Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ixxssixx | Structured version Visualization version GIF version |
Description: An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
ixx.2 | ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑈𝑦)}) |
ixx.3 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴𝑅𝑤 → 𝐴𝑇𝑤)) |
ixx.4 | ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤𝑆𝐵 → 𝑤𝑈𝐵)) |
Ref | Expression |
---|---|
ixxssixx | ⊢ (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixx.1 | . . . 4 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
2 | 1 | elmpocl 7511 | . . 3 ⊢ (𝑤 ∈ (𝐴𝑂𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
3 | simp1 1135 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → 𝑤 ∈ ℝ*) | |
4 | 3 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → 𝑤 ∈ ℝ*)) |
5 | simpl 483 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ∈ ℝ*) | |
6 | 3simpa 1147 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤)) | |
7 | ixx.3 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴𝑅𝑤 → 𝐴𝑇𝑤)) | |
8 | 7 | expimpd 454 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤) → 𝐴𝑇𝑤)) |
9 | 5, 6, 8 | syl2im 40 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → 𝐴𝑇𝑤)) |
10 | simpr 485 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐵 ∈ ℝ*) | |
11 | 3simpb 1148 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → (𝑤 ∈ ℝ* ∧ 𝑤𝑆𝐵)) | |
12 | ixx.4 | . . . . . . . 8 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤𝑆𝐵 → 𝑤𝑈𝐵)) | |
13 | 12 | ancoms 459 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝑤𝑆𝐵 → 𝑤𝑈𝐵)) |
14 | 13 | expimpd 454 | . . . . . 6 ⊢ (𝐵 ∈ ℝ* → ((𝑤 ∈ ℝ* ∧ 𝑤𝑆𝐵) → 𝑤𝑈𝐵)) |
15 | 10, 11, 14 | syl2im 40 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → 𝑤𝑈𝐵)) |
16 | 4, 9, 15 | 3jcad 1128 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → (𝑤 ∈ ℝ* ∧ 𝐴𝑇𝑤 ∧ 𝑤𝑈𝐵))) |
17 | 1 | elixx1 13088 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵))) |
18 | ixx.2 | . . . . 5 ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑈𝑦)}) | |
19 | 18 | elixx1 13088 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑃𝐵) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑇𝑤 ∧ 𝑤𝑈𝐵))) |
20 | 16, 17, 19 | 3imtr4d 294 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈ (𝐴𝑃𝐵))) |
21 | 2, 20 | mpcom 38 | . 2 ⊢ (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈ (𝐴𝑃𝐵)) |
22 | 21 | ssriv 3925 | 1 ⊢ (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {crab 3068 ⊆ wss 3887 class class class wbr 5074 (class class class)co 7275 ∈ cmpo 7277 ℝ*cxr 11008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-xr 11013 |
This theorem is referenced by: ioossicc 13165 icossicc 13168 iocssicc 13169 ioossico 13170 dvloglem 25803 ioossioc 43030 |
Copyright terms: Public domain | W3C validator |