Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islvol2aN Structured version   Visualization version   GIF version

Theorem islvol2aN 38463
Description: The predicate "is a lattice volume". (Contributed by NM, 16-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
islvol2a.l ≀ = (leβ€˜πΎ)
islvol2a.j ∨ = (joinβ€˜πΎ)
islvol2a.a 𝐴 = (Atomsβ€˜πΎ)
islvol2a.v 𝑉 = (LVolsβ€˜πΎ)
Assertion
Ref Expression
islvol2aN (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ∈ 𝑉 ↔ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))))

Proof of Theorem islvol2aN
StepHypRef Expression
1 oveq1 7416 . . . . . . . . 9 (𝑃 = 𝑄 β†’ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑄))
2 simpl1 1192 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝐾 ∈ HL)
3 simpl3 1194 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝑄 ∈ 𝐴)
4 islvol2a.j . . . . . . . . . . 11 ∨ = (joinβ€˜πΎ)
5 islvol2a.a . . . . . . . . . . 11 𝐴 = (Atomsβ€˜πΎ)
64, 5hlatjidm 38239 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) β†’ (𝑄 ∨ 𝑄) = 𝑄)
72, 3, 6syl2anc 585 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ (𝑄 ∨ 𝑄) = 𝑄)
81, 7sylan9eqr 2795 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 = 𝑄) β†’ (𝑃 ∨ 𝑄) = 𝑄)
98oveq1d 7424 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 = 𝑄) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) = (𝑄 ∨ 𝑅))
109oveq1d 7424 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 = 𝑄) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) = ((𝑄 ∨ 𝑅) ∨ 𝑆))
11 simprl 770 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝑅 ∈ 𝐴)
12 simprr 772 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝑆 ∈ 𝐴)
13 islvol2a.v . . . . . . . . 9 𝑉 = (LVolsβ€˜πΎ)
144, 5, 133atnelvolN 38457 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ Β¬ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑉)
152, 3, 11, 12, 14syl13anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ Β¬ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑉)
1615adantr 482 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 = 𝑄) β†’ Β¬ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑉)
1710, 16eqneltrd 2854 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 = 𝑄) β†’ Β¬ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ∈ 𝑉)
1817ex 414 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ (𝑃 = 𝑄 β†’ Β¬ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ∈ 𝑉))
1918necon2ad 2956 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ∈ 𝑉 β†’ 𝑃 β‰  𝑄))
202hllatd 38234 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝐾 ∈ Lat)
21 eqid 2733 . . . . . . . 8 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2221, 5atbase 38159 . . . . . . 7 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ (Baseβ€˜πΎ))
2322ad2antrl 727 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝑅 ∈ (Baseβ€˜πΎ))
2421, 4, 5hlatjcl 38237 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
2524adantr 482 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
26 islvol2a.l . . . . . . 7 ≀ = (leβ€˜πΎ)
2721, 26, 4latleeqj2 18405 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ)) β†’ (𝑅 ≀ (𝑃 ∨ 𝑄) ↔ ((𝑃 ∨ 𝑄) ∨ 𝑅) = (𝑃 ∨ 𝑄)))
2820, 23, 25, 27syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ (𝑅 ≀ (𝑃 ∨ 𝑄) ↔ ((𝑃 ∨ 𝑄) ∨ 𝑅) = (𝑃 ∨ 𝑄)))
29 simpl2 1193 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝑃 ∈ 𝐴)
304, 5, 133atnelvolN 38457 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ Β¬ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ 𝑉)
312, 29, 3, 12, 30syl13anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ Β¬ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ 𝑉)
32 oveq1 7416 . . . . . . . 8 (((𝑃 ∨ 𝑄) ∨ 𝑅) = (𝑃 ∨ 𝑄) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) = ((𝑃 ∨ 𝑄) ∨ 𝑆))
3332eleq1d 2819 . . . . . . 7 (((𝑃 ∨ 𝑄) ∨ 𝑅) = (𝑃 ∨ 𝑄) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ∈ 𝑉 ↔ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ 𝑉))
3433notbid 318 . . . . . 6 (((𝑃 ∨ 𝑄) ∨ 𝑅) = (𝑃 ∨ 𝑄) β†’ (Β¬ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ∈ 𝑉 ↔ Β¬ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ 𝑉))
3531, 34syl5ibrcom 246 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑅) = (𝑃 ∨ 𝑄) β†’ Β¬ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ∈ 𝑉))
3628, 35sylbid 239 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ (𝑅 ≀ (𝑃 ∨ 𝑄) β†’ Β¬ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ∈ 𝑉))
3736con2d 134 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ∈ 𝑉 β†’ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))
3821, 5atbase 38159 . . . . . . 7 (𝑆 ∈ 𝐴 β†’ 𝑆 ∈ (Baseβ€˜πΎ))
3938ad2antll 728 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝑆 ∈ (Baseβ€˜πΎ))
4021, 4latjcl 18392 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Baseβ€˜πΎ))
4120, 25, 23, 40syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Baseβ€˜πΎ))
4221, 26, 4latleeqj2 18405 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Baseβ€˜πΎ)) β†’ (𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅) ↔ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) = ((𝑃 ∨ 𝑄) ∨ 𝑅)))
4320, 39, 41, 42syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ (𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅) ↔ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) = ((𝑃 ∨ 𝑄) ∨ 𝑅)))
444, 5, 133atnelvolN 38457 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ Β¬ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑉)
452, 29, 3, 11, 44syl13anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ Β¬ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑉)
46 eleq1 2822 . . . . . . 7 ((((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) = ((𝑃 ∨ 𝑄) ∨ 𝑅) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ∈ 𝑉 ↔ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑉))
4746notbid 318 . . . . . 6 ((((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) = ((𝑃 ∨ 𝑄) ∨ 𝑅) β†’ (Β¬ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ∈ 𝑉 ↔ Β¬ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑉))
4845, 47syl5ibrcom 246 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) = ((𝑃 ∨ 𝑄) ∨ 𝑅) β†’ Β¬ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ∈ 𝑉))
4943, 48sylbid 239 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ (𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅) β†’ Β¬ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ∈ 𝑉))
5049con2d 134 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ∈ 𝑉 β†’ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅)))
5119, 37, 503jcad 1130 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ∈ 𝑉 β†’ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))))
5226, 4, 5, 13lvoli2 38452 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ∈ 𝑉)
53523expia 1122 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ ((𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ∈ 𝑉))
5451, 53impbid 211 1 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ∈ 𝑉 ↔ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2941   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144  lecple 17204  joincjn 18264  Latclat 18384  Atomscatm 38133  HLchlt 38220  LVolsclvol 38364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-proset 18248  df-poset 18266  df-plt 18283  df-lub 18299  df-glb 18300  df-join 18301  df-meet 18302  df-p0 18378  df-lat 18385  df-clat 18452  df-oposet 38046  df-ol 38048  df-oml 38049  df-covers 38136  df-ats 38137  df-atl 38168  df-cvlat 38192  df-hlat 38221  df-llines 38369  df-lplanes 38370  df-lvols 38371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator