![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixxssixx | Structured version Visualization version GIF version |
Description: An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
ixx.2 | ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑈𝑦)}) |
ixx.3 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴𝑅𝑤 → 𝐴𝑇𝑤)) |
ixx.4 | ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤𝑆𝐵 → 𝑤𝑈𝐵)) |
Ref | Expression |
---|---|
ixxssixx | ⊢ (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixx.1 | . . . 4 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
2 | 1 | elmpocl 7691 | . . 3 ⊢ (𝑤 ∈ (𝐴𝑂𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
3 | simp1 1136 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → 𝑤 ∈ ℝ*) | |
4 | 3 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → 𝑤 ∈ ℝ*)) |
5 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ∈ ℝ*) | |
6 | 3simpa 1148 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤)) | |
7 | ixx.3 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴𝑅𝑤 → 𝐴𝑇𝑤)) | |
8 | 7 | expimpd 453 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤) → 𝐴𝑇𝑤)) |
9 | 5, 6, 8 | syl2im 40 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → 𝐴𝑇𝑤)) |
10 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐵 ∈ ℝ*) | |
11 | 3simpb 1149 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → (𝑤 ∈ ℝ* ∧ 𝑤𝑆𝐵)) | |
12 | ixx.4 | . . . . . . . 8 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤𝑆𝐵 → 𝑤𝑈𝐵)) | |
13 | 12 | ancoms 458 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝑤𝑆𝐵 → 𝑤𝑈𝐵)) |
14 | 13 | expimpd 453 | . . . . . 6 ⊢ (𝐵 ∈ ℝ* → ((𝑤 ∈ ℝ* ∧ 𝑤𝑆𝐵) → 𝑤𝑈𝐵)) |
15 | 10, 11, 14 | syl2im 40 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → 𝑤𝑈𝐵)) |
16 | 4, 9, 15 | 3jcad 1129 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → (𝑤 ∈ ℝ* ∧ 𝐴𝑇𝑤 ∧ 𝑤𝑈𝐵))) |
17 | 1 | elixx1 13416 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵))) |
18 | ixx.2 | . . . . 5 ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑈𝑦)}) | |
19 | 18 | elixx1 13416 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑃𝐵) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑇𝑤 ∧ 𝑤𝑈𝐵))) |
20 | 16, 17, 19 | 3imtr4d 294 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈ (𝐴𝑃𝐵))) |
21 | 2, 20 | mpcom 38 | . 2 ⊢ (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈ (𝐴𝑃𝐵)) |
22 | 21 | ssriv 4012 | 1 ⊢ (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {crab 3443 ⊆ wss 3976 class class class wbr 5166 (class class class)co 7448 ∈ cmpo 7450 ℝ*cxr 11323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-xr 11328 |
This theorem is referenced by: ioossicc 13493 icossicc 13496 iocssicc 13497 ioossico 13498 dvloglem 26708 ioossioc 45410 |
Copyright terms: Public domain | W3C validator |