Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islvol2aN Structured version   Visualization version   GIF version

Theorem islvol2aN 36888
Description: The predicate "is a lattice volume". (Contributed by NM, 16-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
islvol2a.l = (le‘𝐾)
islvol2a.j = (join‘𝐾)
islvol2a.a 𝐴 = (Atoms‘𝐾)
islvol2a.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
islvol2aN (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))))

Proof of Theorem islvol2aN
StepHypRef Expression
1 oveq1 7142 . . . . . . . . 9 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
2 simpl1 1188 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ HL)
3 simpl3 1190 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑄𝐴)
4 islvol2a.j . . . . . . . . . . 11 = (join‘𝐾)
5 islvol2a.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
64, 5hlatjidm 36665 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
72, 3, 6syl2anc 587 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑄 𝑄) = 𝑄)
81, 7sylan9eqr 2855 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃 = 𝑄) → (𝑃 𝑄) = 𝑄)
98oveq1d 7150 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃 = 𝑄) → ((𝑃 𝑄) 𝑅) = (𝑄 𝑅))
109oveq1d 7150 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃 = 𝑄) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑄 𝑅) 𝑆))
11 simprl 770 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑅𝐴)
12 simprr 772 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑆𝐴)
13 islvol2a.v . . . . . . . . 9 𝑉 = (LVols‘𝐾)
144, 5, 133atnelvolN 36882 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → ¬ ((𝑄 𝑅) 𝑆) ∈ 𝑉)
152, 3, 11, 12, 14syl13anc 1369 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ¬ ((𝑄 𝑅) 𝑆) ∈ 𝑉)
1615adantr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃 = 𝑄) → ¬ ((𝑄 𝑅) 𝑆) ∈ 𝑉)
1710, 16eqneltrd 2909 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃 = 𝑄) → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉)
1817ex 416 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 = 𝑄 → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉))
1918necon2ad 3002 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉𝑃𝑄))
202hllatd 36660 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ Lat)
21 eqid 2798 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2221, 5atbase 36585 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
2322ad2antrl 727 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑅 ∈ (Base‘𝐾))
2421, 4, 5hlatjcl 36663 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
2524adantr 484 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
26 islvol2a.l . . . . . . 7 = (le‘𝐾)
2721, 26, 4latleeqj2 17666 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑅 (𝑃 𝑄) ↔ ((𝑃 𝑄) 𝑅) = (𝑃 𝑄)))
2820, 23, 25, 27syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑅 (𝑃 𝑄) ↔ ((𝑃 𝑄) 𝑅) = (𝑃 𝑄)))
29 simpl2 1189 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑃𝐴)
304, 5, 133atnelvolN 36882 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑆𝐴)) → ¬ ((𝑃 𝑄) 𝑆) ∈ 𝑉)
312, 29, 3, 12, 30syl13anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ¬ ((𝑃 𝑄) 𝑆) ∈ 𝑉)
32 oveq1 7142 . . . . . . . 8 (((𝑃 𝑄) 𝑅) = (𝑃 𝑄) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑆))
3332eleq1d 2874 . . . . . . 7 (((𝑃 𝑄) 𝑅) = (𝑃 𝑄) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ ((𝑃 𝑄) 𝑆) ∈ 𝑉))
3433notbid 321 . . . . . 6 (((𝑃 𝑄) 𝑅) = (𝑃 𝑄) → (¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ ¬ ((𝑃 𝑄) 𝑆) ∈ 𝑉))
3531, 34syl5ibrcom 250 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (((𝑃 𝑄) 𝑅) = (𝑃 𝑄) → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉))
3628, 35sylbid 243 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑅 (𝑃 𝑄) → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉))
3736con2d 136 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 → ¬ 𝑅 (𝑃 𝑄)))
3821, 5atbase 36585 . . . . . . 7 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
3938ad2antll 728 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑆 ∈ (Base‘𝐾))
4021, 4latjcl 17653 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
4120, 25, 23, 40syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
4221, 26, 4latleeqj2 17666 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾)) → (𝑆 ((𝑃 𝑄) 𝑅) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅)))
4320, 39, 41, 42syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑆 ((𝑃 𝑄) 𝑅) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅)))
444, 5, 133atnelvolN 36882 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑉)
452, 29, 3, 11, 44syl13anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑉)
46 eleq1 2877 . . . . . . 7 ((((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ ((𝑃 𝑄) 𝑅) ∈ 𝑉))
4746notbid 321 . . . . . 6 ((((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅) → (¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑉))
4845, 47syl5ibrcom 250 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅) → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉))
4943, 48sylbid 243 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑆 ((𝑃 𝑄) 𝑅) → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉))
5049con2d 136 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 → ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
5119, 37, 503jcad 1126 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))))
5226, 4, 5, 13lvoli2 36877 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉)
53523expia 1118 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉))
5451, 53impbid 215 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564  joincjn 17546  Latclat 17647  Atomscatm 36559  HLchlt 36646  LVolsclvol 36789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-llines 36794  df-lplanes 36795  df-lvols 36796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator