| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixxssixx | Structured version Visualization version GIF version | ||
| Description: An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
| ixx.2 | ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑈𝑦)}) |
| ixx.3 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴𝑅𝑤 → 𝐴𝑇𝑤)) |
| ixx.4 | ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤𝑆𝐵 → 𝑤𝑈𝐵)) |
| Ref | Expression |
|---|---|
| ixxssixx | ⊢ (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixx.1 | . . . 4 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
| 2 | 1 | elmpocl 7587 | . . 3 ⊢ (𝑤 ∈ (𝐴𝑂𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
| 3 | simp1 1136 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → 𝑤 ∈ ℝ*) | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → 𝑤 ∈ ℝ*)) |
| 5 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ∈ ℝ*) | |
| 6 | 3simpa 1148 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤)) | |
| 7 | ixx.3 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴𝑅𝑤 → 𝐴𝑇𝑤)) | |
| 8 | 7 | expimpd 453 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤) → 𝐴𝑇𝑤)) |
| 9 | 5, 6, 8 | syl2im 40 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → 𝐴𝑇𝑤)) |
| 10 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐵 ∈ ℝ*) | |
| 11 | 3simpb 1149 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → (𝑤 ∈ ℝ* ∧ 𝑤𝑆𝐵)) | |
| 12 | ixx.4 | . . . . . . . 8 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤𝑆𝐵 → 𝑤𝑈𝐵)) | |
| 13 | 12 | ancoms 458 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝑤𝑆𝐵 → 𝑤𝑈𝐵)) |
| 14 | 13 | expimpd 453 | . . . . . 6 ⊢ (𝐵 ∈ ℝ* → ((𝑤 ∈ ℝ* ∧ 𝑤𝑆𝐵) → 𝑤𝑈𝐵)) |
| 15 | 10, 11, 14 | syl2im 40 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → 𝑤𝑈𝐵)) |
| 16 | 4, 9, 15 | 3jcad 1129 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → (𝑤 ∈ ℝ* ∧ 𝐴𝑇𝑤 ∧ 𝑤𝑈𝐵))) |
| 17 | 1 | elixx1 13254 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵))) |
| 18 | ixx.2 | . . . . 5 ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑈𝑦)}) | |
| 19 | 18 | elixx1 13254 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑃𝐵) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑇𝑤 ∧ 𝑤𝑈𝐵))) |
| 20 | 16, 17, 19 | 3imtr4d 294 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈ (𝐴𝑃𝐵))) |
| 21 | 2, 20 | mpcom 38 | . 2 ⊢ (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈ (𝐴𝑃𝐵)) |
| 22 | 21 | ssriv 3933 | 1 ⊢ (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3897 class class class wbr 5089 (class class class)co 7346 ∈ cmpo 7348 ℝ*cxr 11145 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-xr 11150 |
| This theorem is referenced by: ioossicc 13333 icossicc 13336 iocssicc 13337 ioossico 13338 dvloglem 26584 ioossioc 45540 |
| Copyright terms: Public domain | W3C validator |