MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxssixx Structured version   Visualization version   GIF version

Theorem ixxssixx 13343
Description: An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
Hypotheses
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixx.2 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
ixx.3 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑇𝑤))
ixx.4 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝑈𝐵))
Assertion
Ref Expression
ixxssixx (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑂   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝑃   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑈,𝑦,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑧)   𝑅(𝑤)   𝑆(𝑤)   𝑇(𝑤)   𝑈(𝑤)   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxssixx
StepHypRef Expression
1 ixx.1 . . . 4 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
21elmpocl 7651 . . 3 (𝑤 ∈ (𝐴𝑂𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
3 simp1 1135 . . . . . 6 ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → 𝑤 ∈ ℝ*)
43a1i 11 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → 𝑤 ∈ ℝ*))
5 simpl 482 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ∈ ℝ*)
6 3simpa 1147 . . . . . 6 ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → (𝑤 ∈ ℝ*𝐴𝑅𝑤))
7 ixx.3 . . . . . . 7 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑇𝑤))
87expimpd 453 . . . . . 6 (𝐴 ∈ ℝ* → ((𝑤 ∈ ℝ*𝐴𝑅𝑤) → 𝐴𝑇𝑤))
95, 6, 8syl2im 40 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → 𝐴𝑇𝑤))
10 simpr 484 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ∈ ℝ*)
11 3simpb 1148 . . . . . 6 ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → (𝑤 ∈ ℝ*𝑤𝑆𝐵))
12 ixx.4 . . . . . . . 8 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝑈𝐵))
1312ancoms 458 . . . . . . 7 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝑈𝐵))
1413expimpd 453 . . . . . 6 (𝐵 ∈ ℝ* → ((𝑤 ∈ ℝ*𝑤𝑆𝐵) → 𝑤𝑈𝐵))
1510, 11, 14syl2im 40 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → 𝑤𝑈𝐵))
164, 9, 153jcad 1128 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → (𝑤 ∈ ℝ*𝐴𝑇𝑤𝑤𝑈𝐵)))
171elixx1 13338 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
18 ixx.2 . . . . 5 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
1918elixx1 13338 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑃𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑇𝑤𝑤𝑈𝐵)))
2016, 17, 193imtr4d 294 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈ (𝐴𝑃𝐵)))
212, 20mpcom 38 . 2 (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈ (𝐴𝑃𝐵))
2221ssriv 3986 1 (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  {crab 3431  wss 3948   class class class wbr 5148  (class class class)co 7412  cmpo 7414  *cxr 11252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7728  ax-cnex 11169  ax-resscn 11170
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-xr 11257
This theorem is referenced by:  ioossicc  13415  icossicc  13418  iocssicc  13419  ioossico  13420  dvloglem  26393  ioossioc  44504
  Copyright terms: Public domain W3C validator