Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirclem1 Structured version   Visualization version   GIF version

Theorem areacirclem1 35874
Description: Antiderivative of cross-section of circle. (Contributed by Brendan Leahy, 28-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Assertion
Ref Expression
areacirclem1 (𝑅 ∈ ℝ+ → (ℝ D (𝑡 ∈ (-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2)))))))) = (𝑡 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2))))))
Distinct variable group:   𝑡,𝑅

Proof of Theorem areacirclem1
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reelprrecn 10972 . . . 4 ℝ ∈ {ℝ, ℂ}
21a1i 11 . . 3 (𝑅 ∈ ℝ+ → ℝ ∈ {ℝ, ℂ})
3 elioore 13118 . . . . . . . 8 (𝑡 ∈ (-𝑅(,)𝑅) → 𝑡 ∈ ℝ)
43recnd 11012 . . . . . . 7 (𝑡 ∈ (-𝑅(,)𝑅) → 𝑡 ∈ ℂ)
54adantl 482 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 𝑡 ∈ ℂ)
6 rpcn 12749 . . . . . . 7 (𝑅 ∈ ℝ+𝑅 ∈ ℂ)
76adantr 481 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 𝑅 ∈ ℂ)
8 rpne0 12755 . . . . . . 7 (𝑅 ∈ ℝ+𝑅 ≠ 0)
98adantr 481 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 𝑅 ≠ 0)
105, 7, 9divcld 11760 . . . . 5 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (𝑡 / 𝑅) ∈ ℂ)
11 asincl 26032 . . . . 5 ((𝑡 / 𝑅) ∈ ℂ → (arcsin‘(𝑡 / 𝑅)) ∈ ℂ)
1210, 11syl 17 . . . 4 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (arcsin‘(𝑡 / 𝑅)) ∈ ℂ)
13 1cnd 10979 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 1 ∈ ℂ)
1410sqcld 13871 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((𝑡 / 𝑅)↑2) ∈ ℂ)
1513, 14subcld 11341 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (1 − ((𝑡 / 𝑅)↑2)) ∈ ℂ)
1615sqrtcld 15158 . . . . 5 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (√‘(1 − ((𝑡 / 𝑅)↑2))) ∈ ℂ)
1710, 16mulcld 11004 . . . 4 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℂ)
1812, 17addcld 11003 . . 3 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ℂ)
19 ovexd 7319 . . 3 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((2 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (1 / 𝑅)) ∈ V)
20 rpre 12747 . . . . . . . . . 10 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
2120renegcld 11411 . . . . . . . . 9 (𝑅 ∈ ℝ+ → -𝑅 ∈ ℝ)
2221rexrd 11034 . . . . . . . 8 (𝑅 ∈ ℝ+ → -𝑅 ∈ ℝ*)
23 rpxr 12748 . . . . . . . 8 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
24 elioo2 13129 . . . . . . . 8 ((-𝑅 ∈ ℝ*𝑅 ∈ ℝ*) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅)))
2522, 23, 24syl2anc 584 . . . . . . 7 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅)))
26 simpr 485 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
2720adantr 481 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ∈ ℝ)
288adantr 481 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ≠ 0)
2926, 27, 28redivcld 11812 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡 / 𝑅) ∈ ℝ)
3029a1d 25 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) → (𝑡 / 𝑅) ∈ ℝ))
316mulm1d 11436 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → (-1 · 𝑅) = -𝑅)
3231adantr 481 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (-1 · 𝑅) = -𝑅)
3332breq1d 5085 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-1 · 𝑅) < 𝑡 ↔ -𝑅 < 𝑡))
34 neg1rr 12097 . . . . . . . . . . . . . . 15 -1 ∈ ℝ
3534a1i 11 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → -1 ∈ ℝ)
36 simpl 483 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ∈ ℝ+)
3735, 26, 36ltmuldivd 12828 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-1 · 𝑅) < 𝑡 ↔ -1 < (𝑡 / 𝑅)))
3833, 37bitr3d 280 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (-𝑅 < 𝑡 ↔ -1 < (𝑡 / 𝑅)))
3938biimpd 228 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (-𝑅 < 𝑡 → -1 < (𝑡 / 𝑅)))
4039adantrd 492 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) → -1 < (𝑡 / 𝑅)))
41 1red 10985 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 1 ∈ ℝ)
4226, 41, 36ltdivmuld 12832 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡 / 𝑅) < 1 ↔ 𝑡 < (𝑅 · 1)))
436mulid1d 11001 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → (𝑅 · 1) = 𝑅)
4443adantr 481 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑅 · 1) = 𝑅)
4544breq2d 5087 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡 < (𝑅 · 1) ↔ 𝑡 < 𝑅))
4642, 45bitr2d 279 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡 < 𝑅 ↔ (𝑡 / 𝑅) < 1))
4746biimpd 228 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡 < 𝑅 → (𝑡 / 𝑅) < 1))
4847adantld 491 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) → (𝑡 / 𝑅) < 1))
4930, 40, 483jcad 1128 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) → ((𝑡 / 𝑅) ∈ ℝ ∧ -1 < (𝑡 / 𝑅) ∧ (𝑡 / 𝑅) < 1)))
5049exp4b 431 . . . . . . . 8 (𝑅 ∈ ℝ+ → (𝑡 ∈ ℝ → (-𝑅 < 𝑡 → (𝑡 < 𝑅 → ((𝑡 / 𝑅) ∈ ℝ ∧ -1 < (𝑡 / 𝑅) ∧ (𝑡 / 𝑅) < 1)))))
51503impd 1347 . . . . . . 7 (𝑅 ∈ ℝ+ → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) → ((𝑡 / 𝑅) ∈ ℝ ∧ -1 < (𝑡 / 𝑅) ∧ (𝑡 / 𝑅) < 1)))
5225, 51sylbid 239 . . . . . 6 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅(,)𝑅) → ((𝑡 / 𝑅) ∈ ℝ ∧ -1 < (𝑡 / 𝑅) ∧ (𝑡 / 𝑅) < 1)))
5352imp 407 . . . . 5 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((𝑡 / 𝑅) ∈ ℝ ∧ -1 < (𝑡 / 𝑅) ∧ (𝑡 / 𝑅) < 1))
5434rexri 11042 . . . . . 6 -1 ∈ ℝ*
55 1xr 11043 . . . . . 6 1 ∈ ℝ*
56 elioo2 13129 . . . . . 6 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑡 / 𝑅) ∈ (-1(,)1) ↔ ((𝑡 / 𝑅) ∈ ℝ ∧ -1 < (𝑡 / 𝑅) ∧ (𝑡 / 𝑅) < 1)))
5754, 55, 56mp2an 689 . . . . 5 ((𝑡 / 𝑅) ∈ (-1(,)1) ↔ ((𝑡 / 𝑅) ∈ ℝ ∧ -1 < (𝑡 / 𝑅) ∧ (𝑡 / 𝑅) < 1))
5853, 57sylibr 233 . . . 4 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (𝑡 / 𝑅) ∈ (-1(,)1))
59 ovexd 7319 . . . 4 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (1 / 𝑅) ∈ V)
60 elioore 13118 . . . . . . 7 (𝑢 ∈ (-1(,)1) → 𝑢 ∈ ℝ)
6160recnd 11012 . . . . . 6 (𝑢 ∈ (-1(,)1) → 𝑢 ∈ ℂ)
62 asincl 26032 . . . . . . 7 (𝑢 ∈ ℂ → (arcsin‘𝑢) ∈ ℂ)
63 id 22 . . . . . . . 8 (𝑢 ∈ ℂ → 𝑢 ∈ ℂ)
64 1cnd 10979 . . . . . . . . . 10 (𝑢 ∈ ℂ → 1 ∈ ℂ)
65 sqcl 13847 . . . . . . . . . 10 (𝑢 ∈ ℂ → (𝑢↑2) ∈ ℂ)
6664, 65subcld 11341 . . . . . . . . 9 (𝑢 ∈ ℂ → (1 − (𝑢↑2)) ∈ ℂ)
6766sqrtcld 15158 . . . . . . . 8 (𝑢 ∈ ℂ → (√‘(1 − (𝑢↑2))) ∈ ℂ)
6863, 67mulcld 11004 . . . . . . 7 (𝑢 ∈ ℂ → (𝑢 · (√‘(1 − (𝑢↑2)))) ∈ ℂ)
6962, 68addcld 11003 . . . . . 6 (𝑢 ∈ ℂ → ((arcsin‘𝑢) + (𝑢 · (√‘(1 − (𝑢↑2))))) ∈ ℂ)
7061, 69syl 17 . . . . 5 (𝑢 ∈ (-1(,)1) → ((arcsin‘𝑢) + (𝑢 · (√‘(1 − (𝑢↑2))))) ∈ ℂ)
7170adantl 482 . . . 4 ((𝑅 ∈ ℝ+𝑢 ∈ (-1(,)1)) → ((arcsin‘𝑢) + (𝑢 · (√‘(1 − (𝑢↑2))))) ∈ ℂ)
72 ovexd 7319 . . . 4 ((𝑅 ∈ ℝ+𝑢 ∈ (-1(,)1)) → (2 · (√‘(1 − (𝑢↑2)))) ∈ V)
73 recn 10970 . . . . . . 7 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
7473adantl 482 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
75 1cnd 10979 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 1 ∈ ℂ)
762dvmptid 25130 . . . . . 6 (𝑅 ∈ ℝ+ → (ℝ D (𝑡 ∈ ℝ ↦ 𝑡)) = (𝑡 ∈ ℝ ↦ 1))
77 ioossre 13149 . . . . . . 7 (-𝑅(,)𝑅) ⊆ ℝ
7877a1i 11 . . . . . 6 (𝑅 ∈ ℝ+ → (-𝑅(,)𝑅) ⊆ ℝ)
79 eqid 2739 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
8079tgioo2 23975 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
81 iooretop 23938 . . . . . . 7 (-𝑅(,)𝑅) ∈ (topGen‘ran (,))
8281a1i 11 . . . . . 6 (𝑅 ∈ ℝ+ → (-𝑅(,)𝑅) ∈ (topGen‘ran (,)))
832, 74, 75, 76, 78, 80, 79, 82dvmptres 25136 . . . . 5 (𝑅 ∈ ℝ+ → (ℝ D (𝑡 ∈ (-𝑅(,)𝑅) ↦ 𝑡)) = (𝑡 ∈ (-𝑅(,)𝑅) ↦ 1))
842, 5, 13, 83, 6, 8dvmptdivc 25138 . . . 4 (𝑅 ∈ ℝ+ → (ℝ D (𝑡 ∈ (-𝑅(,)𝑅) ↦ (𝑡 / 𝑅))) = (𝑡 ∈ (-𝑅(,)𝑅) ↦ (1 / 𝑅)))
8561, 62syl 17 . . . . . . 7 (𝑢 ∈ (-1(,)1) → (arcsin‘𝑢) ∈ ℂ)
8685adantl 482 . . . . . 6 ((𝑅 ∈ ℝ+𝑢 ∈ (-1(,)1)) → (arcsin‘𝑢) ∈ ℂ)
87 ovexd 7319 . . . . . 6 ((𝑅 ∈ ℝ+𝑢 ∈ (-1(,)1)) → (1 / (√‘(1 − (𝑢↑2)))) ∈ V)
88 asinf 26031 . . . . . . . . . 10 arcsin:ℂ⟶ℂ
8988a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ+ → arcsin:ℂ⟶ℂ)
90 ioossre 13149 . . . . . . . . . . 11 (-1(,)1) ⊆ ℝ
91 ax-resscn 10937 . . . . . . . . . . 11 ℝ ⊆ ℂ
9290, 91sstri 3931 . . . . . . . . . 10 (-1(,)1) ⊆ ℂ
9392a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (-1(,)1) ⊆ ℂ)
9489, 93feqresmpt 6847 . . . . . . . 8 (𝑅 ∈ ℝ+ → (arcsin ↾ (-1(,)1)) = (𝑢 ∈ (-1(,)1) ↦ (arcsin‘𝑢)))
9594oveq2d 7300 . . . . . . 7 (𝑅 ∈ ℝ+ → (ℝ D (arcsin ↾ (-1(,)1))) = (ℝ D (𝑢 ∈ (-1(,)1) ↦ (arcsin‘𝑢))))
96 dvreasin 35872 . . . . . . 7 (ℝ D (arcsin ↾ (-1(,)1))) = (𝑢 ∈ (-1(,)1) ↦ (1 / (√‘(1 − (𝑢↑2)))))
9795, 96eqtr3di 2794 . . . . . 6 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-1(,)1) ↦ (arcsin‘𝑢))) = (𝑢 ∈ (-1(,)1) ↦ (1 / (√‘(1 − (𝑢↑2))))))
9861, 68syl 17 . . . . . . 7 (𝑢 ∈ (-1(,)1) → (𝑢 · (√‘(1 − (𝑢↑2)))) ∈ ℂ)
9998adantl 482 . . . . . 6 ((𝑅 ∈ ℝ+𝑢 ∈ (-1(,)1)) → (𝑢 · (√‘(1 − (𝑢↑2)))) ∈ ℂ)
100 ovexd 7319 . . . . . 6 ((𝑅 ∈ ℝ+𝑢 ∈ (-1(,)1)) → ((1 · (√‘(1 − (𝑢↑2)))) + ((-𝑢 / (√‘(1 − (𝑢↑2)))) · 𝑢)) ∈ V)
10161adantl 482 . . . . . . 7 ((𝑅 ∈ ℝ+𝑢 ∈ (-1(,)1)) → 𝑢 ∈ ℂ)
102 1cnd 10979 . . . . . . 7 ((𝑅 ∈ ℝ+𝑢 ∈ (-1(,)1)) → 1 ∈ ℂ)
103 recn 10970 . . . . . . . . 9 (𝑢 ∈ ℝ → 𝑢 ∈ ℂ)
104103adantl 482 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑢 ∈ ℝ) → 𝑢 ∈ ℂ)
105 1cnd 10979 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑢 ∈ ℝ) → 1 ∈ ℂ)
1062dvmptid 25130 . . . . . . . 8 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ ℝ ↦ 𝑢)) = (𝑢 ∈ ℝ ↦ 1))
10790a1i 11 . . . . . . . 8 (𝑅 ∈ ℝ+ → (-1(,)1) ⊆ ℝ)
108 iooretop 23938 . . . . . . . . 9 (-1(,)1) ∈ (topGen‘ran (,))
109108a1i 11 . . . . . . . 8 (𝑅 ∈ ℝ+ → (-1(,)1) ∈ (topGen‘ran (,)))
1102, 104, 105, 106, 107, 80, 79, 109dvmptres 25136 . . . . . . 7 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-1(,)1) ↦ 𝑢)) = (𝑢 ∈ (-1(,)1) ↦ 1))
11161, 67syl 17 . . . . . . . 8 (𝑢 ∈ (-1(,)1) → (√‘(1 − (𝑢↑2))) ∈ ℂ)
112111adantl 482 . . . . . . 7 ((𝑅 ∈ ℝ+𝑢 ∈ (-1(,)1)) → (√‘(1 − (𝑢↑2))) ∈ ℂ)
113 ovexd 7319 . . . . . . 7 ((𝑅 ∈ ℝ+𝑢 ∈ (-1(,)1)) → (-𝑢 / (√‘(1 − (𝑢↑2)))) ∈ V)
114 1red 10985 . . . . . . . . . . . 12 (𝑢 ∈ (-1(,)1) → 1 ∈ ℝ)
11560resqcld 13974 . . . . . . . . . . . 12 (𝑢 ∈ (-1(,)1) → (𝑢↑2) ∈ ℝ)
116114, 115resubcld 11412 . . . . . . . . . . 11 (𝑢 ∈ (-1(,)1) → (1 − (𝑢↑2)) ∈ ℝ)
117 elioo2 13129 . . . . . . . . . . . . 13 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑢 ∈ (-1(,)1) ↔ (𝑢 ∈ ℝ ∧ -1 < 𝑢𝑢 < 1)))
11854, 55, 117mp2an 689 . . . . . . . . . . . 12 (𝑢 ∈ (-1(,)1) ↔ (𝑢 ∈ ℝ ∧ -1 < 𝑢𝑢 < 1))
119 id 22 . . . . . . . . . . . . . . . 16 (𝑢 ∈ ℝ → 𝑢 ∈ ℝ)
120 1red 10985 . . . . . . . . . . . . . . . 16 (𝑢 ∈ ℝ → 1 ∈ ℝ)
121119, 120absltd 15150 . . . . . . . . . . . . . . 15 (𝑢 ∈ ℝ → ((abs‘𝑢) < 1 ↔ (-1 < 𝑢𝑢 < 1)))
122103abscld 15157 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ ℝ → (abs‘𝑢) ∈ ℝ)
123103absge0d 15165 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ ℝ → 0 ≤ (abs‘𝑢))
124 0le1 11507 . . . . . . . . . . . . . . . . . 18 0 ≤ 1
125124a1i 11 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ ℝ → 0 ≤ 1)
126122, 120, 123, 125lt2sqd 13982 . . . . . . . . . . . . . . . 16 (𝑢 ∈ ℝ → ((abs‘𝑢) < 1 ↔ ((abs‘𝑢)↑2) < (1↑2)))
127 absresq 15023 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ ℝ → ((abs‘𝑢)↑2) = (𝑢↑2))
128 sq1 13921 . . . . . . . . . . . . . . . . . 18 (1↑2) = 1
129128a1i 11 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ ℝ → (1↑2) = 1)
130127, 129breq12d 5088 . . . . . . . . . . . . . . . 16 (𝑢 ∈ ℝ → (((abs‘𝑢)↑2) < (1↑2) ↔ (𝑢↑2) < 1))
131 resqcl 13853 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ ℝ → (𝑢↑2) ∈ ℝ)
132131, 120posdifd 11571 . . . . . . . . . . . . . . . 16 (𝑢 ∈ ℝ → ((𝑢↑2) < 1 ↔ 0 < (1 − (𝑢↑2))))
133126, 130, 1323bitrd 305 . . . . . . . . . . . . . . 15 (𝑢 ∈ ℝ → ((abs‘𝑢) < 1 ↔ 0 < (1 − (𝑢↑2))))
134121, 133bitr3d 280 . . . . . . . . . . . . . 14 (𝑢 ∈ ℝ → ((-1 < 𝑢𝑢 < 1) ↔ 0 < (1 − (𝑢↑2))))
135134biimpd 228 . . . . . . . . . . . . 13 (𝑢 ∈ ℝ → ((-1 < 𝑢𝑢 < 1) → 0 < (1 − (𝑢↑2))))
1361353impib 1115 . . . . . . . . . . . 12 ((𝑢 ∈ ℝ ∧ -1 < 𝑢𝑢 < 1) → 0 < (1 − (𝑢↑2)))
137118, 136sylbi 216 . . . . . . . . . . 11 (𝑢 ∈ (-1(,)1) → 0 < (1 − (𝑢↑2)))
138116, 137elrpd 12778 . . . . . . . . . 10 (𝑢 ∈ (-1(,)1) → (1 − (𝑢↑2)) ∈ ℝ+)
139138adantl 482 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑢 ∈ (-1(,)1)) → (1 − (𝑢↑2)) ∈ ℝ+)
140 negex 11228 . . . . . . . . . 10 -(2 · 𝑢) ∈ V
141140a1i 11 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑢 ∈ (-1(,)1)) → -(2 · 𝑢) ∈ V)
142 rpcn 12749 . . . . . . . . . . 11 (𝑣 ∈ ℝ+𝑣 ∈ ℂ)
143142sqrtcld 15158 . . . . . . . . . 10 (𝑣 ∈ ℝ+ → (√‘𝑣) ∈ ℂ)
144143adantl 482 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑣 ∈ ℝ+) → (√‘𝑣) ∈ ℂ)
145 ovexd 7319 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑣 ∈ ℝ+) → (1 / (2 · (√‘𝑣))) ∈ V)
146 1cnd 10979 . . . . . . . . . . . 12 (𝑢 ∈ ℝ → 1 ∈ ℂ)
147103sqcld 13871 . . . . . . . . . . . 12 (𝑢 ∈ ℝ → (𝑢↑2) ∈ ℂ)
148146, 147subcld 11341 . . . . . . . . . . 11 (𝑢 ∈ ℝ → (1 − (𝑢↑2)) ∈ ℂ)
149148adantl 482 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑢 ∈ ℝ) → (1 − (𝑢↑2)) ∈ ℂ)
150140a1i 11 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑢 ∈ ℝ) → -(2 · 𝑢) ∈ V)
151 0red 10987 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑢 ∈ ℝ) → 0 ∈ ℝ)
152 1cnd 10979 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → 1 ∈ ℂ)
1532, 152dvmptc 25131 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ ℝ ↦ 1)) = (𝑢 ∈ ℝ ↦ 0))
154147adantl 482 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑢 ∈ ℝ) → (𝑢↑2) ∈ ℂ)
155 ovexd 7319 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑢 ∈ ℝ) → (2 · 𝑢) ∈ V)
15679cnfldtopon 23955 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
157 toponmax 22084 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ℂ ∈ (TopOpen‘ℂfld))
158156, 157mp1i 13 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → ℂ ∈ (TopOpen‘ℂfld))
159 df-ss 3905 . . . . . . . . . . . . . . 15 (ℝ ⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ)
16091, 159mpbi 229 . . . . . . . . . . . . . 14 (ℝ ∩ ℂ) = ℝ
161160a1i 11 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (ℝ ∩ ℂ) = ℝ)
16265adantl 482 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑢 ∈ ℂ) → (𝑢↑2) ∈ ℂ)
163 ovexd 7319 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑢 ∈ ℂ) → (2 · 𝑢) ∈ V)
164 2nn 12055 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
165 dvexp 25126 . . . . . . . . . . . . . . . 16 (2 ∈ ℕ → (ℂ D (𝑢 ∈ ℂ ↦ (𝑢↑2))) = (𝑢 ∈ ℂ ↦ (2 · (𝑢↑(2 − 1)))))
166164, 165ax-mp 5 . . . . . . . . . . . . . . 15 (ℂ D (𝑢 ∈ ℂ ↦ (𝑢↑2))) = (𝑢 ∈ ℂ ↦ (2 · (𝑢↑(2 − 1))))
167 2m1e1 12108 . . . . . . . . . . . . . . . . . . 19 (2 − 1) = 1
168167oveq2i 7295 . . . . . . . . . . . . . . . . . 18 (𝑢↑(2 − 1)) = (𝑢↑1)
169 exp1 13797 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ℂ → (𝑢↑1) = 𝑢)
170168, 169eqtrid 2791 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ ℂ → (𝑢↑(2 − 1)) = 𝑢)
171170oveq2d 7300 . . . . . . . . . . . . . . . 16 (𝑢 ∈ ℂ → (2 · (𝑢↑(2 − 1))) = (2 · 𝑢))
172171mpteq2ia 5178 . . . . . . . . . . . . . . 15 (𝑢 ∈ ℂ ↦ (2 · (𝑢↑(2 − 1)))) = (𝑢 ∈ ℂ ↦ (2 · 𝑢))
173166, 172eqtri 2767 . . . . . . . . . . . . . 14 (ℂ D (𝑢 ∈ ℂ ↦ (𝑢↑2))) = (𝑢 ∈ ℂ ↦ (2 · 𝑢))
174173a1i 11 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (ℂ D (𝑢 ∈ ℂ ↦ (𝑢↑2))) = (𝑢 ∈ ℂ ↦ (2 · 𝑢)))
17579, 2, 158, 161, 162, 163, 174dvmptres3 25129 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ ℝ ↦ (𝑢↑2))) = (𝑢 ∈ ℝ ↦ (2 · 𝑢)))
1762, 105, 151, 153, 154, 155, 175dvmptsub 25140 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ ℝ ↦ (1 − (𝑢↑2)))) = (𝑢 ∈ ℝ ↦ (0 − (2 · 𝑢))))
177 df-neg 11217 . . . . . . . . . . . 12 -(2 · 𝑢) = (0 − (2 · 𝑢))
178177mpteq2i 5180 . . . . . . . . . . 11 (𝑢 ∈ ℝ ↦ -(2 · 𝑢)) = (𝑢 ∈ ℝ ↦ (0 − (2 · 𝑢)))
179176, 178eqtr4di 2797 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ ℝ ↦ (1 − (𝑢↑2)))) = (𝑢 ∈ ℝ ↦ -(2 · 𝑢)))
1802, 149, 150, 179, 107, 80, 79, 109dvmptres 25136 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-1(,)1) ↦ (1 − (𝑢↑2)))) = (𝑢 ∈ (-1(,)1) ↦ -(2 · 𝑢)))
181 dvsqrt 25904 . . . . . . . . . 10 (ℝ D (𝑣 ∈ ℝ+ ↦ (√‘𝑣))) = (𝑣 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑣))))
182181a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (ℝ D (𝑣 ∈ ℝ+ ↦ (√‘𝑣))) = (𝑣 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑣)))))
183 fveq2 6783 . . . . . . . . 9 (𝑣 = (1 − (𝑢↑2)) → (√‘𝑣) = (√‘(1 − (𝑢↑2))))
184183oveq2d 7300 . . . . . . . . . 10 (𝑣 = (1 − (𝑢↑2)) → (2 · (√‘𝑣)) = (2 · (√‘(1 − (𝑢↑2)))))
185184oveq2d 7300 . . . . . . . . 9 (𝑣 = (1 − (𝑢↑2)) → (1 / (2 · (√‘𝑣))) = (1 / (2 · (√‘(1 − (𝑢↑2))))))
1862, 2, 139, 141, 144, 145, 180, 182, 183, 185dvmptco 25145 . . . . . . . 8 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-1(,)1) ↦ (√‘(1 − (𝑢↑2))))) = (𝑢 ∈ (-1(,)1) ↦ ((1 / (2 · (√‘(1 − (𝑢↑2))))) · -(2 · 𝑢))))
187 2cnd 12060 . . . . . . . . . . . 12 (𝑢 ∈ (-1(,)1) → 2 ∈ ℂ)
188187, 61mulneg2d 11438 . . . . . . . . . . 11 (𝑢 ∈ (-1(,)1) → (2 · -𝑢) = -(2 · 𝑢))
189188oveq1d 7299 . . . . . . . . . 10 (𝑢 ∈ (-1(,)1) → ((2 · -𝑢) / (2 · (√‘(1 − (𝑢↑2))))) = (-(2 · 𝑢) / (2 · (√‘(1 − (𝑢↑2))))))
19061negcld 11328 . . . . . . . . . . 11 (𝑢 ∈ (-1(,)1) → -𝑢 ∈ ℂ)
191137gt0ne0d 11548 . . . . . . . . . . . 12 (𝑢 ∈ (-1(,)1) → (1 − (𝑢↑2)) ≠ 0)
19261, 66syl 17 . . . . . . . . . . . . . . . 16 (𝑢 ∈ (-1(,)1) → (1 − (𝑢↑2)) ∈ ℂ)
193192adantr 481 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (-1(,)1) ∧ (√‘(1 − (𝑢↑2))) = 0) → (1 − (𝑢↑2)) ∈ ℂ)
194 simpr 485 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (-1(,)1) ∧ (√‘(1 − (𝑢↑2))) = 0) → (√‘(1 − (𝑢↑2))) = 0)
195193, 194sqr00d 15162 . . . . . . . . . . . . . 14 ((𝑢 ∈ (-1(,)1) ∧ (√‘(1 − (𝑢↑2))) = 0) → (1 − (𝑢↑2)) = 0)
196195ex 413 . . . . . . . . . . . . 13 (𝑢 ∈ (-1(,)1) → ((√‘(1 − (𝑢↑2))) = 0 → (1 − (𝑢↑2)) = 0))
197196necon3d 2965 . . . . . . . . . . . 12 (𝑢 ∈ (-1(,)1) → ((1 − (𝑢↑2)) ≠ 0 → (√‘(1 − (𝑢↑2))) ≠ 0))
198191, 197mpd 15 . . . . . . . . . . 11 (𝑢 ∈ (-1(,)1) → (√‘(1 − (𝑢↑2))) ≠ 0)
199 2ne0 12086 . . . . . . . . . . . 12 2 ≠ 0
200199a1i 11 . . . . . . . . . . 11 (𝑢 ∈ (-1(,)1) → 2 ≠ 0)
201190, 111, 187, 198, 200divcan5d 11786 . . . . . . . . . 10 (𝑢 ∈ (-1(,)1) → ((2 · -𝑢) / (2 · (√‘(1 − (𝑢↑2))))) = (-𝑢 / (√‘(1 − (𝑢↑2)))))
202187, 61mulcld 11004 . . . . . . . . . . . 12 (𝑢 ∈ (-1(,)1) → (2 · 𝑢) ∈ ℂ)
203202negcld 11328 . . . . . . . . . . 11 (𝑢 ∈ (-1(,)1) → -(2 · 𝑢) ∈ ℂ)
204187, 111mulcld 11004 . . . . . . . . . . 11 (𝑢 ∈ (-1(,)1) → (2 · (√‘(1 − (𝑢↑2)))) ∈ ℂ)
205187, 111, 200, 198mulne0d 11636 . . . . . . . . . . 11 (𝑢 ∈ (-1(,)1) → (2 · (√‘(1 − (𝑢↑2)))) ≠ 0)
206203, 204, 205divrec2d 11764 . . . . . . . . . 10 (𝑢 ∈ (-1(,)1) → (-(2 · 𝑢) / (2 · (√‘(1 − (𝑢↑2))))) = ((1 / (2 · (√‘(1 − (𝑢↑2))))) · -(2 · 𝑢)))
207189, 201, 2063eqtr3rd 2788 . . . . . . . . 9 (𝑢 ∈ (-1(,)1) → ((1 / (2 · (√‘(1 − (𝑢↑2))))) · -(2 · 𝑢)) = (-𝑢 / (√‘(1 − (𝑢↑2)))))
208207mpteq2ia 5178 . . . . . . . 8 (𝑢 ∈ (-1(,)1) ↦ ((1 / (2 · (√‘(1 − (𝑢↑2))))) · -(2 · 𝑢))) = (𝑢 ∈ (-1(,)1) ↦ (-𝑢 / (√‘(1 − (𝑢↑2)))))
209186, 208eqtrdi 2795 . . . . . . 7 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-1(,)1) ↦ (√‘(1 − (𝑢↑2))))) = (𝑢 ∈ (-1(,)1) ↦ (-𝑢 / (√‘(1 − (𝑢↑2))))))
2102, 101, 102, 110, 112, 113, 209dvmptmul 25134 . . . . . 6 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-1(,)1) ↦ (𝑢 · (√‘(1 − (𝑢↑2)))))) = (𝑢 ∈ (-1(,)1) ↦ ((1 · (√‘(1 − (𝑢↑2)))) + ((-𝑢 / (√‘(1 − (𝑢↑2)))) · 𝑢))))
2112, 86, 87, 97, 99, 100, 210dvmptadd 25133 . . . . 5 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-1(,)1) ↦ ((arcsin‘𝑢) + (𝑢 · (√‘(1 − (𝑢↑2))))))) = (𝑢 ∈ (-1(,)1) ↦ ((1 / (√‘(1 − (𝑢↑2)))) + ((1 · (√‘(1 − (𝑢↑2)))) + ((-𝑢 / (√‘(1 − (𝑢↑2)))) · 𝑢)))))
212111mulid2d 11002 . . . . . . . . . 10 (𝑢 ∈ (-1(,)1) → (1 · (√‘(1 − (𝑢↑2)))) = (√‘(1 − (𝑢↑2))))
213190, 111, 198divcld 11760 . . . . . . . . . . . 12 (𝑢 ∈ (-1(,)1) → (-𝑢 / (√‘(1 − (𝑢↑2)))) ∈ ℂ)
214213, 61mulcomd 11005 . . . . . . . . . . 11 (𝑢 ∈ (-1(,)1) → ((-𝑢 / (√‘(1 − (𝑢↑2)))) · 𝑢) = (𝑢 · (-𝑢 / (√‘(1 − (𝑢↑2))))))
21561, 190, 111, 198divassd 11795 . . . . . . . . . . 11 (𝑢 ∈ (-1(,)1) → ((𝑢 · -𝑢) / (√‘(1 − (𝑢↑2)))) = (𝑢 · (-𝑢 / (√‘(1 − (𝑢↑2))))))
21661, 61mulneg2d 11438 . . . . . . . . . . . . 13 (𝑢 ∈ (-1(,)1) → (𝑢 · -𝑢) = -(𝑢 · 𝑢))
21761sqvald 13870 . . . . . . . . . . . . . 14 (𝑢 ∈ (-1(,)1) → (𝑢↑2) = (𝑢 · 𝑢))
218217negeqd 11224 . . . . . . . . . . . . 13 (𝑢 ∈ (-1(,)1) → -(𝑢↑2) = -(𝑢 · 𝑢))
219216, 218eqtr4d 2782 . . . . . . . . . . . 12 (𝑢 ∈ (-1(,)1) → (𝑢 · -𝑢) = -(𝑢↑2))
220219oveq1d 7299 . . . . . . . . . . 11 (𝑢 ∈ (-1(,)1) → ((𝑢 · -𝑢) / (√‘(1 − (𝑢↑2)))) = (-(𝑢↑2) / (√‘(1 − (𝑢↑2)))))
221214, 215, 2203eqtr2d 2785 . . . . . . . . . 10 (𝑢 ∈ (-1(,)1) → ((-𝑢 / (√‘(1 − (𝑢↑2)))) · 𝑢) = (-(𝑢↑2) / (√‘(1 − (𝑢↑2)))))
222212, 221oveq12d 7302 . . . . . . . . 9 (𝑢 ∈ (-1(,)1) → ((1 · (√‘(1 − (𝑢↑2)))) + ((-𝑢 / (√‘(1 − (𝑢↑2)))) · 𝑢)) = ((√‘(1 − (𝑢↑2))) + (-(𝑢↑2) / (√‘(1 − (𝑢↑2))))))
22361sqcld 13871 . . . . . . . . . . . 12 (𝑢 ∈ (-1(,)1) → (𝑢↑2) ∈ ℂ)
224223negcld 11328 . . . . . . . . . . 11 (𝑢 ∈ (-1(,)1) → -(𝑢↑2) ∈ ℂ)
225224, 111, 198divcld 11760 . . . . . . . . . 10 (𝑢 ∈ (-1(,)1) → (-(𝑢↑2) / (√‘(1 − (𝑢↑2)))) ∈ ℂ)
226111, 225addcomd 11186 . . . . . . . . 9 (𝑢 ∈ (-1(,)1) → ((√‘(1 − (𝑢↑2))) + (-(𝑢↑2) / (√‘(1 − (𝑢↑2))))) = ((-(𝑢↑2) / (√‘(1 − (𝑢↑2)))) + (√‘(1 − (𝑢↑2)))))
227222, 226eqtrd 2779 . . . . . . . 8 (𝑢 ∈ (-1(,)1) → ((1 · (√‘(1 − (𝑢↑2)))) + ((-𝑢 / (√‘(1 − (𝑢↑2)))) · 𝑢)) = ((-(𝑢↑2) / (√‘(1 − (𝑢↑2)))) + (√‘(1 − (𝑢↑2)))))
228227oveq2d 7300 . . . . . . 7 (𝑢 ∈ (-1(,)1) → ((1 / (√‘(1 − (𝑢↑2)))) + ((1 · (√‘(1 − (𝑢↑2)))) + ((-𝑢 / (√‘(1 − (𝑢↑2)))) · 𝑢))) = ((1 / (√‘(1 − (𝑢↑2)))) + ((-(𝑢↑2) / (√‘(1 − (𝑢↑2)))) + (√‘(1 − (𝑢↑2))))))
2291112timesd 12225 . . . . . . . 8 (𝑢 ∈ (-1(,)1) → (2 · (√‘(1 − (𝑢↑2)))) = ((√‘(1 − (𝑢↑2))) + (√‘(1 − (𝑢↑2)))))
23064, 65negsubd 11347 . . . . . . . . . . . . 13 (𝑢 ∈ ℂ → (1 + -(𝑢↑2)) = (1 − (𝑢↑2)))
23166sqsqrtd 15160 . . . . . . . . . . . . 13 (𝑢 ∈ ℂ → ((√‘(1 − (𝑢↑2)))↑2) = (1 − (𝑢↑2)))
23267sqvald 13870 . . . . . . . . . . . . 13 (𝑢 ∈ ℂ → ((√‘(1 − (𝑢↑2)))↑2) = ((√‘(1 − (𝑢↑2))) · (√‘(1 − (𝑢↑2)))))
233230, 231, 2323eqtr2d 2785 . . . . . . . . . . . 12 (𝑢 ∈ ℂ → (1 + -(𝑢↑2)) = ((√‘(1 − (𝑢↑2))) · (√‘(1 − (𝑢↑2)))))
23461, 233syl 17 . . . . . . . . . . 11 (𝑢 ∈ (-1(,)1) → (1 + -(𝑢↑2)) = ((√‘(1 − (𝑢↑2))) · (√‘(1 − (𝑢↑2)))))
235234oveq1d 7299 . . . . . . . . . 10 (𝑢 ∈ (-1(,)1) → ((1 + -(𝑢↑2)) / (√‘(1 − (𝑢↑2)))) = (((√‘(1 − (𝑢↑2))) · (√‘(1 − (𝑢↑2)))) / (√‘(1 − (𝑢↑2)))))
236 1cnd 10979 . . . . . . . . . . 11 (𝑢 ∈ (-1(,)1) → 1 ∈ ℂ)
237236, 224, 111, 198divdird 11798 . . . . . . . . . 10 (𝑢 ∈ (-1(,)1) → ((1 + -(𝑢↑2)) / (√‘(1 − (𝑢↑2)))) = ((1 / (√‘(1 − (𝑢↑2)))) + (-(𝑢↑2) / (√‘(1 − (𝑢↑2))))))
238111, 111, 198divcan3d 11765 . . . . . . . . . 10 (𝑢 ∈ (-1(,)1) → (((√‘(1 − (𝑢↑2))) · (√‘(1 − (𝑢↑2)))) / (√‘(1 − (𝑢↑2)))) = (√‘(1 − (𝑢↑2))))
239235, 237, 2383eqtr3rd 2788 . . . . . . . . 9 (𝑢 ∈ (-1(,)1) → (√‘(1 − (𝑢↑2))) = ((1 / (√‘(1 − (𝑢↑2)))) + (-(𝑢↑2) / (√‘(1 − (𝑢↑2))))))
240239oveq1d 7299 . . . . . . . 8 (𝑢 ∈ (-1(,)1) → ((√‘(1 − (𝑢↑2))) + (√‘(1 − (𝑢↑2)))) = (((1 / (√‘(1 − (𝑢↑2)))) + (-(𝑢↑2) / (√‘(1 − (𝑢↑2))))) + (√‘(1 − (𝑢↑2)))))
241111, 198reccld 11753 . . . . . . . . 9 (𝑢 ∈ (-1(,)1) → (1 / (√‘(1 − (𝑢↑2)))) ∈ ℂ)
242241, 225, 111addassd 11006 . . . . . . . 8 (𝑢 ∈ (-1(,)1) → (((1 / (√‘(1 − (𝑢↑2)))) + (-(𝑢↑2) / (√‘(1 − (𝑢↑2))))) + (√‘(1 − (𝑢↑2)))) = ((1 / (√‘(1 − (𝑢↑2)))) + ((-(𝑢↑2) / (√‘(1 − (𝑢↑2)))) + (√‘(1 − (𝑢↑2))))))
243229, 240, 2423eqtrrd 2784 . . . . . . 7 (𝑢 ∈ (-1(,)1) → ((1 / (√‘(1 − (𝑢↑2)))) + ((-(𝑢↑2) / (√‘(1 − (𝑢↑2)))) + (√‘(1 − (𝑢↑2))))) = (2 · (√‘(1 − (𝑢↑2)))))
244228, 243eqtrd 2779 . . . . . 6 (𝑢 ∈ (-1(,)1) → ((1 / (√‘(1 − (𝑢↑2)))) + ((1 · (√‘(1 − (𝑢↑2)))) + ((-𝑢 / (√‘(1 − (𝑢↑2)))) · 𝑢))) = (2 · (√‘(1 − (𝑢↑2)))))
245244mpteq2ia 5178 . . . . 5 (𝑢 ∈ (-1(,)1) ↦ ((1 / (√‘(1 − (𝑢↑2)))) + ((1 · (√‘(1 − (𝑢↑2)))) + ((-𝑢 / (√‘(1 − (𝑢↑2)))) · 𝑢)))) = (𝑢 ∈ (-1(,)1) ↦ (2 · (√‘(1 − (𝑢↑2)))))
246211, 245eqtrdi 2795 . . . 4 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-1(,)1) ↦ ((arcsin‘𝑢) + (𝑢 · (√‘(1 − (𝑢↑2))))))) = (𝑢 ∈ (-1(,)1) ↦ (2 · (√‘(1 − (𝑢↑2))))))
247 fveq2 6783 . . . . 5 (𝑢 = (𝑡 / 𝑅) → (arcsin‘𝑢) = (arcsin‘(𝑡 / 𝑅)))
248 id 22 . . . . . 6 (𝑢 = (𝑡 / 𝑅) → 𝑢 = (𝑡 / 𝑅))
249 oveq1 7291 . . . . . . . 8 (𝑢 = (𝑡 / 𝑅) → (𝑢↑2) = ((𝑡 / 𝑅)↑2))
250249oveq2d 7300 . . . . . . 7 (𝑢 = (𝑡 / 𝑅) → (1 − (𝑢↑2)) = (1 − ((𝑡 / 𝑅)↑2)))
251250fveq2d 6787 . . . . . 6 (𝑢 = (𝑡 / 𝑅) → (√‘(1 − (𝑢↑2))) = (√‘(1 − ((𝑡 / 𝑅)↑2))))
252248, 251oveq12d 7302 . . . . 5 (𝑢 = (𝑡 / 𝑅) → (𝑢 · (√‘(1 − (𝑢↑2)))) = ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2)))))
253247, 252oveq12d 7302 . . . 4 (𝑢 = (𝑡 / 𝑅) → ((arcsin‘𝑢) + (𝑢 · (√‘(1 − (𝑢↑2))))) = ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))))
254251oveq2d 7300 . . . 4 (𝑢 = (𝑡 / 𝑅) → (2 · (√‘(1 − (𝑢↑2)))) = (2 · (√‘(1 − ((𝑡 / 𝑅)↑2)))))
2552, 2, 58, 59, 71, 72, 84, 246, 253, 254dvmptco 25145 . . 3 (𝑅 ∈ ℝ+ → (ℝ D (𝑡 ∈ (-𝑅(,)𝑅) ↦ ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))))) = (𝑡 ∈ (-𝑅(,)𝑅) ↦ ((2 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (1 / 𝑅))))
2566sqcld 13871 . . 3 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℂ)
2572, 18, 19, 255, 256dvmptcmul 25137 . 2 (𝑅 ∈ ℝ+ → (ℝ D (𝑡 ∈ (-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2)))))))) = (𝑡 ∈ (-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((2 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (1 / 𝑅)))))
258 2cnd 12060 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 2 ∈ ℂ)
259258, 16mulcld 11004 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (2 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℂ)
2606, 8reccld 11753 . . . . . . 7 (𝑅 ∈ ℝ+ → (1 / 𝑅) ∈ ℂ)
261260adantr 481 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (1 / 𝑅) ∈ ℂ)
262259, 261mulcomd 11005 . . . . 5 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((2 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (1 / 𝑅)) = ((1 / 𝑅) · (2 · (√‘(1 − ((𝑡 / 𝑅)↑2))))))
263262oveq2d 7300 . . . 4 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((𝑅↑2) · ((2 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (1 / 𝑅))) = ((𝑅↑2) · ((1 / 𝑅) · (2 · (√‘(1 − ((𝑡 / 𝑅)↑2)))))))
264256adantr 481 . . . . 5 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (𝑅↑2) ∈ ℂ)
265264, 261, 259mulassd 11007 . . . 4 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (((𝑅↑2) · (1 / 𝑅)) · (2 · (√‘(1 − ((𝑡 / 𝑅)↑2))))) = ((𝑅↑2) · ((1 / 𝑅) · (2 · (√‘(1 − ((𝑡 / 𝑅)↑2)))))))
2666sqvald 13870 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (𝑅↑2) = (𝑅 · 𝑅))
267266oveq1d 7299 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑅↑2) / 𝑅) = ((𝑅 · 𝑅) / 𝑅))
268256, 6, 8divrecd 11763 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑅↑2) / 𝑅) = ((𝑅↑2) · (1 / 𝑅)))
2696, 6, 8divcan3d 11765 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑅 · 𝑅) / 𝑅) = 𝑅)
270267, 268, 2693eqtr3d 2787 . . . . . . 7 (𝑅 ∈ ℝ+ → ((𝑅↑2) · (1 / 𝑅)) = 𝑅)
271270adantr 481 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((𝑅↑2) · (1 / 𝑅)) = 𝑅)
272271oveq1d 7299 . . . . 5 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (((𝑅↑2) · (1 / 𝑅)) · (2 · (√‘(1 − ((𝑡 / 𝑅)↑2))))) = (𝑅 · (2 · (√‘(1 − ((𝑡 / 𝑅)↑2))))))
2737, 258, 16mul12d 11193 . . . . 5 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (𝑅 · (2 · (√‘(1 − ((𝑡 / 𝑅)↑2))))) = (2 · (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2))))))
27420resqcld 13974 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℝ)
275274adantr 481 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (𝑅↑2) ∈ ℝ)
27620sqge0d 13975 . . . . . . . . 9 (𝑅 ∈ ℝ+ → 0 ≤ (𝑅↑2))
277276adantr 481 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ (𝑅↑2))
278 1red 10985 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 1 ∈ ℝ)
2793adantl 482 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 𝑡 ∈ ℝ)
28020adantr 481 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 𝑅 ∈ ℝ)
281279, 280, 9redivcld 11812 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (𝑡 / 𝑅) ∈ ℝ)
282281resqcld 13974 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((𝑡 / 𝑅)↑2) ∈ ℝ)
283278, 282resubcld 11412 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (1 − ((𝑡 / 𝑅)↑2)) ∈ ℝ)
284 0red 10987 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 ∈ ℝ)
28526, 27absltd 15150 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡) < 𝑅 ↔ (-𝑅 < 𝑡𝑡 < 𝑅)))
28673abscld 15157 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ ℝ → (abs‘𝑡) ∈ ℝ)
287286adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (abs‘𝑡) ∈ ℝ)
28873absge0d 15165 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ ℝ → 0 ≤ (abs‘𝑡))
289288adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 0 ≤ (abs‘𝑡))
290 rpge0 12752 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
291290adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 0 ≤ 𝑅)
292287, 27, 289, 291lt2sqd 13982 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡) < 𝑅 ↔ ((abs‘𝑡)↑2) < (𝑅↑2)))
293 absresq 15023 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ ℝ → ((abs‘𝑡)↑2) = (𝑡↑2))
294293adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡)↑2) = (𝑡↑2))
295256adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℂ)
296295mulid1d 11001 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑅↑2) · 1) = (𝑅↑2))
297296eqcomd 2745 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑅↑2) = ((𝑅↑2) · 1))
298294, 297breq12d 5088 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((abs‘𝑡)↑2) < (𝑅↑2) ↔ (𝑡↑2) < ((𝑅↑2) · 1)))
2996adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ∈ ℂ)
30074, 299, 28sqdivd 13886 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡 / 𝑅)↑2) = ((𝑡↑2) / (𝑅↑2)))
301300breq1d 5085 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((𝑡 / 𝑅)↑2) < 1 ↔ ((𝑡↑2) / (𝑅↑2)) < 1))
30229resqcld 13974 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡 / 𝑅)↑2) ∈ ℝ)
303302, 41posdifd 11571 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((𝑡 / 𝑅)↑2) < 1 ↔ 0 < (1 − ((𝑡 / 𝑅)↑2))))
304 resqcl 13853 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℝ)
305304adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
306 rpgt0 12751 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℝ+ → 0 < 𝑅)
307 0red 10987 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℝ+ → 0 ∈ ℝ)
308 0le0 12083 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ≤ 0
309308a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℝ+ → 0 ≤ 0)
310307, 20, 309, 290lt2sqd 13982 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ ℝ+ → (0 < 𝑅 ↔ (0↑2) < (𝑅↑2)))
311 sq0 13918 . . . . . . . . . . . . . . . . . . . . . . . 24 (0↑2) = 0
312311a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℝ+ → (0↑2) = 0)
313312breq1d 5085 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ ℝ+ → ((0↑2) < (𝑅↑2) ↔ 0 < (𝑅↑2)))
314310, 313bitrd 278 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℝ+ → (0 < 𝑅 ↔ 0 < (𝑅↑2)))
315306, 314mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ ℝ+ → 0 < (𝑅↑2))
316274, 315elrpd 12778 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℝ+)
317316adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ+)
318305, 41, 317ltdivmuld 12832 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((𝑡↑2) / (𝑅↑2)) < 1 ↔ (𝑡↑2) < ((𝑅↑2) · 1)))
319301, 303, 3183bitr3rd 310 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡↑2) < ((𝑅↑2) · 1) ↔ 0 < (1 − ((𝑡 / 𝑅)↑2))))
320292, 298, 3193bitrd 305 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡) < 𝑅 ↔ 0 < (1 − ((𝑡 / 𝑅)↑2))))
321285, 320bitr3d 280 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) ↔ 0 < (1 − ((𝑡 / 𝑅)↑2))))
322321biimpd 228 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) → 0 < (1 − ((𝑡 / 𝑅)↑2))))
323322exp4b 431 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ ℝ → (-𝑅 < 𝑡 → (𝑡 < 𝑅 → 0 < (1 − ((𝑡 / 𝑅)↑2))))))
3243233impd 1347 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) → 0 < (1 − ((𝑡 / 𝑅)↑2))))
32525, 324sylbid 239 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅(,)𝑅) → 0 < (1 − ((𝑡 / 𝑅)↑2))))
326325imp 407 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 < (1 − ((𝑡 / 𝑅)↑2)))
327284, 283, 326ltled 11132 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ (1 − ((𝑡 / 𝑅)↑2)))
328275, 277, 283, 327sqrtmuld 15145 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (√‘((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2)))) = ((√‘(𝑅↑2)) · (√‘(1 − ((𝑡 / 𝑅)↑2)))))
329264, 13, 14subdid 11440 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2))) = (((𝑅↑2) · 1) − ((𝑅↑2) · ((𝑡 / 𝑅)↑2))))
330264mulid1d 11001 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((𝑅↑2) · 1) = (𝑅↑2))
3315, 7, 9sqdivd 13886 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((𝑡 / 𝑅)↑2) = ((𝑡↑2) / (𝑅↑2)))
332331oveq2d 7300 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((𝑅↑2) · ((𝑡 / 𝑅)↑2)) = ((𝑅↑2) · ((𝑡↑2) / (𝑅↑2))))
3334sqcld 13871 . . . . . . . . . . . . 13 (𝑡 ∈ (-𝑅(,)𝑅) → (𝑡↑2) ∈ ℂ)
334333adantl 482 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (𝑡↑2) ∈ ℂ)
335 sqne0 13852 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℂ → ((𝑅↑2) ≠ 0 ↔ 𝑅 ≠ 0))
3366, 335syl 17 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → ((𝑅↑2) ≠ 0 ↔ 𝑅 ≠ 0))
3378, 336mpbird 256 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑅↑2) ≠ 0)
338337adantr 481 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (𝑅↑2) ≠ 0)
339334, 264, 338divcan2d 11762 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((𝑅↑2) · ((𝑡↑2) / (𝑅↑2))) = (𝑡↑2))
340332, 339eqtrd 2779 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((𝑅↑2) · ((𝑡 / 𝑅)↑2)) = (𝑡↑2))
341330, 340oveq12d 7302 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (((𝑅↑2) · 1) − ((𝑅↑2) · ((𝑡 / 𝑅)↑2))) = ((𝑅↑2) − (𝑡↑2)))
342329, 341eqtrd 2779 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2))) = ((𝑅↑2) − (𝑡↑2)))
343342fveq2d 6787 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (√‘((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2)))) = (√‘((𝑅↑2) − (𝑡↑2))))
34420, 290sqrtsqd 15140 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (√‘(𝑅↑2)) = 𝑅)
345344adantr 481 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (√‘(𝑅↑2)) = 𝑅)
346345oveq1d 7299 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((√‘(𝑅↑2)) · (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))))
347328, 343, 3463eqtr3rd 2788 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (√‘((𝑅↑2) − (𝑡↑2))))
348347oveq2d 7300 . . . . 5 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (2 · (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2))))) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
349272, 273, 3483eqtrd 2783 . . . 4 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (((𝑅↑2) · (1 / 𝑅)) · (2 · (√‘(1 − ((𝑡 / 𝑅)↑2))))) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
350263, 265, 3493eqtr2d 2785 . . 3 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((𝑅↑2) · ((2 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (1 / 𝑅))) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
351350mpteq2dva 5175 . 2 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((2 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (1 / 𝑅)))) = (𝑡 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2))))))
352257, 351eqtrd 2779 1 (𝑅 ∈ ℝ+ → (ℝ D (𝑡 ∈ (-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2)))))))) = (𝑡 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2107  wne 2944  Vcvv 3433  cin 3887  wss 3888  {cpr 4564   class class class wbr 5075  cmpt 5158  ran crn 5591  cres 5592  wf 6433  cfv 6437  (class class class)co 7284  cc 10878  cr 10879  0cc0 10880  1c1 10881   + caddc 10883   · cmul 10885  *cxr 11017   < clt 11018  cle 11019  cmin 11214  -cneg 11215   / cdiv 11641  cn 11982  2c2 12037  +crp 12739  (,)cioo 13088  cexp 13791  csqrt 14953  abscabs 14954  TopOpenctopn 17141  topGenctg 17157  fldccnfld 20606  TopOnctopon 22068   D cdv 25036  arcsincasin 26021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-ioc 13093  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-fl 13521  df-mod 13599  df-seq 13731  df-exp 13792  df-fac 13997  df-bc 14026  df-hash 14054  df-shft 14787  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-limsup 15189  df-clim 15206  df-rlim 15207  df-sum 15407  df-ef 15786  df-sin 15788  df-cos 15789  df-tan 15790  df-pi 15791  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-mulg 18710  df-cntz 18932  df-cmn 19397  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cn 22387  df-cnp 22388  df-haus 22475  df-cmp 22547  df-tx 22722  df-hmeo 22915  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-xms 23482  df-ms 23483  df-tms 23484  df-cncf 24050  df-limc 25039  df-dv 25040  df-log 25721  df-cxp 25722  df-asin 26024
This theorem is referenced by:  areacirc  35879
  Copyright terms: Public domain W3C validator