![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cnlnssadj | Structured version Visualization version GIF version |
Description: Every continuous linear Hilbert space operator has an adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnlnssadj | ⊢ (LinOp ∩ ContOp) ⊆ dom adjℎ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnlnadj 29463 | . . . . 5 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧))) | |
2 | df-rex 3095 | . . . . 5 ⊢ (∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧)) ↔ ∃𝑡(𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧)))) | |
3 | 1, 2 | sylib 210 | . . . 4 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ∃𝑡(𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧)))) |
4 | inss1 4028 | . . . . . . . . . 10 ⊢ (LinOp ∩ ContOp) ⊆ LinOp | |
5 | 4 | sseli 3794 | . . . . . . . . 9 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → 𝑦 ∈ LinOp) |
6 | lnopf 29243 | . . . . . . . . 9 ⊢ (𝑦 ∈ LinOp → 𝑦: ℋ⟶ ℋ) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → 𝑦: ℋ⟶ ℋ) |
8 | 7 | a1d 25 | . . . . . . 7 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧))) → 𝑦: ℋ⟶ ℋ)) |
9 | 4 | sseli 3794 | . . . . . . . . . 10 ⊢ (𝑡 ∈ (LinOp ∩ ContOp) → 𝑡 ∈ LinOp) |
10 | lnopf 29243 | . . . . . . . . . 10 ⊢ (𝑡 ∈ LinOp → 𝑡: ℋ⟶ ℋ) | |
11 | 9, 10 | syl 17 | . . . . . . . . 9 ⊢ (𝑡 ∈ (LinOp ∩ ContOp) → 𝑡: ℋ⟶ ℋ) |
12 | 11 | a1i 11 | . . . . . . . 8 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → (𝑡 ∈ (LinOp ∩ ContOp) → 𝑡: ℋ⟶ ℋ)) |
13 | 12 | adantrd 486 | . . . . . . 7 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧))) → 𝑡: ℋ⟶ ℋ)) |
14 | eqcom 2806 | . . . . . . . . . . 11 ⊢ (((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧)) ↔ (𝑥 ·ih (𝑡‘𝑧)) = ((𝑦‘𝑥) ·ih 𝑧)) | |
15 | 14 | biimpi 208 | . . . . . . . . . 10 ⊢ (((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧)) → (𝑥 ·ih (𝑡‘𝑧)) = ((𝑦‘𝑥) ·ih 𝑧)) |
16 | 15 | 2ralimi 3134 | . . . . . . . . 9 ⊢ (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧)) → ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑡‘𝑧)) = ((𝑦‘𝑥) ·ih 𝑧)) |
17 | adjsym 29217 | . . . . . . . . . 10 ⊢ ((𝑡: ℋ⟶ ℋ ∧ 𝑦: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑡‘𝑧)) = ((𝑦‘𝑥) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧))) | |
18 | 11, 7, 17 | syl2anr 591 | . . . . . . . . 9 ⊢ ((𝑦 ∈ (LinOp ∩ ContOp) ∧ 𝑡 ∈ (LinOp ∩ ContOp)) → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑡‘𝑧)) = ((𝑦‘𝑥) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧))) |
19 | 16, 18 | syl5ib 236 | . . . . . . . 8 ⊢ ((𝑦 ∈ (LinOp ∩ ContOp) ∧ 𝑡 ∈ (LinOp ∩ ContOp)) → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧)) → ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧))) |
20 | 19 | expimpd 446 | . . . . . . 7 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧))) → ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧))) |
21 | 8, 13, 20 | 3jcad 1160 | . . . . . 6 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧))) → (𝑦: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧)))) |
22 | dfadj2 29269 | . . . . . . . 8 ⊢ adjℎ = {〈𝑢, 𝑣〉 ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧))} | |
23 | 22 | eleq2i 2870 | . . . . . . 7 ⊢ (〈𝑦, 𝑡〉 ∈ adjℎ ↔ 〈𝑦, 𝑡〉 ∈ {〈𝑢, 𝑣〉 ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧))}) |
24 | vex 3388 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
25 | vex 3388 | . . . . . . . 8 ⊢ 𝑡 ∈ V | |
26 | feq1 6237 | . . . . . . . . 9 ⊢ (𝑢 = 𝑦 → (𝑢: ℋ⟶ ℋ ↔ 𝑦: ℋ⟶ ℋ)) | |
27 | fveq1 6410 | . . . . . . . . . . . 12 ⊢ (𝑢 = 𝑦 → (𝑢‘𝑧) = (𝑦‘𝑧)) | |
28 | 27 | oveq2d 6894 | . . . . . . . . . . 11 ⊢ (𝑢 = 𝑦 → (𝑥 ·ih (𝑢‘𝑧)) = (𝑥 ·ih (𝑦‘𝑧))) |
29 | 28 | eqeq1d 2801 | . . . . . . . . . 10 ⊢ (𝑢 = 𝑦 → ((𝑥 ·ih (𝑢‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧) ↔ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧))) |
30 | 29 | 2ralbidv 3170 | . . . . . . . . 9 ⊢ (𝑢 = 𝑦 → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧))) |
31 | 26, 30 | 3anbi13d 1563 | . . . . . . . 8 ⊢ (𝑢 = 𝑦 → ((𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧)) ↔ (𝑦: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧)))) |
32 | feq1 6237 | . . . . . . . . 9 ⊢ (𝑣 = 𝑡 → (𝑣: ℋ⟶ ℋ ↔ 𝑡: ℋ⟶ ℋ)) | |
33 | fveq1 6410 | . . . . . . . . . . . 12 ⊢ (𝑣 = 𝑡 → (𝑣‘𝑥) = (𝑡‘𝑥)) | |
34 | 33 | oveq1d 6893 | . . . . . . . . . . 11 ⊢ (𝑣 = 𝑡 → ((𝑣‘𝑥) ·ih 𝑧) = ((𝑡‘𝑥) ·ih 𝑧)) |
35 | 34 | eqeq2d 2809 | . . . . . . . . . 10 ⊢ (𝑣 = 𝑡 → ((𝑥 ·ih (𝑦‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧) ↔ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧))) |
36 | 35 | 2ralbidv 3170 | . . . . . . . . 9 ⊢ (𝑣 = 𝑡 → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧))) |
37 | 32, 36 | 3anbi23d 1564 | . . . . . . . 8 ⊢ (𝑣 = 𝑡 → ((𝑦: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧)) ↔ (𝑦: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧)))) |
38 | 24, 25, 31, 37 | opelopab 5193 | . . . . . . 7 ⊢ (〈𝑦, 𝑡〉 ∈ {〈𝑢, 𝑣〉 ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧))} ↔ (𝑦: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧))) |
39 | 23, 38 | bitr2i 268 | . . . . . 6 ⊢ ((𝑦: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧)) ↔ 〈𝑦, 𝑡〉 ∈ adjℎ) |
40 | 21, 39 | syl6ib 243 | . . . . 5 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧))) → 〈𝑦, 𝑡〉 ∈ adjℎ)) |
41 | 40 | eximdv 2013 | . . . 4 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → (∃𝑡(𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧))) → ∃𝑡〈𝑦, 𝑡〉 ∈ adjℎ)) |
42 | 3, 41 | mpd 15 | . . 3 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ∃𝑡〈𝑦, 𝑡〉 ∈ adjℎ) |
43 | 24 | eldm2 5525 | . . 3 ⊢ (𝑦 ∈ dom adjℎ ↔ ∃𝑡〈𝑦, 𝑡〉 ∈ adjℎ) |
44 | 42, 43 | sylibr 226 | . 2 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → 𝑦 ∈ dom adjℎ) |
45 | 44 | ssriv 3802 | 1 ⊢ (LinOp ∩ ContOp) ⊆ dom adjℎ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∃wex 1875 ∈ wcel 2157 ∀wral 3089 ∃wrex 3090 ∩ cin 3768 ⊆ wss 3769 〈cop 4374 {copab 4905 dom cdm 5312 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 ℋchba 28301 ·ih csp 28304 ContOpccop 28328 LinOpclo 28329 adjℎcado 28337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cc 9545 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 ax-addf 10303 ax-mulf 10304 ax-hilex 28381 ax-hfvadd 28382 ax-hvcom 28383 ax-hvass 28384 ax-hv0cl 28385 ax-hvaddid 28386 ax-hfvmul 28387 ax-hvmulid 28388 ax-hvmulass 28389 ax-hvdistr1 28390 ax-hvdistr2 28391 ax-hvmul0 28392 ax-hfi 28461 ax-his1 28464 ax-his2 28465 ax-his3 28466 ax-his4 28467 ax-hcompl 28584 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-of 7131 df-om 7300 df-1st 7401 df-2nd 7402 df-supp 7533 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-omul 7804 df-er 7982 df-map 8097 df-pm 8098 df-ixp 8149 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-fsupp 8518 df-fi 8559 df-sup 8590 df-inf 8591 df-oi 8657 df-card 9051 df-acn 9054 df-cda 9278 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-q 12034 df-rp 12075 df-xneg 12193 df-xadd 12194 df-xmul 12195 df-ioo 12428 df-ico 12430 df-icc 12431 df-fz 12581 df-fzo 12721 df-fl 12848 df-seq 13056 df-exp 13115 df-hash 13371 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-clim 14560 df-rlim 14561 df-sum 14758 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-starv 16282 df-sca 16283 df-vsca 16284 df-ip 16285 df-tset 16286 df-ple 16287 df-ds 16289 df-unif 16290 df-hom 16291 df-cco 16292 df-rest 16398 df-topn 16399 df-0g 16417 df-gsum 16418 df-topgen 16419 df-pt 16420 df-prds 16423 df-xrs 16477 df-qtop 16482 df-imas 16483 df-xps 16485 df-mre 16561 df-mrc 16562 df-acs 16564 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-submnd 17651 df-mulg 17857 df-cntz 18062 df-cmn 18510 df-psmet 20060 df-xmet 20061 df-met 20062 df-bl 20063 df-mopn 20064 df-fbas 20065 df-fg 20066 df-cnfld 20069 df-top 21027 df-topon 21044 df-topsp 21066 df-bases 21079 df-cld 21152 df-ntr 21153 df-cls 21154 df-nei 21231 df-cn 21360 df-cnp 21361 df-lm 21362 df-t1 21447 df-haus 21448 df-tx 21694 df-hmeo 21887 df-fil 21978 df-fm 22070 df-flim 22071 df-flf 22072 df-xms 22453 df-ms 22454 df-tms 22455 df-cfil 23381 df-cau 23382 df-cmet 23383 df-grpo 27873 df-gid 27874 df-ginv 27875 df-gdiv 27876 df-ablo 27925 df-vc 27939 df-nv 27972 df-va 27975 df-ba 27976 df-sm 27977 df-0v 27978 df-vs 27979 df-nmcv 27980 df-ims 27981 df-dip 28081 df-ssp 28102 df-ph 28193 df-cbn 28244 df-hnorm 28350 df-hba 28351 df-hvsub 28353 df-hlim 28354 df-hcau 28355 df-sh 28589 df-ch 28603 df-oc 28634 df-ch0 28635 df-shs 28692 df-pjh 28779 df-h0op 29132 df-nmop 29223 df-cnop 29224 df-lnop 29225 df-unop 29227 df-hmop 29228 df-nmfn 29229 df-nlfn 29230 df-cnfn 29231 df-lnfn 29232 df-adjh 29233 |
This theorem is referenced by: bdopssadj 29465 |
Copyright terms: Public domain | W3C validator |