(+g𝐹)𝑟) = (𝑞(+g𝐺)𝑟))
110109oveq1d 7463 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑞(+g𝐹)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤))
111107, 110eqtrd 2780 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤))
112 ovrspc2v 7474 . . . . . . . . . . . . . . 15 (((𝑞𝑃𝑤𝐵) ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵) → (𝑞( ·𝑠𝐾)𝑤) ∈ 𝐵)
11399, 68, 86, 112syl21anc 837 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑞( ·𝑠𝐾)𝑤) ∈ 𝐵)
11431oveqrspc2v 7475 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑞( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵)) → ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤)) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐿)(𝑟( ·𝑠𝐾)𝑤)))
11566, 113, 88, 114syl12anc 836 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤)) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐿)(𝑟( ·𝑠𝐾)𝑤)))
11658oveqrspc2v 7475 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑞𝑃𝑤𝐵)) → (𝑞( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐿)𝑤))
11766, 99, 68, 116syl12anc 836 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑞( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐿)𝑤))
118117, 70oveq12d 7466 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑞( ·𝑠𝐾)𝑤)(+g𝐿)(𝑟( ·𝑠𝐾)𝑤)) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤)))
119115, 118eqtrd 2780 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤)) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤)))
120111, 119eqeq12d 2756 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤)) ↔ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))))
12171, 97, 1203anbi123d 1436 . . . . . . . . . 10 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ↔ ((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤)))))
1227, 9ringcl 20277 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Ring ∧ 𝑞 ∈ (Base‘𝐹) ∧ 𝑟 ∈ (Base‘𝐹)) → (𝑞(.r𝐹)𝑟) ∈ (Base‘𝐹))
12398, 101, 102, 122syl3anc 1371 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑞(.r𝐹)𝑟) ∈ (Base‘𝐹))
124123, 100eleqtrrd 2847 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑞(.r𝐹)𝑟) ∈ 𝑃)
12558oveqrspc2v 7475 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑞(.r𝐹)𝑟) ∈ 𝑃𝑤𝐵)) → ((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞(.r𝐹)𝑟)( ·𝑠𝐿)𝑤))
12666, 124, 68, 125syl12anc 836 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞(.r𝐹)𝑟)( ·𝑠𝐿)𝑤))
12746oveqrspc2v 7475 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑞𝑃𝑟𝑃)) → (𝑞(.r𝐹)𝑟) = (𝑞(.r𝐺)𝑟))
128127ad2ant2r 746 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑞(.r𝐹)𝑟) = (𝑞(.r𝐺)𝑟))
129128oveq1d 7463 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑞(.r𝐹)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤))
130126, 129eqtrd 2780 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤))
13158oveqrspc2v 7475 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑞𝑃 ∧ (𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵)) → (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐾)𝑤)))
13266, 99, 88, 131syl12anc 836 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐾)𝑤)))
13370oveq2d 7464 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐾)𝑤)) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)))
134132, 133eqtrd 2780 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)))
135130, 134eqeq12d 2756 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ↔ ((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤))))
1367, 10ringidcl 20289 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Ring → (1r𝐹) ∈ (Base‘𝐹))
13798, 136syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (1r𝐹) ∈ (Base‘𝐹))
138137, 100eleqtrrd 2847 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (1r𝐹) ∈ 𝑃)
13958oveqrspc2v 7475 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((1r𝐹) ∈ 𝑃𝑤𝐵)) → ((1r𝐹)( ·𝑠𝐾)𝑤) = ((1r𝐹)( ·𝑠𝐿)𝑤))
14066, 138, 68, 139syl12anc 836 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((1r𝐹)( ·𝑠𝐾)𝑤) = ((1r𝐹)( ·𝑠𝐿)𝑤))
14116, 44, 46rngidpropd 20441 . . . . . . . . . . . . . . 15 (𝜑 → (1r𝐹) = (1r𝐺))
142141ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (1r𝐹) = (1r𝐺))
143142oveq1d 7463 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((1r𝐹)( ·𝑠𝐿)𝑤) = ((1r𝐺)( ·𝑠𝐿)𝑤))
144140, 143eqtrd 2780 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((1r𝐹)( ·𝑠𝐾)𝑤) = ((1r𝐺)( ·𝑠𝐿)𝑤))
145144eqeq1d 2742 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤 ↔ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))
146135, 145anbi12d 631 . . . . . . . . . 10 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤) ↔ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤)))
147121, 146anbi12d 631 . . . . . . . . 9 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))))
148147anassrs 467 . . . . . . . 8 ((((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ (𝑞𝑃𝑟𝑃)) ∧ (𝑧𝐵𝑤𝐵)) → ((((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))))
1491482ralbidva 3225 . . . . . . 7 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ (𝑞𝑃𝑟𝑃)) → (∀𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤)) ↔ ∀𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))))
1501492ralbidva 3225 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (∀𝑞𝑃𝑟𝑃𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤)) ↔ ∀𝑞𝑃𝑟𝑃𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))))
15116adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → 𝑃 = (Base‘𝐹))
15220adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → 𝐵 = (Base‘𝐾))
153152eleq2d 2830 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → ((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ↔ (𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾)))
1541533anbi1d 1440 . . . . . . . . . . 11 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ↔ ((𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾) ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤)))))
155154anbi1d 630 . . . . . . . . . 10 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → ((((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾) ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤))))
156152, 155raleqbidv 3354 . . . . . . . . 9 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (∀𝑤𝐵 (((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤)) ↔ ∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾) ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤))))
157152, 156raleqbidv 3354 . . . . . . . 8 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (∀𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤)) ↔ ∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾) ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤))))
158151, 157raleqbidv 3354 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (∀𝑟𝑃𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤)) ↔ ∀𝑟 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾) ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤))))
159151, 158raleqbidv 3354 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (∀𝑞𝑃𝑟𝑃𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤)) ↔ ∀𝑞 ∈ (Base‘𝐹)∀𝑟 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾) ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤))))
16044adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → 𝑃 = (Base‘𝐺))
16130adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → 𝐵 = (Base‘𝐿))
162161eleq2d 2830 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → ((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ↔ (𝑟( ·𝑠𝐿)𝑤) ∈ (Base‘𝐿)))
1631623anbi1d 1440 . . . . . . . . . . 11 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ↔ ((𝑟( ·𝑠𝐿)𝑤) ∈ (Base‘𝐿) ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤)))))
164163anbi1d 630 . . . . . . . . . 10 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → ((((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝐿)𝑤) ∈ (Base‘𝐿) ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))))
165161, 164raleqbidv 3354 . . . . . . . . 9 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (∀𝑤𝐵 (((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤)) ↔ ∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑤) ∈ (Base‘𝐿) ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))))
166161, 165raleqbidv 3354 . . . . . . . 8 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (∀𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤)) ↔ ∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑤) ∈ (Base‘𝐿) ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))))
167160, 166raleqbidv 3354 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (∀𝑟𝑃𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤)) ↔ ∀𝑟 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑤) ∈ (Base‘𝐿) ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))))
168160, 167raleqbidv 3354 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (∀𝑞𝑃𝑟𝑃𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤)) ↔ ∀𝑞 ∈ (Base‘𝐺)∀𝑟 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑤) ∈ (Base‘𝐿) ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))))
169150, 159, 1683bitr3d 309 . . . . 5 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (∀𝑞 ∈ (Base‘𝐹)∀𝑟 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾) ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤)) ↔ ∀𝑞 ∈ (Base‘𝐺)∀𝑟 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑤) ∈ (Base‘𝐿) ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))))
17064, 65, 1693anbi123d 1436 . . . 4 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → ((𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ (Base‘𝐹)∀𝑟 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾) ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤))) ↔ (𝐿 ∈ Grp ∧ 𝐺 ∈ Ring ∧ ∀𝑞 ∈ (Base‘𝐺)∀𝑟 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑤) ∈ (Base‘𝐿) ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤)))))
171170, 11, 423bitr4g 314 . . 3 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod))
172171ex 412 . 2 (𝜑 → ((𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵) → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod)))
17328, 63, 172pm5.21ndd 379 1 (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  Grpcgrp 18973  1rcur 20208  Ringcrg 20260  LModclmod 20880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-mgp 20162  df-ur 20209  df-ring 20262  df-lmod 20882
This theorem is referenced by:  lmodpropd  20945  lvecprop2d  21191
  Copyright terms: Public domain W3C validator