| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elun1 4182 | . . . . 5
⊢ (𝑥 ∈ 𝐹 → 𝑥 ∈ (𝐹 ∪ 𝐺)) | 
| 2 |  | elun2 4183 | . . . . 5
⊢ (𝑦 ∈ 𝐺 → 𝑦 ∈ (𝐹 ∪ 𝐺)) | 
| 3 | 1, 2 | anim12i 613 | . . . 4
⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐺) → (𝑥 ∈ (𝐹 ∪ 𝐺) ∧ 𝑦 ∈ (𝐹 ∪ 𝐺))) | 
| 4 |  | fbasssin 23844 | . . . . 5
⊢ (((𝐹 ∪ 𝐺) ∈ (fBas‘𝑋) ∧ 𝑥 ∈ (𝐹 ∪ 𝐺) ∧ 𝑦 ∈ (𝐹 ∪ 𝐺)) → ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 5 | 4 | 3expb 1121 | . . . 4
⊢ (((𝐹 ∪ 𝐺) ∈ (fBas‘𝑋) ∧ (𝑥 ∈ (𝐹 ∪ 𝐺) ∧ 𝑦 ∈ (𝐹 ∪ 𝐺))) → ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 6 | 3, 5 | sylan2 593 | . . 3
⊢ (((𝐹 ∪ 𝐺) ∈ (fBas‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐺)) → ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 7 | 6 | ralrimivva 3202 | . 2
⊢ ((𝐹 ∪ 𝐺) ∈ (fBas‘𝑋) → ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 8 |  | fbsspw 23840 | . . . . . . 7
⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ 𝒫 𝑋) | 
| 9 | 8 | adantr 480 | . . . . . 6
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → 𝐹 ⊆ 𝒫 𝑋) | 
| 10 |  | fbsspw 23840 | . . . . . . 7
⊢ (𝐺 ∈ (fBas‘𝑋) → 𝐺 ⊆ 𝒫 𝑋) | 
| 11 | 10 | adantl 481 | . . . . . 6
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → 𝐺 ⊆ 𝒫 𝑋) | 
| 12 | 9, 11 | unssd 4192 | . . . . 5
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (𝐹 ∪ 𝐺) ⊆ 𝒫 𝑋) | 
| 13 | 12 | a1d 25 | . . . 4
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → (𝐹 ∪ 𝐺) ⊆ 𝒫 𝑋)) | 
| 14 |  | ssun1 4178 | . . . . . . . 8
⊢ 𝐹 ⊆ (𝐹 ∪ 𝐺) | 
| 15 |  | fbasne0 23838 | . . . . . . . 8
⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ≠ ∅) | 
| 16 |  | ssn0 4404 | . . . . . . . 8
⊢ ((𝐹 ⊆ (𝐹 ∪ 𝐺) ∧ 𝐹 ≠ ∅) → (𝐹 ∪ 𝐺) ≠ ∅) | 
| 17 | 14, 15, 16 | sylancr 587 | . . . . . . 7
⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐹 ∪ 𝐺) ≠ ∅) | 
| 18 | 17 | adantr 480 | . . . . . 6
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (𝐹 ∪ 𝐺) ≠ ∅) | 
| 19 | 18 | a1d 25 | . . . . 5
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → (𝐹 ∪ 𝐺) ≠ ∅)) | 
| 20 |  | 0nelfb 23839 | . . . . . . 7
⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈
𝐹) | 
| 21 |  | 0nelfb 23839 | . . . . . . 7
⊢ (𝐺 ∈ (fBas‘𝑋) → ¬ ∅ ∈
𝐺) | 
| 22 |  | df-nel 3047 | . . . . . . . . 9
⊢ (∅
∉ (𝐹 ∪ 𝐺) ↔ ¬ ∅ ∈
(𝐹 ∪ 𝐺)) | 
| 23 |  | elun 4153 | . . . . . . . . . 10
⊢ (∅
∈ (𝐹 ∪ 𝐺) ↔ (∅ ∈ 𝐹 ∨ ∅ ∈ 𝐺)) | 
| 24 | 23 | notbii 320 | . . . . . . . . 9
⊢ (¬
∅ ∈ (𝐹 ∪
𝐺) ↔ ¬ (∅
∈ 𝐹 ∨ ∅
∈ 𝐺)) | 
| 25 |  | ioran 986 | . . . . . . . . 9
⊢ (¬
(∅ ∈ 𝐹 ∨
∅ ∈ 𝐺) ↔
(¬ ∅ ∈ 𝐹
∧ ¬ ∅ ∈ 𝐺)) | 
| 26 | 22, 24, 25 | 3bitri 297 | . . . . . . . 8
⊢ (∅
∉ (𝐹 ∪ 𝐺) ↔ (¬ ∅ ∈
𝐹 ∧ ¬ ∅
∈ 𝐺)) | 
| 27 | 26 | biimpri 228 | . . . . . . 7
⊢ ((¬
∅ ∈ 𝐹 ∧
¬ ∅ ∈ 𝐺)
→ ∅ ∉ (𝐹
∪ 𝐺)) | 
| 28 | 20, 21, 27 | syl2an 596 | . . . . . 6
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ∅ ∉ (𝐹 ∪ 𝐺)) | 
| 29 | 28 | a1d 25 | . . . . 5
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → ∅ ∉ (𝐹 ∪ 𝐺))) | 
| 30 |  | fbasssin 23844 | . . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 31 |  | ssrexv 4053 | . . . . . . . . . . . . 13
⊢ (𝐹 ⊆ (𝐹 ∪ 𝐺) → (∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦) → ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))) | 
| 32 | 14, 30, 31 | mpsyl 68 | . . . . . . . . . . . 12
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 33 | 32 | 3expb 1121 | . . . . . . . . . . 11
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 34 | 33 | ralrimivva 3202 | . . . . . . . . . 10
⊢ (𝐹 ∈ (fBas‘𝑋) → ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 35 | 34 | adantr 480 | . . . . . . . . 9
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 36 |  | pm3.2 469 | . . . . . . . . 9
⊢
(∀𝑥 ∈
𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)))) | 
| 37 | 35, 36 | syl 17 | . . . . . . . 8
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)))) | 
| 38 |  | r19.26 3111 | . . . . . . . . 9
⊢
(∀𝑥 ∈
𝐹 (∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) ↔ (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))) | 
| 39 |  | ralun 4198 | . . . . . . . . . 10
⊢
((∀𝑦 ∈
𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) → ∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 40 | 39 | ralimi 3083 | . . . . . . . . 9
⊢
(∀𝑥 ∈
𝐹 (∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) → ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 41 | 38, 40 | sylbir 235 | . . . . . . . 8
⊢
((∀𝑥 ∈
𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) → ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 42 | 37, 41 | syl6 35 | . . . . . . 7
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))) | 
| 43 |  | ralcom 3289 | . . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ↔ ∀𝑦 ∈ 𝐺 ∀𝑥 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 44 |  | ineq1 4213 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑤 → (𝑥 ∩ 𝑦) = (𝑤 ∩ 𝑦)) | 
| 45 | 44 | sseq2d 4016 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑤 → (𝑧 ⊆ (𝑥 ∩ 𝑦) ↔ 𝑧 ⊆ (𝑤 ∩ 𝑦))) | 
| 46 | 45 | rexbidv 3179 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ↔ ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑤 ∩ 𝑦))) | 
| 47 | 46 | cbvralvw 3237 | . . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ↔ ∀𝑤 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑤 ∩ 𝑦)) | 
| 48 | 47 | ralbii 3093 | . . . . . . . . . . . 12
⊢
(∀𝑦 ∈
𝐺 ∀𝑥 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ↔ ∀𝑦 ∈ 𝐺 ∀𝑤 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑤 ∩ 𝑦)) | 
| 49 |  | ineq2 4214 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → (𝑤 ∩ 𝑦) = (𝑤 ∩ 𝑥)) | 
| 50 | 49 | sseq2d 4016 | . . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → (𝑧 ⊆ (𝑤 ∩ 𝑦) ↔ 𝑧 ⊆ (𝑤 ∩ 𝑥))) | 
| 51 | 50 | rexbidv 3179 | . . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → (∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑤 ∩ 𝑦) ↔ ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑤 ∩ 𝑥))) | 
| 52 |  | ineq1 4213 | . . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑦 → (𝑤 ∩ 𝑥) = (𝑦 ∩ 𝑥)) | 
| 53 |  | incom 4209 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 ∩ 𝑥) = (𝑥 ∩ 𝑦) | 
| 54 | 52, 53 | eqtrdi 2793 | . . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑦 → (𝑤 ∩ 𝑥) = (𝑥 ∩ 𝑦)) | 
| 55 | 54 | sseq2d 4016 | . . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑦 → (𝑧 ⊆ (𝑤 ∩ 𝑥) ↔ 𝑧 ⊆ (𝑥 ∩ 𝑦))) | 
| 56 | 55 | rexbidv 3179 | . . . . . . . . . . . . 13
⊢ (𝑤 = 𝑦 → (∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑤 ∩ 𝑥) ↔ ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))) | 
| 57 | 51, 56 | cbvral2vw 3241 | . . . . . . . . . . . 12
⊢
(∀𝑦 ∈
𝐺 ∀𝑤 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑤 ∩ 𝑦) ↔ ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 58 | 43, 48, 57 | 3bitri 297 | . . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ↔ ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 59 | 58 | biimpi 216 | . . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 60 |  | ssun2 4179 | . . . . . . . . . . . . . 14
⊢ 𝐺 ⊆ (𝐹 ∪ 𝐺) | 
| 61 |  | fbasssin 23844 | . . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ (fBas‘𝑋) ∧ 𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺) → ∃𝑧 ∈ 𝐺 𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 62 |  | ssrexv 4053 | . . . . . . . . . . . . . 14
⊢ (𝐺 ⊆ (𝐹 ∪ 𝐺) → (∃𝑧 ∈ 𝐺 𝑧 ⊆ (𝑥 ∩ 𝑦) → ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))) | 
| 63 | 60, 61, 62 | mpsyl 68 | . . . . . . . . . . . . 13
⊢ ((𝐺 ∈ (fBas‘𝑋) ∧ 𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺) → ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 64 | 63 | 3expb 1121 | . . . . . . . . . . . 12
⊢ ((𝐺 ∈ (fBas‘𝑋) ∧ (𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺)) → ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 65 | 64 | ralrimivva 3202 | . . . . . . . . . . 11
⊢ (𝐺 ∈ (fBas‘𝑋) → ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 66 | 65 | adantl 481 | . . . . . . . . . 10
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 67 | 59, 66 | anim12i 613 | . . . . . . . . 9
⊢
((∀𝑥 ∈
𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ (𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋))) → (∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))) | 
| 68 | 67 | expcom 413 | . . . . . . . 8
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → (∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)))) | 
| 69 |  | r19.26 3111 | . . . . . . . . 9
⊢
(∀𝑥 ∈
𝐺 (∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) ↔ (∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))) | 
| 70 | 39 | ralimi 3083 | . . . . . . . . 9
⊢
(∀𝑥 ∈
𝐺 (∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) → ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 71 | 69, 70 | sylbir 235 | . . . . . . . 8
⊢
((∀𝑥 ∈
𝐺 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) → ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 72 | 68, 71 | syl6 35 | . . . . . . 7
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))) | 
| 73 | 42, 72 | jcad 512 | . . . . . 6
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)))) | 
| 74 |  | ralun 4198 | . . . . . 6
⊢
((∀𝑥 ∈
𝐹 ∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) → ∀𝑥 ∈ (𝐹 ∪ 𝐺)∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) | 
| 75 | 73, 74 | syl6 35 | . . . . 5
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → ∀𝑥 ∈ (𝐹 ∪ 𝐺)∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))) | 
| 76 | 19, 29, 75 | 3jcad 1130 | . . . 4
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → ((𝐹 ∪ 𝐺) ≠ ∅ ∧ ∅ ∉ (𝐹 ∪ 𝐺) ∧ ∀𝑥 ∈ (𝐹 ∪ 𝐺)∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)))) | 
| 77 | 13, 76 | jcad 512 | . . 3
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → ((𝐹 ∪ 𝐺) ⊆ 𝒫 𝑋 ∧ ((𝐹 ∪ 𝐺) ≠ ∅ ∧ ∅ ∉ (𝐹 ∪ 𝐺) ∧ ∀𝑥 ∈ (𝐹 ∪ 𝐺)∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))))) | 
| 78 |  | elfvdm 6943 | . . . . 5
⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas) | 
| 79 | 78 | adantr 480 | . . . 4
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → 𝑋 ∈ dom fBas) | 
| 80 |  | isfbas2 23843 | . . . 4
⊢ (𝑋 ∈ dom fBas → ((𝐹 ∪ 𝐺) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ 𝐺) ⊆ 𝒫 𝑋 ∧ ((𝐹 ∪ 𝐺) ≠ ∅ ∧ ∅ ∉ (𝐹 ∪ 𝐺) ∧ ∀𝑥 ∈ (𝐹 ∪ 𝐺)∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))))) | 
| 81 | 79, 80 | syl 17 | . . 3
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝐹 ∪ 𝐺) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ 𝐺) ⊆ 𝒫 𝑋 ∧ ((𝐹 ∪ 𝐺) ≠ ∅ ∧ ∅ ∉ (𝐹 ∪ 𝐺) ∧ ∀𝑥 ∈ (𝐹 ∪ 𝐺)∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))))) | 
| 82 | 77, 81 | sylibrd 259 | . 2
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → (𝐹 ∪ 𝐺) ∈ (fBas‘𝑋))) | 
| 83 | 7, 82 | impbid2 226 | 1
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝐹 ∪ 𝐺) ∈ (fBas‘𝑋) ↔ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))) |