MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxssixx Structured version   Visualization version   GIF version

Theorem ixxssixx 13421
Description: An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
Hypotheses
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixx.2 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
ixx.3 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑇𝑤))
ixx.4 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝑈𝐵))
Assertion
Ref Expression
ixxssixx (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑂   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝑃   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑈,𝑦,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑧)   𝑅(𝑤)   𝑆(𝑤)   𝑇(𝑤)   𝑈(𝑤)   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxssixx
StepHypRef Expression
1 ixx.1 . . . 4 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
21elmpocl 7691 . . 3 (𝑤 ∈ (𝐴𝑂𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
3 simp1 1136 . . . . . 6 ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → 𝑤 ∈ ℝ*)
43a1i 11 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → 𝑤 ∈ ℝ*))
5 simpl 482 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ∈ ℝ*)
6 3simpa 1148 . . . . . 6 ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → (𝑤 ∈ ℝ*𝐴𝑅𝑤))
7 ixx.3 . . . . . . 7 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑇𝑤))
87expimpd 453 . . . . . 6 (𝐴 ∈ ℝ* → ((𝑤 ∈ ℝ*𝐴𝑅𝑤) → 𝐴𝑇𝑤))
95, 6, 8syl2im 40 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → 𝐴𝑇𝑤))
10 simpr 484 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ∈ ℝ*)
11 3simpb 1149 . . . . . 6 ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → (𝑤 ∈ ℝ*𝑤𝑆𝐵))
12 ixx.4 . . . . . . . 8 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝑈𝐵))
1312ancoms 458 . . . . . . 7 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝑈𝐵))
1413expimpd 453 . . . . . 6 (𝐵 ∈ ℝ* → ((𝑤 ∈ ℝ*𝑤𝑆𝐵) → 𝑤𝑈𝐵))
1510, 11, 14syl2im 40 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → 𝑤𝑈𝐵))
164, 9, 153jcad 1129 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → (𝑤 ∈ ℝ*𝐴𝑇𝑤𝑤𝑈𝐵)))
171elixx1 13416 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
18 ixx.2 . . . . 5 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
1918elixx1 13416 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑃𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑇𝑤𝑤𝑈𝐵)))
2016, 17, 193imtr4d 294 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈ (𝐴𝑃𝐵)))
212, 20mpcom 38 . 2 (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈ (𝐴𝑃𝐵))
2221ssriv 4012 1 (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  {crab 3443  wss 3976   class class class wbr 5166  (class class class)co 7448  cmpo 7450  *cxr 11323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-xr 11328
This theorem is referenced by:  ioossicc  13493  icossicc  13496  iocssicc  13497  ioossico  13498  dvloglem  26708  ioossioc  45410
  Copyright terms: Public domain W3C validator