| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cnlnssadj | Structured version Visualization version GIF version | ||
| Description: Every continuous linear Hilbert space operator has an adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cnlnssadj | ⊢ (LinOp ∩ ContOp) ⊆ dom adjℎ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlnadj 32008 | . . . . 5 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧))) | |
| 2 | df-rex 3054 | . . . . 5 ⊢ (∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧)) ↔ ∃𝑡(𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧)))) | |
| 3 | 1, 2 | sylib 218 | . . . 4 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ∃𝑡(𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧)))) |
| 4 | inss1 4200 | . . . . . . . . . 10 ⊢ (LinOp ∩ ContOp) ⊆ LinOp | |
| 5 | 4 | sseli 3942 | . . . . . . . . 9 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → 𝑦 ∈ LinOp) |
| 6 | lnopf 31788 | . . . . . . . . 9 ⊢ (𝑦 ∈ LinOp → 𝑦: ℋ⟶ ℋ) | |
| 7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → 𝑦: ℋ⟶ ℋ) |
| 8 | 7 | a1d 25 | . . . . . . 7 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧))) → 𝑦: ℋ⟶ ℋ)) |
| 9 | 4 | sseli 3942 | . . . . . . . . . 10 ⊢ (𝑡 ∈ (LinOp ∩ ContOp) → 𝑡 ∈ LinOp) |
| 10 | lnopf 31788 | . . . . . . . . . 10 ⊢ (𝑡 ∈ LinOp → 𝑡: ℋ⟶ ℋ) | |
| 11 | 9, 10 | syl 17 | . . . . . . . . 9 ⊢ (𝑡 ∈ (LinOp ∩ ContOp) → 𝑡: ℋ⟶ ℋ) |
| 12 | 11 | a1i 11 | . . . . . . . 8 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → (𝑡 ∈ (LinOp ∩ ContOp) → 𝑡: ℋ⟶ ℋ)) |
| 13 | 12 | adantrd 491 | . . . . . . 7 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧))) → 𝑡: ℋ⟶ ℋ)) |
| 14 | eqcom 2736 | . . . . . . . . . . 11 ⊢ (((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧)) ↔ (𝑥 ·ih (𝑡‘𝑧)) = ((𝑦‘𝑥) ·ih 𝑧)) | |
| 15 | 14 | biimpi 216 | . . . . . . . . . 10 ⊢ (((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧)) → (𝑥 ·ih (𝑡‘𝑧)) = ((𝑦‘𝑥) ·ih 𝑧)) |
| 16 | 15 | 2ralimi 3103 | . . . . . . . . 9 ⊢ (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧)) → ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑡‘𝑧)) = ((𝑦‘𝑥) ·ih 𝑧)) |
| 17 | adjsym 31762 | . . . . . . . . . 10 ⊢ ((𝑡: ℋ⟶ ℋ ∧ 𝑦: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑡‘𝑧)) = ((𝑦‘𝑥) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧))) | |
| 18 | 11, 7, 17 | syl2anr 597 | . . . . . . . . 9 ⊢ ((𝑦 ∈ (LinOp ∩ ContOp) ∧ 𝑡 ∈ (LinOp ∩ ContOp)) → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑡‘𝑧)) = ((𝑦‘𝑥) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧))) |
| 19 | 16, 18 | imbitrid 244 | . . . . . . . 8 ⊢ ((𝑦 ∈ (LinOp ∩ ContOp) ∧ 𝑡 ∈ (LinOp ∩ ContOp)) → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧)) → ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧))) |
| 20 | 19 | expimpd 453 | . . . . . . 7 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧))) → ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧))) |
| 21 | 8, 13, 20 | 3jcad 1129 | . . . . . 6 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧))) → (𝑦: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧)))) |
| 22 | dfadj2 31814 | . . . . . . . 8 ⊢ adjℎ = {〈𝑢, 𝑣〉 ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧))} | |
| 23 | 22 | eleq2i 2820 | . . . . . . 7 ⊢ (〈𝑦, 𝑡〉 ∈ adjℎ ↔ 〈𝑦, 𝑡〉 ∈ {〈𝑢, 𝑣〉 ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧))}) |
| 24 | vex 3451 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 25 | vex 3451 | . . . . . . . 8 ⊢ 𝑡 ∈ V | |
| 26 | feq1 6666 | . . . . . . . . 9 ⊢ (𝑢 = 𝑦 → (𝑢: ℋ⟶ ℋ ↔ 𝑦: ℋ⟶ ℋ)) | |
| 27 | fveq1 6857 | . . . . . . . . . . . 12 ⊢ (𝑢 = 𝑦 → (𝑢‘𝑧) = (𝑦‘𝑧)) | |
| 28 | 27 | oveq2d 7403 | . . . . . . . . . . 11 ⊢ (𝑢 = 𝑦 → (𝑥 ·ih (𝑢‘𝑧)) = (𝑥 ·ih (𝑦‘𝑧))) |
| 29 | 28 | eqeq1d 2731 | . . . . . . . . . 10 ⊢ (𝑢 = 𝑦 → ((𝑥 ·ih (𝑢‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧) ↔ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧))) |
| 30 | 29 | 2ralbidv 3201 | . . . . . . . . 9 ⊢ (𝑢 = 𝑦 → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧))) |
| 31 | 26, 30 | 3anbi13d 1440 | . . . . . . . 8 ⊢ (𝑢 = 𝑦 → ((𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧)) ↔ (𝑦: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧)))) |
| 32 | feq1 6666 | . . . . . . . . 9 ⊢ (𝑣 = 𝑡 → (𝑣: ℋ⟶ ℋ ↔ 𝑡: ℋ⟶ ℋ)) | |
| 33 | fveq1 6857 | . . . . . . . . . . . 12 ⊢ (𝑣 = 𝑡 → (𝑣‘𝑥) = (𝑡‘𝑥)) | |
| 34 | 33 | oveq1d 7402 | . . . . . . . . . . 11 ⊢ (𝑣 = 𝑡 → ((𝑣‘𝑥) ·ih 𝑧) = ((𝑡‘𝑥) ·ih 𝑧)) |
| 35 | 34 | eqeq2d 2740 | . . . . . . . . . 10 ⊢ (𝑣 = 𝑡 → ((𝑥 ·ih (𝑦‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧) ↔ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧))) |
| 36 | 35 | 2ralbidv 3201 | . . . . . . . . 9 ⊢ (𝑣 = 𝑡 → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧))) |
| 37 | 32, 36 | 3anbi23d 1441 | . . . . . . . 8 ⊢ (𝑣 = 𝑡 → ((𝑦: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧)) ↔ (𝑦: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧)))) |
| 38 | 24, 25, 31, 37 | opelopab 5502 | . . . . . . 7 ⊢ (〈𝑦, 𝑡〉 ∈ {〈𝑢, 𝑣〉 ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢‘𝑧)) = ((𝑣‘𝑥) ·ih 𝑧))} ↔ (𝑦: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧))) |
| 39 | 23, 38 | bitr2i 276 | . . . . . 6 ⊢ ((𝑦: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦‘𝑧)) = ((𝑡‘𝑥) ·ih 𝑧)) ↔ 〈𝑦, 𝑡〉 ∈ adjℎ) |
| 40 | 21, 39 | imbitrdi 251 | . . . . 5 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧))) → 〈𝑦, 𝑡〉 ∈ adjℎ)) |
| 41 | 40 | eximdv 1917 | . . . 4 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → (∃𝑡(𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧))) → ∃𝑡〈𝑦, 𝑡〉 ∈ adjℎ)) |
| 42 | 3, 41 | mpd 15 | . . 3 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → ∃𝑡〈𝑦, 𝑡〉 ∈ adjℎ) |
| 43 | 24 | eldm2 5865 | . . 3 ⊢ (𝑦 ∈ dom adjℎ ↔ ∃𝑡〈𝑦, 𝑡〉 ∈ adjℎ) |
| 44 | 42, 43 | sylibr 234 | . 2 ⊢ (𝑦 ∈ (LinOp ∩ ContOp) → 𝑦 ∈ dom adjℎ) |
| 45 | 44 | ssriv 3950 | 1 ⊢ (LinOp ∩ ContOp) ⊆ dom adjℎ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∩ cin 3913 ⊆ wss 3914 〈cop 4595 {copab 5169 dom cdm 5638 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℋchba 30848 ·ih csp 30851 ContOpccop 30875 LinOpclo 30876 adjℎcado 30884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cc 10388 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 ax-hilex 30928 ax-hfvadd 30929 ax-hvcom 30930 ax-hvass 30931 ax-hv0cl 30932 ax-hvaddid 30933 ax-hfvmul 30934 ax-hvmulid 30935 ax-hvmulass 30936 ax-hvdistr1 30937 ax-hvdistr2 30938 ax-hvmul0 30939 ax-hfi 31008 ax-his1 31011 ax-his2 31012 ax-his3 31013 ax-his4 31014 ax-hcompl 31131 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-cn 23114 df-cnp 23115 df-lm 23116 df-t1 23201 df-haus 23202 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-tms 24210 df-cfil 25155 df-cau 25156 df-cmet 25157 df-grpo 30422 df-gid 30423 df-ginv 30424 df-gdiv 30425 df-ablo 30474 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-vs 30528 df-nmcv 30529 df-ims 30530 df-dip 30630 df-ssp 30651 df-ph 30742 df-cbn 30792 df-hnorm 30897 df-hba 30898 df-hvsub 30900 df-hlim 30901 df-hcau 30902 df-sh 31136 df-ch 31150 df-oc 31181 df-ch0 31182 df-shs 31237 df-pjh 31324 df-h0op 31677 df-nmop 31768 df-cnop 31769 df-lnop 31770 df-unop 31772 df-hmop 31773 df-nmfn 31774 df-nlfn 31775 df-cnfn 31776 df-lnfn 31777 df-adjh 31778 |
| This theorem is referenced by: bdopssadj 32010 |
| Copyright terms: Public domain | W3C validator |