Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbun Structured version   Visualization version   GIF version

Theorem fbun 22540
 Description: A necessary and sufficient condition for the union of two filter bases to also be a filter base. (Contributed by Mario Carneiro, 28-Nov-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fbun ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝐹𝐺) ∈ (fBas‘𝑋) ↔ ∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑥,𝐹,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧

Proof of Theorem fbun
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elun1 4081 . . . . 5 (𝑥𝐹𝑥 ∈ (𝐹𝐺))
2 elun2 4082 . . . . 5 (𝑦𝐺𝑦 ∈ (𝐹𝐺))
31, 2anim12i 615 . . . 4 ((𝑥𝐹𝑦𝐺) → (𝑥 ∈ (𝐹𝐺) ∧ 𝑦 ∈ (𝐹𝐺)))
4 fbasssin 22536 . . . . 5 (((𝐹𝐺) ∈ (fBas‘𝑋) ∧ 𝑥 ∈ (𝐹𝐺) ∧ 𝑦 ∈ (𝐹𝐺)) → ∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))
543expb 1117 . . . 4 (((𝐹𝐺) ∈ (fBas‘𝑋) ∧ (𝑥 ∈ (𝐹𝐺) ∧ 𝑦 ∈ (𝐹𝐺))) → ∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))
63, 5sylan2 595 . . 3 (((𝐹𝐺) ∈ (fBas‘𝑋) ∧ (𝑥𝐹𝑦𝐺)) → ∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))
76ralrimivva 3120 . 2 ((𝐹𝐺) ∈ (fBas‘𝑋) → ∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))
8 fbsspw 22532 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
98adantr 484 . . . . . 6 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → 𝐹 ⊆ 𝒫 𝑋)
10 fbsspw 22532 . . . . . . 7 (𝐺 ∈ (fBas‘𝑋) → 𝐺 ⊆ 𝒫 𝑋)
1110adantl 485 . . . . . 6 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → 𝐺 ⊆ 𝒫 𝑋)
129, 11unssd 4091 . . . . 5 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (𝐹𝐺) ⊆ 𝒫 𝑋)
1312a1d 25 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) → (𝐹𝐺) ⊆ 𝒫 𝑋))
14 ssun1 4077 . . . . . . . 8 𝐹 ⊆ (𝐹𝐺)
15 fbasne0 22530 . . . . . . . 8 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ≠ ∅)
16 ssn0 4296 . . . . . . . 8 ((𝐹 ⊆ (𝐹𝐺) ∧ 𝐹 ≠ ∅) → (𝐹𝐺) ≠ ∅)
1714, 15, 16sylancr 590 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → (𝐹𝐺) ≠ ∅)
1817adantr 484 . . . . . 6 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (𝐹𝐺) ≠ ∅)
1918a1d 25 . . . . 5 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) → (𝐹𝐺) ≠ ∅))
20 0nelfb 22531 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹)
21 0nelfb 22531 . . . . . . 7 (𝐺 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐺)
22 df-nel 3056 . . . . . . . . 9 (∅ ∉ (𝐹𝐺) ↔ ¬ ∅ ∈ (𝐹𝐺))
23 elun 4054 . . . . . . . . . 10 (∅ ∈ (𝐹𝐺) ↔ (∅ ∈ 𝐹 ∨ ∅ ∈ 𝐺))
2423notbii 323 . . . . . . . . 9 (¬ ∅ ∈ (𝐹𝐺) ↔ ¬ (∅ ∈ 𝐹 ∨ ∅ ∈ 𝐺))
25 ioran 981 . . . . . . . . 9 (¬ (∅ ∈ 𝐹 ∨ ∅ ∈ 𝐺) ↔ (¬ ∅ ∈ 𝐹 ∧ ¬ ∅ ∈ 𝐺))
2622, 24, 253bitri 300 . . . . . . . 8 (∅ ∉ (𝐹𝐺) ↔ (¬ ∅ ∈ 𝐹 ∧ ¬ ∅ ∈ 𝐺))
2726biimpri 231 . . . . . . 7 ((¬ ∅ ∈ 𝐹 ∧ ¬ ∅ ∈ 𝐺) → ∅ ∉ (𝐹𝐺))
2820, 21, 27syl2an 598 . . . . . 6 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ∅ ∉ (𝐹𝐺))
2928a1d 25 . . . . 5 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) → ∅ ∉ (𝐹𝐺)))
30 fbasssin 22536 . . . . . . . . . . . . 13 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑥𝐹𝑦𝐹) → ∃𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
31 ssrexv 3959 . . . . . . . . . . . . 13 (𝐹 ⊆ (𝐹𝐺) → (∃𝑧𝐹 𝑧 ⊆ (𝑥𝑦) → ∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦)))
3214, 30, 31mpsyl 68 . . . . . . . . . . . 12 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑥𝐹𝑦𝐹) → ∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))
33323expb 1117 . . . . . . . . . . 11 ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑥𝐹𝑦𝐹)) → ∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))
3433ralrimivva 3120 . . . . . . . . . 10 (𝐹 ∈ (fBas‘𝑋) → ∀𝑥𝐹𝑦𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))
3534adantr 484 . . . . . . . . 9 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ∀𝑥𝐹𝑦𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))
36 pm3.2 473 . . . . . . . . 9 (∀𝑥𝐹𝑦𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) → (∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) → (∀𝑥𝐹𝑦𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) ∧ ∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))))
3735, 36syl 17 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) → (∀𝑥𝐹𝑦𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) ∧ ∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))))
38 r19.26 3101 . . . . . . . . 9 (∀𝑥𝐹 (∀𝑦𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) ∧ ∀𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦)) ↔ (∀𝑥𝐹𝑦𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) ∧ ∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦)))
39 ralun 4097 . . . . . . . . . 10 ((∀𝑦𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) ∧ ∀𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦)) → ∀𝑦 ∈ (𝐹𝐺)∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))
4039ralimi 3092 . . . . . . . . 9 (∀𝑥𝐹 (∀𝑦𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) ∧ ∀𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦)) → ∀𝑥𝐹𝑦 ∈ (𝐹𝐺)∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))
4138, 40sylbir 238 . . . . . . . 8 ((∀𝑥𝐹𝑦𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) ∧ ∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦)) → ∀𝑥𝐹𝑦 ∈ (𝐹𝐺)∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))
4237, 41syl6 35 . . . . . . 7 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) → ∀𝑥𝐹𝑦 ∈ (𝐹𝐺)∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦)))
43 ralcom 3272 . . . . . . . . . . . 12 (∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) ↔ ∀𝑦𝐺𝑥𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))
44 ineq1 4109 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (𝑥𝑦) = (𝑤𝑦))
4544sseq2d 3924 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝑧 ⊆ (𝑥𝑦) ↔ 𝑧 ⊆ (𝑤𝑦)))
4645rexbidv 3221 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) ↔ ∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑤𝑦)))
4746cbvralvw 3361 . . . . . . . . . . . . 13 (∀𝑥𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) ↔ ∀𝑤𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑤𝑦))
4847ralbii 3097 . . . . . . . . . . . 12 (∀𝑦𝐺𝑥𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) ↔ ∀𝑦𝐺𝑤𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑤𝑦))
49 ineq2 4111 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (𝑤𝑦) = (𝑤𝑥))
5049sseq2d 3924 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑧 ⊆ (𝑤𝑦) ↔ 𝑧 ⊆ (𝑤𝑥)))
5150rexbidv 3221 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑤𝑦) ↔ ∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑤𝑥)))
52 ineq1 4109 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑦 → (𝑤𝑥) = (𝑦𝑥))
53 incom 4106 . . . . . . . . . . . . . . . 16 (𝑦𝑥) = (𝑥𝑦)
5452, 53eqtrdi 2809 . . . . . . . . . . . . . . 15 (𝑤 = 𝑦 → (𝑤𝑥) = (𝑥𝑦))
5554sseq2d 3924 . . . . . . . . . . . . . 14 (𝑤 = 𝑦 → (𝑧 ⊆ (𝑤𝑥) ↔ 𝑧 ⊆ (𝑥𝑦)))
5655rexbidv 3221 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → (∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑤𝑥) ↔ ∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦)))
5751, 56cbvral2vw 3373 . . . . . . . . . . . 12 (∀𝑦𝐺𝑤𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑤𝑦) ↔ ∀𝑥𝐺𝑦𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))
5843, 48, 573bitri 300 . . . . . . . . . . 11 (∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) ↔ ∀𝑥𝐺𝑦𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))
5958biimpi 219 . . . . . . . . . 10 (∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) → ∀𝑥𝐺𝑦𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))
60 ssun2 4078 . . . . . . . . . . . . . 14 𝐺 ⊆ (𝐹𝐺)
61 fbasssin 22536 . . . . . . . . . . . . . 14 ((𝐺 ∈ (fBas‘𝑋) ∧ 𝑥𝐺𝑦𝐺) → ∃𝑧𝐺 𝑧 ⊆ (𝑥𝑦))
62 ssrexv 3959 . . . . . . . . . . . . . 14 (𝐺 ⊆ (𝐹𝐺) → (∃𝑧𝐺 𝑧 ⊆ (𝑥𝑦) → ∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦)))
6360, 61, 62mpsyl 68 . . . . . . . . . . . . 13 ((𝐺 ∈ (fBas‘𝑋) ∧ 𝑥𝐺𝑦𝐺) → ∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))
64633expb 1117 . . . . . . . . . . . 12 ((𝐺 ∈ (fBas‘𝑋) ∧ (𝑥𝐺𝑦𝐺)) → ∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))
6564ralrimivva 3120 . . . . . . . . . . 11 (𝐺 ∈ (fBas‘𝑋) → ∀𝑥𝐺𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))
6665adantl 485 . . . . . . . . . 10 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ∀𝑥𝐺𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))
6759, 66anim12i 615 . . . . . . . . 9 ((∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) ∧ (𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋))) → (∀𝑥𝐺𝑦𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) ∧ ∀𝑥𝐺𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦)))
6867expcom 417 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) → (∀𝑥𝐺𝑦𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) ∧ ∀𝑥𝐺𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))))
69 r19.26 3101 . . . . . . . . 9 (∀𝑥𝐺 (∀𝑦𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) ∧ ∀𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦)) ↔ (∀𝑥𝐺𝑦𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) ∧ ∀𝑥𝐺𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦)))
7039ralimi 3092 . . . . . . . . 9 (∀𝑥𝐺 (∀𝑦𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) ∧ ∀𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦)) → ∀𝑥𝐺𝑦 ∈ (𝐹𝐺)∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))
7169, 70sylbir 238 . . . . . . . 8 ((∀𝑥𝐺𝑦𝐹𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) ∧ ∀𝑥𝐺𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦)) → ∀𝑥𝐺𝑦 ∈ (𝐹𝐺)∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))
7268, 71syl6 35 . . . . . . 7 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) → ∀𝑥𝐺𝑦 ∈ (𝐹𝐺)∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦)))
7342, 72jcad 516 . . . . . 6 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) → (∀𝑥𝐹𝑦 ∈ (𝐹𝐺)∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) ∧ ∀𝑥𝐺𝑦 ∈ (𝐹𝐺)∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))))
74 ralun 4097 . . . . . 6 ((∀𝑥𝐹𝑦 ∈ (𝐹𝐺)∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) ∧ ∀𝑥𝐺𝑦 ∈ (𝐹𝐺)∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦)) → ∀𝑥 ∈ (𝐹𝐺)∀𝑦 ∈ (𝐹𝐺)∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))
7573, 74syl6 35 . . . . 5 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) → ∀𝑥 ∈ (𝐹𝐺)∀𝑦 ∈ (𝐹𝐺)∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦)))
7619, 29, 753jcad 1126 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) → ((𝐹𝐺) ≠ ∅ ∧ ∅ ∉ (𝐹𝐺) ∧ ∀𝑥 ∈ (𝐹𝐺)∀𝑦 ∈ (𝐹𝐺)∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦))))
7713, 76jcad 516 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) → ((𝐹𝐺) ⊆ 𝒫 𝑋 ∧ ((𝐹𝐺) ≠ ∅ ∧ ∅ ∉ (𝐹𝐺) ∧ ∀𝑥 ∈ (𝐹𝐺)∀𝑦 ∈ (𝐹𝐺)∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦)))))
78 elfvdm 6690 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas)
7978adantr 484 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → 𝑋 ∈ dom fBas)
80 isfbas2 22535 . . . 4 (𝑋 ∈ dom fBas → ((𝐹𝐺) ∈ (fBas‘𝑋) ↔ ((𝐹𝐺) ⊆ 𝒫 𝑋 ∧ ((𝐹𝐺) ≠ ∅ ∧ ∅ ∉ (𝐹𝐺) ∧ ∀𝑥 ∈ (𝐹𝐺)∀𝑦 ∈ (𝐹𝐺)∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦)))))
8179, 80syl 17 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝐹𝐺) ∈ (fBas‘𝑋) ↔ ((𝐹𝐺) ⊆ 𝒫 𝑋 ∧ ((𝐹𝐺) ≠ ∅ ∧ ∅ ∉ (𝐹𝐺) ∧ ∀𝑥 ∈ (𝐹𝐺)∀𝑦 ∈ (𝐹𝐺)∃𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦)))))
8277, 81sylibrd 262 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦) → (𝐹𝐺) ∈ (fBas‘𝑋)))
837, 82impbid2 229 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝐹𝐺) ∈ (fBas‘𝑋) ↔ ∀𝑥𝐹𝑦𝐺𝑧 ∈ (𝐹𝐺)𝑧 ⊆ (𝑥𝑦)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   ∈ wcel 2111   ≠ wne 2951   ∉ wnel 3055  ∀wral 3070  ∃wrex 3071   ∪ cun 3856   ∩ cin 3857   ⊆ wss 3858  ∅c0 4225  𝒫 cpw 4494  dom cdm 5524  ‘cfv 6335  fBascfbas 20154 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fv 6343  df-fbas 20163 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator