HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnssadj Structured version   Visualization version   GIF version

Theorem cnlnssadj 31903
Description: Every continuous linear Hilbert space operator has an adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
cnlnssadj (LinOp ∩ ContOp) ⊆ dom adj

Proof of Theorem cnlnssadj
Dummy variables 𝑢 𝑡 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnlnadj 31902 . . . . 5 (𝑦 ∈ (LinOp ∩ ContOp) → ∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧)))
2 df-rex 3068 . . . . 5 (∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧)) ↔ ∃𝑡(𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧))))
31, 2sylib 217 . . . 4 (𝑦 ∈ (LinOp ∩ ContOp) → ∃𝑡(𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧))))
4 inss1 4229 . . . . . . . . . 10 (LinOp ∩ ContOp) ⊆ LinOp
54sseli 3976 . . . . . . . . 9 (𝑦 ∈ (LinOp ∩ ContOp) → 𝑦 ∈ LinOp)
6 lnopf 31682 . . . . . . . . 9 (𝑦 ∈ LinOp → 𝑦: ℋ⟶ ℋ)
75, 6syl 17 . . . . . . . 8 (𝑦 ∈ (LinOp ∩ ContOp) → 𝑦: ℋ⟶ ℋ)
87a1d 25 . . . . . . 7 (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧))) → 𝑦: ℋ⟶ ℋ))
94sseli 3976 . . . . . . . . . 10 (𝑡 ∈ (LinOp ∩ ContOp) → 𝑡 ∈ LinOp)
10 lnopf 31682 . . . . . . . . . 10 (𝑡 ∈ LinOp → 𝑡: ℋ⟶ ℋ)
119, 10syl 17 . . . . . . . . 9 (𝑡 ∈ (LinOp ∩ ContOp) → 𝑡: ℋ⟶ ℋ)
1211a1i 11 . . . . . . . 8 (𝑦 ∈ (LinOp ∩ ContOp) → (𝑡 ∈ (LinOp ∩ ContOp) → 𝑡: ℋ⟶ ℋ))
1312adantrd 491 . . . . . . 7 (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧))) → 𝑡: ℋ⟶ ℋ))
14 eqcom 2735 . . . . . . . . . . 11 (((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧)) ↔ (𝑥 ·ih (𝑡𝑧)) = ((𝑦𝑥) ·ih 𝑧))
1514biimpi 215 . . . . . . . . . 10 (((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧)) → (𝑥 ·ih (𝑡𝑧)) = ((𝑦𝑥) ·ih 𝑧))
16152ralimi 3120 . . . . . . . . 9 (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧)) → ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑡𝑧)) = ((𝑦𝑥) ·ih 𝑧))
17 adjsym 31656 . . . . . . . . . 10 ((𝑡: ℋ⟶ ℋ ∧ 𝑦: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑡𝑧)) = ((𝑦𝑥) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑡𝑥) ·ih 𝑧)))
1811, 7, 17syl2anr 596 . . . . . . . . 9 ((𝑦 ∈ (LinOp ∩ ContOp) ∧ 𝑡 ∈ (LinOp ∩ ContOp)) → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑡𝑧)) = ((𝑦𝑥) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑡𝑥) ·ih 𝑧)))
1916, 18imbitrid 243 . . . . . . . 8 ((𝑦 ∈ (LinOp ∩ ContOp) ∧ 𝑡 ∈ (LinOp ∩ ContOp)) → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧)) → ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑡𝑥) ·ih 𝑧)))
2019expimpd 453 . . . . . . 7 (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧))) → ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑡𝑥) ·ih 𝑧)))
218, 13, 203jcad 1127 . . . . . 6 (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧))) → (𝑦: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑡𝑥) ·ih 𝑧))))
22 dfadj2 31708 . . . . . . . 8 adj = {⟨𝑢, 𝑣⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢𝑧)) = ((𝑣𝑥) ·ih 𝑧))}
2322eleq2i 2821 . . . . . . 7 (⟨𝑦, 𝑡⟩ ∈ adj ↔ ⟨𝑦, 𝑡⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢𝑧)) = ((𝑣𝑥) ·ih 𝑧))})
24 vex 3475 . . . . . . . 8 𝑦 ∈ V
25 vex 3475 . . . . . . . 8 𝑡 ∈ V
26 feq1 6703 . . . . . . . . 9 (𝑢 = 𝑦 → (𝑢: ℋ⟶ ℋ ↔ 𝑦: ℋ⟶ ℋ))
27 fveq1 6896 . . . . . . . . . . . 12 (𝑢 = 𝑦 → (𝑢𝑧) = (𝑦𝑧))
2827oveq2d 7436 . . . . . . . . . . 11 (𝑢 = 𝑦 → (𝑥 ·ih (𝑢𝑧)) = (𝑥 ·ih (𝑦𝑧)))
2928eqeq1d 2730 . . . . . . . . . 10 (𝑢 = 𝑦 → ((𝑥 ·ih (𝑢𝑧)) = ((𝑣𝑥) ·ih 𝑧) ↔ (𝑥 ·ih (𝑦𝑧)) = ((𝑣𝑥) ·ih 𝑧)))
30292ralbidv 3215 . . . . . . . . 9 (𝑢 = 𝑦 → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢𝑧)) = ((𝑣𝑥) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑣𝑥) ·ih 𝑧)))
3126, 303anbi13d 1435 . . . . . . . 8 (𝑢 = 𝑦 → ((𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢𝑧)) = ((𝑣𝑥) ·ih 𝑧)) ↔ (𝑦: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑣𝑥) ·ih 𝑧))))
32 feq1 6703 . . . . . . . . 9 (𝑣 = 𝑡 → (𝑣: ℋ⟶ ℋ ↔ 𝑡: ℋ⟶ ℋ))
33 fveq1 6896 . . . . . . . . . . . 12 (𝑣 = 𝑡 → (𝑣𝑥) = (𝑡𝑥))
3433oveq1d 7435 . . . . . . . . . . 11 (𝑣 = 𝑡 → ((𝑣𝑥) ·ih 𝑧) = ((𝑡𝑥) ·ih 𝑧))
3534eqeq2d 2739 . . . . . . . . . 10 (𝑣 = 𝑡 → ((𝑥 ·ih (𝑦𝑧)) = ((𝑣𝑥) ·ih 𝑧) ↔ (𝑥 ·ih (𝑦𝑧)) = ((𝑡𝑥) ·ih 𝑧)))
36352ralbidv 3215 . . . . . . . . 9 (𝑣 = 𝑡 → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑣𝑥) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑡𝑥) ·ih 𝑧)))
3732, 363anbi23d 1436 . . . . . . . 8 (𝑣 = 𝑡 → ((𝑦: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑣𝑥) ·ih 𝑧)) ↔ (𝑦: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑡𝑥) ·ih 𝑧))))
3824, 25, 31, 37opelopab 5544 . . . . . . 7 (⟨𝑦, 𝑡⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢𝑧)) = ((𝑣𝑥) ·ih 𝑧))} ↔ (𝑦: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑡𝑥) ·ih 𝑧)))
3923, 38bitr2i 276 . . . . . 6 ((𝑦: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑡𝑥) ·ih 𝑧)) ↔ ⟨𝑦, 𝑡⟩ ∈ adj)
4021, 39imbitrdi 250 . . . . 5 (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧))) → ⟨𝑦, 𝑡⟩ ∈ adj))
4140eximdv 1913 . . . 4 (𝑦 ∈ (LinOp ∩ ContOp) → (∃𝑡(𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧))) → ∃𝑡𝑦, 𝑡⟩ ∈ adj))
423, 41mpd 15 . . 3 (𝑦 ∈ (LinOp ∩ ContOp) → ∃𝑡𝑦, 𝑡⟩ ∈ adj)
4324eldm2 5904 . . 3 (𝑦 ∈ dom adj ↔ ∃𝑡𝑦, 𝑡⟩ ∈ adj)
4442, 43sylibr 233 . 2 (𝑦 ∈ (LinOp ∩ ContOp) → 𝑦 ∈ dom adj)
4544ssriv 3984 1 (LinOp ∩ ContOp) ⊆ dom adj
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wex 1774  wcel 2099  wral 3058  wrex 3067  cin 3946  wss 3947  cop 4635  {copab 5210  dom cdm 5678  wf 6544  cfv 6548  (class class class)co 7420  chba 30742   ·ih csp 30745  ContOpccop 30769  LinOpclo 30770  adjcado 30778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665  ax-cc 10459  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217  ax-addf 11218  ax-mulf 11219  ax-hilex 30822  ax-hfvadd 30823  ax-hvcom 30824  ax-hvass 30825  ax-hv0cl 30826  ax-hvaddid 30827  ax-hfvmul 30828  ax-hvmulid 30829  ax-hvmulass 30830  ax-hvdistr1 30831  ax-hvdistr2 30832  ax-hvmul0 30833  ax-hfi 30902  ax-his1 30905  ax-his2 30906  ax-his3 30907  ax-his4 30908  ax-hcompl 31025
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-om 7871  df-1st 7993  df-2nd 7994  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-omul 8492  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9387  df-fi 9435  df-sup 9466  df-inf 9467  df-oi 9534  df-card 9963  df-acn 9966  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-z 12590  df-dec 12709  df-uz 12854  df-q 12964  df-rp 13008  df-xneg 13125  df-xadd 13126  df-xmul 13127  df-ioo 13361  df-ico 13363  df-icc 13364  df-fz 13518  df-fzo 13661  df-fl 13790  df-seq 14000  df-exp 14060  df-hash 14323  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-clim 15465  df-rlim 15466  df-sum 15666  df-struct 17116  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-starv 17248  df-sca 17249  df-vsca 17250  df-ip 17251  df-tset 17252  df-ple 17253  df-ds 17255  df-unif 17256  df-hom 17257  df-cco 17258  df-rest 17404  df-topn 17405  df-0g 17423  df-gsum 17424  df-topgen 17425  df-pt 17426  df-prds 17429  df-xrs 17484  df-qtop 17489  df-imas 17490  df-xps 17492  df-mre 17566  df-mrc 17567  df-acs 17569  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-submnd 18741  df-mulg 19024  df-cntz 19268  df-cmn 19737  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22862  df-cld 22936  df-ntr 22937  df-cls 22938  df-nei 23015  df-cn 23144  df-cnp 23145  df-lm 23146  df-t1 23231  df-haus 23232  df-tx 23479  df-hmeo 23672  df-fil 23763  df-fm 23855  df-flim 23856  df-flf 23857  df-xms 24239  df-ms 24240  df-tms 24241  df-cfil 25196  df-cau 25197  df-cmet 25198  df-grpo 30316  df-gid 30317  df-ginv 30318  df-gdiv 30319  df-ablo 30368  df-vc 30382  df-nv 30415  df-va 30418  df-ba 30419  df-sm 30420  df-0v 30421  df-vs 30422  df-nmcv 30423  df-ims 30424  df-dip 30524  df-ssp 30545  df-ph 30636  df-cbn 30686  df-hnorm 30791  df-hba 30792  df-hvsub 30794  df-hlim 30795  df-hcau 30796  df-sh 31030  df-ch 31044  df-oc 31075  df-ch0 31076  df-shs 31131  df-pjh 31218  df-h0op 31571  df-nmop 31662  df-cnop 31663  df-lnop 31664  df-unop 31666  df-hmop 31667  df-nmfn 31668  df-nlfn 31669  df-cnfn 31670  df-lnfn 31671  df-adjh 31672
This theorem is referenced by:  bdopssadj  31904
  Copyright terms: Public domain W3C validator