MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccsplit Structured version   Visualization version   GIF version

Theorem iccsplit 13488
Description: Split a closed interval into the union of two closed intervals. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
iccsplit ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = ((𝐴[,]𝐶) ∪ (𝐶[,]𝐵)))

Proof of Theorem iccsplit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simplr1 1213 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → 𝑥 ∈ ℝ)
2 simplr2 1214 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → 𝐴𝑥)
3 simpr1 1192 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) → 𝑥 ∈ ℝ)
4 iccssre 13432 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
54sseld 3977 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) → 𝐶 ∈ ℝ))
653impia 1115 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ)
76adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) → 𝐶 ∈ ℝ)
8 ltle 11326 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 < 𝐶𝑥𝐶))
93, 7, 8syl2anc 583 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) → (𝑥 < 𝐶𝑥𝐶))
109imp 406 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → 𝑥𝐶)
111, 2, 103jca 1126 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶))
1211orcd 872 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
13 simplr1 1213 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → 𝑥 ∈ ℝ)
14 simpr 484 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → 𝐶𝑥)
15 simplr3 1215 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → 𝑥𝐵)
1613, 14, 153jca 1126 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))
1716olcd 873 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
1812, 17, 3, 7ltlecasei 11346 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
1918ex 412 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))))
20 simp1 1134 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥 ∈ ℝ)
2120a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥 ∈ ℝ))
22 simp2 1135 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝐴𝑥)
2322a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝐴𝑥))
24 elicc2 13415 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
25203ad2ant3 1133 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝑥 ∈ ℝ)
26 simp1 1134 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → 𝐶 ∈ ℝ)
27263ad2ant2 1132 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝐶 ∈ ℝ)
28 simp1r 1196 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝐵 ∈ ℝ)
29 simp3 1136 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥𝐶)
30293ad2ant3 1133 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝑥𝐶)
31 simp3 1136 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → 𝐶𝐵)
32313ad2ant2 1132 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝐶𝐵)
3325, 27, 28, 30, 32letrd 11395 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝑥𝐵)
34333exp 1117 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥𝐵)))
3524, 34sylbid 239 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥𝐵)))
36353impia 1115 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥𝐵))
3721, 23, 363jcad 1127 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
38 simp1 1134 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝑥 ∈ ℝ)
3938a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝑥 ∈ ℝ))
40 simp1l 1195 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐴 ∈ ℝ)
41263ad2ant2 1132 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐶 ∈ ℝ)
42383ad2ant3 1133 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝑥 ∈ ℝ)
43 simp2 1135 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → 𝐴𝐶)
44433ad2ant2 1132 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐴𝐶)
45 simp2 1135 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝐶𝑥)
46453ad2ant3 1133 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐶𝑥)
4740, 41, 42, 44, 46letrd 11395 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐴𝑥)
48473exp 1117 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝐴𝑥)))
4924, 48sylbid 239 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝐴𝑥)))
50493impia 1115 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝐴𝑥))
51 simp3 1136 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝑥𝐵)
5251a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝑥𝐵))
5339, 50, 523jcad 1127 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
5437, 53jaod 858 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
5519, 54impbid 211 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵) ↔ ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))))
56 elicc2 13415 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
57563adant3 1130 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
585imdistani 568 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ))
59583impa 1108 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ))
60 elicc2 13415 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)))
6160adantlr 714 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)))
62 elicc2 13415 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐶[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
6362ancoms 458 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐶[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
6463adantll 713 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐶[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
6561, 64orbi12d 917 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝑥 ∈ (𝐴[,]𝐶) ∨ 𝑥 ∈ (𝐶[,]𝐵)) ↔ ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))))
6659, 65syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ (𝐴[,]𝐶) ∨ 𝑥 ∈ (𝐶[,]𝐵)) ↔ ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))))
6755, 57, 663bitr4d 311 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ (𝐴[,]𝐶) ∨ 𝑥 ∈ (𝐶[,]𝐵))))
68 elun 4144 . . 3 (𝑥 ∈ ((𝐴[,]𝐶) ∪ (𝐶[,]𝐵)) ↔ (𝑥 ∈ (𝐴[,]𝐶) ∨ 𝑥 ∈ (𝐶[,]𝐵)))
6967, 68bitr4di 289 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ 𝑥 ∈ ((𝐴[,]𝐶) ∪ (𝐶[,]𝐵))))
7069eqrdv 2726 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = ((𝐴[,]𝐶) ∪ (𝐶[,]𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 846  w3a 1085   = wceq 1534  wcel 2099  cun 3943   class class class wbr 5142  (class class class)co 7414  cr 11131   < clt 11272  cle 11273  [,]cicc 13353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-pre-lttri 11206  ax-pre-lttrn 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-icc 13357
This theorem is referenced by:  cnmpopc  24842  volcn  25528  itgspliticc  25759  cvmliftlem10  34898  iblspltprt  45355
  Copyright terms: Public domain W3C validator