MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccsplit Structured version   Visualization version   GIF version

Theorem iccsplit 13468
Description: Split a closed interval into the union of two closed intervals. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
iccsplit ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = ((𝐴[,]𝐶) ∪ (𝐶[,]𝐵)))

Proof of Theorem iccsplit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simplr1 1212 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → 𝑥 ∈ ℝ)
2 simplr2 1213 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → 𝐴𝑥)
3 simpr1 1191 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) → 𝑥 ∈ ℝ)
4 iccssre 13412 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
54sseld 3976 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) → 𝐶 ∈ ℝ))
653impia 1114 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ)
76adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) → 𝐶 ∈ ℝ)
8 ltle 11306 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 < 𝐶𝑥𝐶))
93, 7, 8syl2anc 583 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) → (𝑥 < 𝐶𝑥𝐶))
109imp 406 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → 𝑥𝐶)
111, 2, 103jca 1125 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶))
1211orcd 870 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
13 simplr1 1212 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → 𝑥 ∈ ℝ)
14 simpr 484 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → 𝐶𝑥)
15 simplr3 1214 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → 𝑥𝐵)
1613, 14, 153jca 1125 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))
1716olcd 871 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
1812, 17, 3, 7ltlecasei 11326 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
1918ex 412 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))))
20 simp1 1133 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥 ∈ ℝ)
2120a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥 ∈ ℝ))
22 simp2 1134 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝐴𝑥)
2322a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝐴𝑥))
24 elicc2 13395 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
25203ad2ant3 1132 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝑥 ∈ ℝ)
26 simp1 1133 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → 𝐶 ∈ ℝ)
27263ad2ant2 1131 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝐶 ∈ ℝ)
28 simp1r 1195 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝐵 ∈ ℝ)
29 simp3 1135 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥𝐶)
30293ad2ant3 1132 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝑥𝐶)
31 simp3 1135 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → 𝐶𝐵)
32313ad2ant2 1131 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝐶𝐵)
3325, 27, 28, 30, 32letrd 11375 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝑥𝐵)
34333exp 1116 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥𝐵)))
3524, 34sylbid 239 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥𝐵)))
36353impia 1114 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥𝐵))
3721, 23, 363jcad 1126 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
38 simp1 1133 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝑥 ∈ ℝ)
3938a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝑥 ∈ ℝ))
40 simp1l 1194 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐴 ∈ ℝ)
41263ad2ant2 1131 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐶 ∈ ℝ)
42383ad2ant3 1132 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝑥 ∈ ℝ)
43 simp2 1134 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → 𝐴𝐶)
44433ad2ant2 1131 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐴𝐶)
45 simp2 1134 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝐶𝑥)
46453ad2ant3 1132 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐶𝑥)
4740, 41, 42, 44, 46letrd 11375 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐴𝑥)
48473exp 1116 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝐴𝑥)))
4924, 48sylbid 239 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝐴𝑥)))
50493impia 1114 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝐴𝑥))
51 simp3 1135 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝑥𝐵)
5251a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝑥𝐵))
5339, 50, 523jcad 1126 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
5437, 53jaod 856 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
5519, 54impbid 211 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵) ↔ ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))))
56 elicc2 13395 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
57563adant3 1129 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
585imdistani 568 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ))
59583impa 1107 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ))
60 elicc2 13395 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)))
6160adantlr 712 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)))
62 elicc2 13395 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐶[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
6362ancoms 458 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐶[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
6463adantll 711 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐶[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
6561, 64orbi12d 915 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝑥 ∈ (𝐴[,]𝐶) ∨ 𝑥 ∈ (𝐶[,]𝐵)) ↔ ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))))
6659, 65syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ (𝐴[,]𝐶) ∨ 𝑥 ∈ (𝐶[,]𝐵)) ↔ ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))))
6755, 57, 663bitr4d 311 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ (𝐴[,]𝐶) ∨ 𝑥 ∈ (𝐶[,]𝐵))))
68 elun 4143 . . 3 (𝑥 ∈ ((𝐴[,]𝐶) ∪ (𝐶[,]𝐵)) ↔ (𝑥 ∈ (𝐴[,]𝐶) ∨ 𝑥 ∈ (𝐶[,]𝐵)))
6967, 68bitr4di 289 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ 𝑥 ∈ ((𝐴[,]𝐶) ∪ (𝐶[,]𝐵))))
7069eqrdv 2724 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = ((𝐴[,]𝐶) ∪ (𝐶[,]𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844  w3a 1084   = wceq 1533  wcel 2098  cun 3941   class class class wbr 5141  (class class class)co 7405  cr 11111   < clt 11252  cle 11253  [,]cicc 13333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-pre-lttri 11186  ax-pre-lttrn 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-icc 13337
This theorem is referenced by:  cnmpopc  24804  volcn  25490  itgspliticc  25721  cvmliftlem10  34813  iblspltprt  45261
  Copyright terms: Public domain W3C validator