MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzen Structured version   Visualization version   GIF version

Theorem fzen 13202
Description: A shifted finite set of sequential integers is equinumerous to the original set. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
fzen ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀...𝑁) ≈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))

Proof of Theorem fzen
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7290 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀...𝑁) ∈ V)
2 ovexd 7290 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∈ V)
3 elfz1 13173 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁)))
43biimpd 228 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) → (𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁)))
543adant3 1130 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) → (𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁)))
6 zaddcl 12290 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 + 𝐾) ∈ ℤ)
76expcom 413 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝑘 ∈ ℤ → (𝑘 + 𝐾) ∈ ℤ))
873ad2ant3 1133 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ ℤ → (𝑘 + 𝐾) ∈ ℤ))
98adantrd 491 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → (𝑘 + 𝐾) ∈ ℤ))
10 zre 12253 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
11 zre 12253 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
12 zre 12253 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
13 leadd1 11373 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀𝑘 ↔ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
1410, 11, 12, 13syl3an 1158 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝑘 ↔ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
1514biimpd 228 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝑘 → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
1615adantrd 491 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
17163com23 1124 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
18173expia 1119 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ ℤ → ((𝑀𝑘𝑘𝑁) → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾))))
1918impd 410 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
20193adant2 1129 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
21 zre 12253 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
22 leadd1 11373 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑘𝑁 ↔ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
2311, 21, 12, 22syl3an 1158 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘𝑁 ↔ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
2423biimpd 228 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘𝑁 → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
2524adantld 490 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
26253coml 1125 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
27263expia 1119 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ ℤ → ((𝑀𝑘𝑘𝑁) → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾))))
2827impd 410 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
29283adant1 1128 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
309, 20, 293jcad 1127 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → ((𝑘 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾) ∧ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾))))
31 zaddcl 12290 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 + 𝐾) ∈ ℤ)
32313adant2 1129 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 + 𝐾) ∈ ℤ)
33 zaddcl 12290 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
34333adant1 1128 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
35 elfz1 13173 . . . . . . . 8 (((𝑀 + 𝐾) ∈ ℤ ∧ (𝑁 + 𝐾) ∈ ℤ) → ((𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↔ ((𝑘 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾) ∧ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾))))
3632, 34, 35syl2anc 583 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↔ ((𝑘 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾) ∧ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾))))
3736biimprd 247 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (((𝑘 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾) ∧ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
3830, 37syldc 48 . . . . 5 ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
39383impb 1113 . . . 4 ((𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
4039com12 32 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
415, 40syld 47 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
42 elfz1 13173 . . . . 5 (((𝑀 + 𝐾) ∈ ℤ ∧ (𝑁 + 𝐾) ∈ ℤ) → (𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↔ (𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))))
4332, 34, 42syl2anc 583 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↔ (𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))))
4443biimpd 228 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → (𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))))
45 zsubcl 12292 . . . . . . . . . 10 ((𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚𝐾) ∈ ℤ)
4645expcom 413 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝑚 ∈ ℤ → (𝑚𝐾) ∈ ℤ))
47463ad2ant3 1133 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ℤ → (𝑚𝐾) ∈ ℤ))
4847adantrd 491 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → (𝑚𝐾) ∈ ℤ))
49 zre 12253 . . . . . . . . . . . . 13 (𝑚 ∈ ℤ → 𝑚 ∈ ℝ)
50 leaddsub 11381 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((𝑀 + 𝐾) ≤ 𝑚𝑀 ≤ (𝑚𝐾)))
5110, 12, 49, 50syl3an 1158 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝑀 + 𝐾) ≤ 𝑚𝑀 ≤ (𝑚𝐾)))
5251biimpd 228 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝑀 + 𝐾) ≤ 𝑚𝑀 ≤ (𝑚𝐾)))
5352adantrd 491 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → 𝑀 ≤ (𝑚𝐾)))
54533expia 1119 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ℤ → (((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → 𝑀 ≤ (𝑚𝐾))))
5554impd 410 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → 𝑀 ≤ (𝑚𝐾)))
56553adant2 1129 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → 𝑀 ≤ (𝑚𝐾)))
57 lesubadd 11377 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑚𝐾) ≤ 𝑁𝑚 ≤ (𝑁 + 𝐾)))
5849, 12, 21, 57syl3an 1158 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑚𝐾) ≤ 𝑁𝑚 ≤ (𝑁 + 𝐾)))
5958biimprd 247 . . . . . . . . . . . . 13 ((𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑚 ≤ (𝑁 + 𝐾) → (𝑚𝐾) ≤ 𝑁))
6059adantld 490 . . . . . . . . . . . 12 ((𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → (𝑚𝐾) ≤ 𝑁))
61603coml 1125 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → (𝑚𝐾) ≤ 𝑁))
62613expia 1119 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑚 ∈ ℤ → (((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → (𝑚𝐾) ≤ 𝑁)))
6362impd 410 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → (𝑚𝐾) ≤ 𝑁))
6463ancoms 458 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → (𝑚𝐾) ≤ 𝑁))
65643adant1 1128 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → (𝑚𝐾) ≤ 𝑁))
6648, 56, 653jcad 1127 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → ((𝑚𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑚𝐾) ∧ (𝑚𝐾) ≤ 𝑁)))
67 elfz1 13173 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑚𝐾) ∈ (𝑀...𝑁) ↔ ((𝑚𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑚𝐾) ∧ (𝑚𝐾) ≤ 𝑁)))
6867biimprd 247 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑚𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑚𝐾) ∧ (𝑚𝐾) ≤ 𝑁) → (𝑚𝐾) ∈ (𝑀...𝑁)))
69683adant3 1130 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (((𝑚𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑚𝐾) ∧ (𝑚𝐾) ≤ 𝑁) → (𝑚𝐾) ∈ (𝑀...𝑁)))
7066, 69syldc 48 . . . . 5 ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚𝐾) ∈ (𝑀...𝑁)))
71703impb 1113 . . . 4 ((𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚𝐾) ∈ (𝑀...𝑁)))
7271com12 32 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → (𝑚𝐾) ∈ (𝑀...𝑁)))
7344, 72syld 47 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → (𝑚𝐾) ∈ (𝑀...𝑁)))
745imp 406 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁))
7574simp1d 1140 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ ℤ)
7675ex 412 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ))
7744imp 406 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)))
7877simp1d 1140 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑚 ∈ ℤ)
7978ex 412 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑚 ∈ ℤ))
80 zcn 12254 . . . . . . 7 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
81 zcn 12254 . . . . . . 7 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
82 zcn 12254 . . . . . . 7 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
83 subadd 11154 . . . . . . . . 9 ((𝑚 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑚𝐾) = 𝑘 ↔ (𝐾 + 𝑘) = 𝑚))
84 eqcom 2745 . . . . . . . . 9 ((𝑚𝐾) = 𝑘𝑘 = (𝑚𝐾))
85 eqcom 2745 . . . . . . . . 9 ((𝐾 + 𝑘) = 𝑚𝑚 = (𝐾 + 𝑘))
8683, 84, 853bitr3g 312 . . . . . . . 8 ((𝑚 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝐾 + 𝑘)))
87 addcom 11091 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
88873adant1 1128 . . . . . . . . 9 ((𝑚 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
8988eqeq2d 2749 . . . . . . . 8 ((𝑚 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑚 = (𝐾 + 𝑘) ↔ 𝑚 = (𝑘 + 𝐾)))
9086, 89bitrd 278 . . . . . . 7 ((𝑚 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾)))
9180, 81, 82, 90syl3an 1158 . . . . . 6 ((𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾)))
92913coml 1125 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾)))
93923expib 1120 . . . 4 (𝐾 ∈ ℤ → ((𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾))))
94933ad2ant3 1133 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾))))
9576, 79, 94syl2and 607 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ (𝑀...𝑁) ∧ 𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾))))
961, 2, 41, 73, 95en3d 8732 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀...𝑁) ≈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422   class class class wbr 5070  (class class class)co 7255  cen 8688  cc 10800  cr 10801   + caddc 10805  cle 10941  cmin 11135  cz 12249  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-fz 13169
This theorem is referenced by:  fz01en  13213  fzen2  13617  hashfz  14070  mertenslem1  15524  hashdvds  16404  birthdaylem2  26007  eldioph2lem1  40498
  Copyright terms: Public domain W3C validator