MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccsplit Structured version   Visualization version   GIF version

Theorem iccsplit 12861
Description: Split a closed interval into the union of two closed intervals. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
iccsplit ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = ((𝐴[,]𝐶) ∪ (𝐶[,]𝐵)))

Proof of Theorem iccsplit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simplr1 1209 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → 𝑥 ∈ ℝ)
2 simplr2 1210 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → 𝐴𝑥)
3 simpr1 1188 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) → 𝑥 ∈ ℝ)
4 iccssre 12808 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
54sseld 3970 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) → 𝐶 ∈ ℝ))
653impia 1111 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ)
76adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) → 𝐶 ∈ ℝ)
8 ltle 10718 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 < 𝐶𝑥𝐶))
93, 7, 8syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) → (𝑥 < 𝐶𝑥𝐶))
109imp 407 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → 𝑥𝐶)
111, 2, 103jca 1122 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶))
1211orcd 871 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
13 simplr1 1209 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → 𝑥 ∈ ℝ)
14 simpr 485 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → 𝐶𝑥)
15 simplr3 1211 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → 𝑥𝐵)
1613, 14, 153jca 1122 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))
1716olcd 872 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
1812, 17, 3, 7ltlecasei 10737 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
1918ex 413 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))))
20 simp1 1130 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥 ∈ ℝ)
2120a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥 ∈ ℝ))
22 simp2 1131 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝐴𝑥)
2322a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝐴𝑥))
24 elicc2 12791 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
25203ad2ant3 1129 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝑥 ∈ ℝ)
26 simp1 1130 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → 𝐶 ∈ ℝ)
27263ad2ant2 1128 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝐶 ∈ ℝ)
28 simp1r 1192 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝐵 ∈ ℝ)
29 simp3 1132 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥𝐶)
30293ad2ant3 1129 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝑥𝐶)
31 simp3 1132 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → 𝐶𝐵)
32313ad2ant2 1128 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝐶𝐵)
3325, 27, 28, 30, 32letrd 10786 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝑥𝐵)
34333exp 1113 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥𝐵)))
3524, 34sylbid 241 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥𝐵)))
36353impia 1111 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥𝐵))
3721, 23, 363jcad 1123 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
38 simp1 1130 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝑥 ∈ ℝ)
3938a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝑥 ∈ ℝ))
40 simp1l 1191 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐴 ∈ ℝ)
41263ad2ant2 1128 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐶 ∈ ℝ)
42383ad2ant3 1129 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝑥 ∈ ℝ)
43 simp2 1131 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → 𝐴𝐶)
44433ad2ant2 1128 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐴𝐶)
45 simp2 1131 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝐶𝑥)
46453ad2ant3 1129 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐶𝑥)
4740, 41, 42, 44, 46letrd 10786 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐴𝑥)
48473exp 1113 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝐴𝑥)))
4924, 48sylbid 241 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝐴𝑥)))
50493impia 1111 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝐴𝑥))
51 simp3 1132 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝑥𝐵)
5251a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝑥𝐵))
5339, 50, 523jcad 1123 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
5437, 53jaod 855 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
5519, 54impbid 213 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵) ↔ ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))))
56 elicc2 12791 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
57563adant3 1126 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
585imdistani 569 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ))
59583impa 1104 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ))
60 elicc2 12791 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)))
6160adantlr 711 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)))
62 elicc2 12791 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐶[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
6362ancoms 459 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐶[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
6463adantll 710 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐶[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
6561, 64orbi12d 914 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝑥 ∈ (𝐴[,]𝐶) ∨ 𝑥 ∈ (𝐶[,]𝐵)) ↔ ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))))
6659, 65syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ (𝐴[,]𝐶) ∨ 𝑥 ∈ (𝐶[,]𝐵)) ↔ ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))))
6755, 57, 663bitr4d 312 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ (𝐴[,]𝐶) ∨ 𝑥 ∈ (𝐶[,]𝐵))))
68 elun 4129 . . 3 (𝑥 ∈ ((𝐴[,]𝐶) ∪ (𝐶[,]𝐵)) ↔ (𝑥 ∈ (𝐴[,]𝐶) ∨ 𝑥 ∈ (𝐶[,]𝐵)))
6967, 68syl6bbr 290 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ 𝑥 ∈ ((𝐴[,]𝐶) ∪ (𝐶[,]𝐵))))
7069eqrdv 2824 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = ((𝐴[,]𝐶) ∪ (𝐶[,]𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 843  w3a 1081   = wceq 1530  wcel 2107  cun 3938   class class class wbr 5063  (class class class)co 7148  cr 10525   < clt 10664  cle 10665  [,]cicc 12731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-icc 12735
This theorem is referenced by:  cnmpopc  23447  volcn  24122  itgspliticc  24352  cvmliftlem10  32425  iblspltprt  42123
  Copyright terms: Public domain W3C validator