Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uzm1 | Structured version Visualization version GIF version |
Description: Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
uzm1 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 12516 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
2 | 1 | a1d 25 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (¬ 𝑁 = 𝑀 → 𝑀 ∈ ℤ)) |
3 | eluzelz 12521 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
4 | peano2zm 12293 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 1) ∈ ℤ) |
6 | 5 | a1d 25 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (¬ 𝑁 = 𝑀 → (𝑁 − 1) ∈ ℤ)) |
7 | df-ne 2943 | . . . . . 6 ⊢ (𝑁 ≠ 𝑀 ↔ ¬ 𝑁 = 𝑀) | |
8 | eluzle 12524 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | |
9 | 1 | zred 12355 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℝ) |
10 | eluzelre 12522 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | |
11 | 9, 10 | ltlend 11050 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ↔ (𝑀 ≤ 𝑁 ∧ 𝑁 ≠ 𝑀))) |
12 | 11 | biimprd 247 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀 ≤ 𝑁 ∧ 𝑁 ≠ 𝑀) → 𝑀 < 𝑁)) |
13 | 8, 12 | mpand 691 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 ≠ 𝑀 → 𝑀 < 𝑁)) |
14 | 7, 13 | syl5bir 242 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (¬ 𝑁 = 𝑀 → 𝑀 < 𝑁)) |
15 | zltlem1 12303 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | |
16 | 1, 3, 15 | syl2anc 583 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
17 | 14, 16 | sylibd 238 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (¬ 𝑁 = 𝑀 → 𝑀 ≤ (𝑁 − 1))) |
18 | 2, 6, 17 | 3jcad 1127 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (¬ 𝑁 = 𝑀 → (𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 − 1)))) |
19 | eluz2 12517 | . . 3 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 − 1))) | |
20 | 18, 19 | syl6ibr 251 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (¬ 𝑁 = 𝑀 → (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
21 | 20 | orrd 859 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 1c1 10803 < clt 10940 ≤ cle 10941 − cmin 11135 ℤcz 12249 ℤ≥cuz 12511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 |
This theorem is referenced by: uzp1 12548 fzm1 13265 hashfzo 14072 iserex 15296 ntrivcvg 15537 ntrivcvgtail 15540 mulgfval 18617 |
Copyright terms: Public domain | W3C validator |