MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccsplit Structured version   Visualization version   GIF version

Theorem iccsplit 12559
Description: Split a closed interval into the union of two closed intervals. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
iccsplit ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = ((𝐴[,]𝐶) ∪ (𝐶[,]𝐵)))

Proof of Theorem iccsplit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simplr1 1276 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → 𝑥 ∈ ℝ)
2 simplr2 1278 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → 𝐴𝑥)
3 simpr1 1249 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) → 𝑥 ∈ ℝ)
4 iccssre 12504 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
54sseld 3797 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) → 𝐶 ∈ ℝ))
653impia 1146 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ)
76adantr 473 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) → 𝐶 ∈ ℝ)
8 ltle 10416 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 < 𝐶𝑥𝐶))
93, 7, 8syl2anc 580 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) → (𝑥 < 𝐶𝑥𝐶))
109imp 396 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → 𝑥𝐶)
111, 2, 103jca 1159 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶))
1211orcd 900 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
13 simplr1 1276 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → 𝑥 ∈ ℝ)
14 simpr 478 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → 𝐶𝑥)
15 simplr3 1280 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → 𝑥𝐵)
1613, 14, 153jca 1159 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))
1716olcd 901 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
1812, 17, 3, 7ltlecasei 10435 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
1918ex 402 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))))
20 simp1 1167 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥 ∈ ℝ)
2120a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥 ∈ ℝ))
22 simp2 1168 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝐴𝑥)
2322a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝐴𝑥))
24 elicc2 12487 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
25203ad2ant3 1166 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝑥 ∈ ℝ)
26 simp1 1167 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → 𝐶 ∈ ℝ)
27263ad2ant2 1165 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝐶 ∈ ℝ)
28 simp1r 1256 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝐵 ∈ ℝ)
29 simp3 1169 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥𝐶)
30293ad2ant3 1166 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝑥𝐶)
31 simp3 1169 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → 𝐶𝐵)
32313ad2ant2 1165 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝐶𝐵)
3325, 27, 28, 30, 32letrd 10484 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝑥𝐵)
34333exp 1149 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥𝐵)))
3524, 34sylbid 232 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥𝐵)))
36353impia 1146 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥𝐵))
3721, 23, 363jcad 1160 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
38 simp1 1167 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝑥 ∈ ℝ)
3938a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝑥 ∈ ℝ))
40 simp1l 1255 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐴 ∈ ℝ)
41263ad2ant2 1165 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐶 ∈ ℝ)
42383ad2ant3 1166 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝑥 ∈ ℝ)
43 simp2 1168 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → 𝐴𝐶)
44433ad2ant2 1165 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐴𝐶)
45 simp2 1168 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝐶𝑥)
46453ad2ant3 1166 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐶𝑥)
4740, 41, 42, 44, 46letrd 10484 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐴𝑥)
48473exp 1149 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝐴𝑥)))
4924, 48sylbid 232 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝐴𝑥)))
50493impia 1146 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝐴𝑥))
51 simp3 1169 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝑥𝐵)
5251a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝑥𝐵))
5339, 50, 523jcad 1160 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
5437, 53jaod 886 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
5519, 54impbid 204 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵) ↔ ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))))
56 elicc2 12487 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
57563adant3 1163 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
585imdistani 565 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ))
59583impa 1137 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ))
60 elicc2 12487 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)))
6160adantlr 707 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)))
62 elicc2 12487 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐶[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
6362ancoms 451 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐶[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
6463adantll 706 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐶[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
6561, 64orbi12d 943 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝑥 ∈ (𝐴[,]𝐶) ∨ 𝑥 ∈ (𝐶[,]𝐵)) ↔ ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))))
6659, 65syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ (𝐴[,]𝐶) ∨ 𝑥 ∈ (𝐶[,]𝐵)) ↔ ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))))
6755, 57, 663bitr4d 303 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ (𝐴[,]𝐶) ∨ 𝑥 ∈ (𝐶[,]𝐵))))
68 elun 3951 . . 3 (𝑥 ∈ ((𝐴[,]𝐶) ∪ (𝐶[,]𝐵)) ↔ (𝑥 ∈ (𝐴[,]𝐶) ∨ 𝑥 ∈ (𝐶[,]𝐵)))
6967, 68syl6bbr 281 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ 𝑥 ∈ ((𝐴[,]𝐶) ∪ (𝐶[,]𝐵))))
7069eqrdv 2797 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = ((𝐴[,]𝐶) ∪ (𝐶[,]𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  wo 874  w3a 1108   = wceq 1653  wcel 2157  cun 3767   class class class wbr 4843  (class class class)co 6878  cr 10223   < clt 10363  cle 10364  [,]cicc 12427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-pre-lttri 10298  ax-pre-lttrn 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-po 5233  df-so 5234  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-icc 12431
This theorem is referenced by:  cnmpt2pc  23055  volcn  23714  itgspliticc  23944  cvmliftlem10  31793  iblspltprt  40932
  Copyright terms: Public domain W3C validator