Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islvol2aN Structured version   Visualization version   GIF version

Theorem islvol2aN 36173
Description: The predicate "is a lattice volume". (Contributed by NM, 16-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
islvol2a.l = (le‘𝐾)
islvol2a.j = (join‘𝐾)
islvol2a.a 𝐴 = (Atoms‘𝐾)
islvol2a.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
islvol2aN (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))))

Proof of Theorem islvol2aN
StepHypRef Expression
1 oveq1 6985 . . . . . . . . 9 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
2 simpl1 1171 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ HL)
3 simpl3 1173 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑄𝐴)
4 islvol2a.j . . . . . . . . . . 11 = (join‘𝐾)
5 islvol2a.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
64, 5hlatjidm 35950 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
72, 3, 6syl2anc 576 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑄 𝑄) = 𝑄)
81, 7sylan9eqr 2836 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃 = 𝑄) → (𝑃 𝑄) = 𝑄)
98oveq1d 6993 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃 = 𝑄) → ((𝑃 𝑄) 𝑅) = (𝑄 𝑅))
109oveq1d 6993 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃 = 𝑄) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑄 𝑅) 𝑆))
11 simprl 758 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑅𝐴)
12 simprr 760 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑆𝐴)
13 islvol2a.v . . . . . . . . 9 𝑉 = (LVols‘𝐾)
144, 5, 133atnelvolN 36167 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → ¬ ((𝑄 𝑅) 𝑆) ∈ 𝑉)
152, 3, 11, 12, 14syl13anc 1352 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ¬ ((𝑄 𝑅) 𝑆) ∈ 𝑉)
1615adantr 473 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃 = 𝑄) → ¬ ((𝑄 𝑅) 𝑆) ∈ 𝑉)
1710, 16eqneltrd 2885 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃 = 𝑄) → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉)
1817ex 405 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 = 𝑄 → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉))
1918necon2ad 2982 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉𝑃𝑄))
202hllatd 35945 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ Lat)
21 eqid 2778 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2221, 5atbase 35870 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
2322ad2antrl 715 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑅 ∈ (Base‘𝐾))
2421, 4, 5hlatjcl 35948 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
2524adantr 473 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
26 islvol2a.l . . . . . . 7 = (le‘𝐾)
2721, 26, 4latleeqj2 17535 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑅 (𝑃 𝑄) ↔ ((𝑃 𝑄) 𝑅) = (𝑃 𝑄)))
2820, 23, 25, 27syl3anc 1351 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑅 (𝑃 𝑄) ↔ ((𝑃 𝑄) 𝑅) = (𝑃 𝑄)))
29 simpl2 1172 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑃𝐴)
304, 5, 133atnelvolN 36167 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑆𝐴)) → ¬ ((𝑃 𝑄) 𝑆) ∈ 𝑉)
312, 29, 3, 12, 30syl13anc 1352 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ¬ ((𝑃 𝑄) 𝑆) ∈ 𝑉)
32 oveq1 6985 . . . . . . . 8 (((𝑃 𝑄) 𝑅) = (𝑃 𝑄) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑆))
3332eleq1d 2850 . . . . . . 7 (((𝑃 𝑄) 𝑅) = (𝑃 𝑄) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ ((𝑃 𝑄) 𝑆) ∈ 𝑉))
3433notbid 310 . . . . . 6 (((𝑃 𝑄) 𝑅) = (𝑃 𝑄) → (¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ ¬ ((𝑃 𝑄) 𝑆) ∈ 𝑉))
3531, 34syl5ibrcom 239 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (((𝑃 𝑄) 𝑅) = (𝑃 𝑄) → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉))
3628, 35sylbid 232 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑅 (𝑃 𝑄) → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉))
3736con2d 132 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 → ¬ 𝑅 (𝑃 𝑄)))
3821, 5atbase 35870 . . . . . . 7 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
3938ad2antll 716 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑆 ∈ (Base‘𝐾))
4021, 4latjcl 17522 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
4120, 25, 23, 40syl3anc 1351 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
4221, 26, 4latleeqj2 17535 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾)) → (𝑆 ((𝑃 𝑄) 𝑅) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅)))
4320, 39, 41, 42syl3anc 1351 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑆 ((𝑃 𝑄) 𝑅) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅)))
444, 5, 133atnelvolN 36167 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑉)
452, 29, 3, 11, 44syl13anc 1352 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑉)
46 eleq1 2853 . . . . . . 7 ((((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ ((𝑃 𝑄) 𝑅) ∈ 𝑉))
4746notbid 310 . . . . . 6 ((((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅) → (¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑉))
4845, 47syl5ibrcom 239 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅) → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉))
4943, 48sylbid 232 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑆 ((𝑃 𝑄) 𝑅) → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉))
5049con2d 132 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 → ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
5119, 37, 503jcad 1109 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))))
5226, 4, 5, 13lvoli2 36162 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉)
53523expia 1101 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉))
5451, 53impbid 204 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2967   class class class wbr 4930  cfv 6190  (class class class)co 6978  Basecbs 16342  lecple 16431  joincjn 17415  Latclat 17516  Atomscatm 35844  HLchlt 35931  LVolsclvol 36074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-id 5313  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-proset 17399  df-poset 17417  df-plt 17429  df-lub 17445  df-glb 17446  df-join 17447  df-meet 17448  df-p0 17510  df-lat 17517  df-clat 17579  df-oposet 35757  df-ol 35759  df-oml 35760  df-covers 35847  df-ats 35848  df-atl 35879  df-cvlat 35903  df-hlat 35932  df-llines 36079  df-lplanes 36080  df-lvols 36081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator