Step | Hyp | Ref
| Expression |
1 | | elun1 4106 |
. . . . 5
⊢ (𝑥 ∈ 𝐹 → 𝑥 ∈ (𝐹 ∪ 𝐺)) |
2 | | elun2 4107 |
. . . . 5
⊢ (𝑦 ∈ 𝐺 → 𝑦 ∈ (𝐹 ∪ 𝐺)) |
3 | 1, 2 | anim12i 612 |
. . . 4
⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐺) → (𝑥 ∈ (𝐹 ∪ 𝐺) ∧ 𝑦 ∈ (𝐹 ∪ 𝐺))) |
4 | | fbasssin 22895 |
. . . . 5
⊢ (((𝐹 ∪ 𝐺) ∈ (fBas‘𝑋) ∧ 𝑥 ∈ (𝐹 ∪ 𝐺) ∧ 𝑦 ∈ (𝐹 ∪ 𝐺)) → ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) |
5 | 4 | 3expb 1118 |
. . . 4
⊢ (((𝐹 ∪ 𝐺) ∈ (fBas‘𝑋) ∧ (𝑥 ∈ (𝐹 ∪ 𝐺) ∧ 𝑦 ∈ (𝐹 ∪ 𝐺))) → ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) |
6 | 3, 5 | sylan2 592 |
. . 3
⊢ (((𝐹 ∪ 𝐺) ∈ (fBas‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐺)) → ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) |
7 | 6 | ralrimivva 3114 |
. 2
⊢ ((𝐹 ∪ 𝐺) ∈ (fBas‘𝑋) → ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) |
8 | | fbsspw 22891 |
. . . . . . 7
⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ 𝒫 𝑋) |
9 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → 𝐹 ⊆ 𝒫 𝑋) |
10 | | fbsspw 22891 |
. . . . . . 7
⊢ (𝐺 ∈ (fBas‘𝑋) → 𝐺 ⊆ 𝒫 𝑋) |
11 | 10 | adantl 481 |
. . . . . 6
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → 𝐺 ⊆ 𝒫 𝑋) |
12 | 9, 11 | unssd 4116 |
. . . . 5
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (𝐹 ∪ 𝐺) ⊆ 𝒫 𝑋) |
13 | 12 | a1d 25 |
. . . 4
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → (𝐹 ∪ 𝐺) ⊆ 𝒫 𝑋)) |
14 | | ssun1 4102 |
. . . . . . . 8
⊢ 𝐹 ⊆ (𝐹 ∪ 𝐺) |
15 | | fbasne0 22889 |
. . . . . . . 8
⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ≠ ∅) |
16 | | ssn0 4331 |
. . . . . . . 8
⊢ ((𝐹 ⊆ (𝐹 ∪ 𝐺) ∧ 𝐹 ≠ ∅) → (𝐹 ∪ 𝐺) ≠ ∅) |
17 | 14, 15, 16 | sylancr 586 |
. . . . . . 7
⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐹 ∪ 𝐺) ≠ ∅) |
18 | 17 | adantr 480 |
. . . . . 6
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (𝐹 ∪ 𝐺) ≠ ∅) |
19 | 18 | a1d 25 |
. . . . 5
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → (𝐹 ∪ 𝐺) ≠ ∅)) |
20 | | 0nelfb 22890 |
. . . . . . 7
⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈
𝐹) |
21 | | 0nelfb 22890 |
. . . . . . 7
⊢ (𝐺 ∈ (fBas‘𝑋) → ¬ ∅ ∈
𝐺) |
22 | | df-nel 3049 |
. . . . . . . . 9
⊢ (∅
∉ (𝐹 ∪ 𝐺) ↔ ¬ ∅ ∈
(𝐹 ∪ 𝐺)) |
23 | | elun 4079 |
. . . . . . . . . 10
⊢ (∅
∈ (𝐹 ∪ 𝐺) ↔ (∅ ∈ 𝐹 ∨ ∅ ∈ 𝐺)) |
24 | 23 | notbii 319 |
. . . . . . . . 9
⊢ (¬
∅ ∈ (𝐹 ∪
𝐺) ↔ ¬ (∅
∈ 𝐹 ∨ ∅
∈ 𝐺)) |
25 | | ioran 980 |
. . . . . . . . 9
⊢ (¬
(∅ ∈ 𝐹 ∨
∅ ∈ 𝐺) ↔
(¬ ∅ ∈ 𝐹
∧ ¬ ∅ ∈ 𝐺)) |
26 | 22, 24, 25 | 3bitri 296 |
. . . . . . . 8
⊢ (∅
∉ (𝐹 ∪ 𝐺) ↔ (¬ ∅ ∈
𝐹 ∧ ¬ ∅
∈ 𝐺)) |
27 | 26 | biimpri 227 |
. . . . . . 7
⊢ ((¬
∅ ∈ 𝐹 ∧
¬ ∅ ∈ 𝐺)
→ ∅ ∉ (𝐹
∪ 𝐺)) |
28 | 20, 21, 27 | syl2an 595 |
. . . . . 6
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ∅ ∉ (𝐹 ∪ 𝐺)) |
29 | 28 | a1d 25 |
. . . . 5
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → ∅ ∉ (𝐹 ∪ 𝐺))) |
30 | | fbasssin 22895 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦)) |
31 | | ssrexv 3984 |
. . . . . . . . . . . . 13
⊢ (𝐹 ⊆ (𝐹 ∪ 𝐺) → (∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦) → ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))) |
32 | 14, 30, 31 | mpsyl 68 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) |
33 | 32 | 3expb 1118 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) |
34 | 33 | ralrimivva 3114 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (fBas‘𝑋) → ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) |
35 | 34 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) |
36 | | pm3.2 469 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)))) |
37 | 35, 36 | syl 17 |
. . . . . . . 8
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)))) |
38 | | r19.26 3094 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐹 (∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) ↔ (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))) |
39 | | ralun 4122 |
. . . . . . . . . 10
⊢
((∀𝑦 ∈
𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) → ∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) |
40 | 39 | ralimi 3086 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐹 (∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) → ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) |
41 | 38, 40 | sylbir 234 |
. . . . . . . 8
⊢
((∀𝑥 ∈
𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) → ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) |
42 | 37, 41 | syl6 35 |
. . . . . . 7
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))) |
43 | | ralcom 3280 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ↔ ∀𝑦 ∈ 𝐺 ∀𝑥 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) |
44 | | ineq1 4136 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑤 → (𝑥 ∩ 𝑦) = (𝑤 ∩ 𝑦)) |
45 | 44 | sseq2d 3949 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑤 → (𝑧 ⊆ (𝑥 ∩ 𝑦) ↔ 𝑧 ⊆ (𝑤 ∩ 𝑦))) |
46 | 45 | rexbidv 3225 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ↔ ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑤 ∩ 𝑦))) |
47 | 46 | cbvralvw 3372 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ↔ ∀𝑤 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑤 ∩ 𝑦)) |
48 | 47 | ralbii 3090 |
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
𝐺 ∀𝑥 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ↔ ∀𝑦 ∈ 𝐺 ∀𝑤 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑤 ∩ 𝑦)) |
49 | | ineq2 4137 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → (𝑤 ∩ 𝑦) = (𝑤 ∩ 𝑥)) |
50 | 49 | sseq2d 3949 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → (𝑧 ⊆ (𝑤 ∩ 𝑦) ↔ 𝑧 ⊆ (𝑤 ∩ 𝑥))) |
51 | 50 | rexbidv 3225 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → (∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑤 ∩ 𝑦) ↔ ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑤 ∩ 𝑥))) |
52 | | ineq1 4136 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑦 → (𝑤 ∩ 𝑥) = (𝑦 ∩ 𝑥)) |
53 | | incom 4131 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∩ 𝑥) = (𝑥 ∩ 𝑦) |
54 | 52, 53 | eqtrdi 2795 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑦 → (𝑤 ∩ 𝑥) = (𝑥 ∩ 𝑦)) |
55 | 54 | sseq2d 3949 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑦 → (𝑧 ⊆ (𝑤 ∩ 𝑥) ↔ 𝑧 ⊆ (𝑥 ∩ 𝑦))) |
56 | 55 | rexbidv 3225 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑦 → (∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑤 ∩ 𝑥) ↔ ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))) |
57 | 51, 56 | cbvral2vw 3385 |
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
𝐺 ∀𝑤 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑤 ∩ 𝑦) ↔ ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) |
58 | 43, 48, 57 | 3bitri 296 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ↔ ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) |
59 | 58 | biimpi 215 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) |
60 | | ssun2 4103 |
. . . . . . . . . . . . . 14
⊢ 𝐺 ⊆ (𝐹 ∪ 𝐺) |
61 | | fbasssin 22895 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ (fBas‘𝑋) ∧ 𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺) → ∃𝑧 ∈ 𝐺 𝑧 ⊆ (𝑥 ∩ 𝑦)) |
62 | | ssrexv 3984 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ⊆ (𝐹 ∪ 𝐺) → (∃𝑧 ∈ 𝐺 𝑧 ⊆ (𝑥 ∩ 𝑦) → ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))) |
63 | 60, 61, 62 | mpsyl 68 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ (fBas‘𝑋) ∧ 𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺) → ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) |
64 | 63 | 3expb 1118 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ (fBas‘𝑋) ∧ (𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺)) → ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) |
65 | 64 | ralrimivva 3114 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ (fBas‘𝑋) → ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) |
66 | 65 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) |
67 | 59, 66 | anim12i 612 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ (𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋))) → (∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))) |
68 | 67 | expcom 413 |
. . . . . . . 8
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → (∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)))) |
69 | | r19.26 3094 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐺 (∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) ↔ (∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))) |
70 | 39 | ralimi 3086 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐺 (∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) → ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) |
71 | 69, 70 | sylbir 234 |
. . . . . . . 8
⊢
((∀𝑥 ∈
𝐺 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) → ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) |
72 | 68, 71 | syl6 35 |
. . . . . . 7
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))) |
73 | 42, 72 | jcad 512 |
. . . . . 6
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)))) |
74 | | ralun 4122 |
. . . . . 6
⊢
((∀𝑥 ∈
𝐹 ∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) ∧ ∀𝑥 ∈ 𝐺 ∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) → ∀𝑥 ∈ (𝐹 ∪ 𝐺)∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)) |
75 | 73, 74 | syl6 35 |
. . . . 5
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → ∀𝑥 ∈ (𝐹 ∪ 𝐺)∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))) |
76 | 19, 29, 75 | 3jcad 1127 |
. . . 4
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → ((𝐹 ∪ 𝐺) ≠ ∅ ∧ ∅ ∉ (𝐹 ∪ 𝐺) ∧ ∀𝑥 ∈ (𝐹 ∪ 𝐺)∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦)))) |
77 | 13, 76 | jcad 512 |
. . 3
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → ((𝐹 ∪ 𝐺) ⊆ 𝒫 𝑋 ∧ ((𝐹 ∪ 𝐺) ≠ ∅ ∧ ∅ ∉ (𝐹 ∪ 𝐺) ∧ ∀𝑥 ∈ (𝐹 ∪ 𝐺)∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))))) |
78 | | elfvdm 6788 |
. . . . 5
⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas) |
79 | 78 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → 𝑋 ∈ dom fBas) |
80 | | isfbas2 22894 |
. . . 4
⊢ (𝑋 ∈ dom fBas → ((𝐹 ∪ 𝐺) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ 𝐺) ⊆ 𝒫 𝑋 ∧ ((𝐹 ∪ 𝐺) ≠ ∅ ∧ ∅ ∉ (𝐹 ∪ 𝐺) ∧ ∀𝑥 ∈ (𝐹 ∪ 𝐺)∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))))) |
81 | 79, 80 | syl 17 |
. . 3
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝐹 ∪ 𝐺) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ 𝐺) ⊆ 𝒫 𝑋 ∧ ((𝐹 ∪ 𝐺) ≠ ∅ ∧ ∅ ∉ (𝐹 ∪ 𝐺) ∧ ∀𝑥 ∈ (𝐹 ∪ 𝐺)∀𝑦 ∈ (𝐹 ∪ 𝐺)∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))))) |
82 | 77, 81 | sylibrd 258 |
. 2
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦) → (𝐹 ∪ 𝐺) ∈ (fBas‘𝑋))) |
83 | 7, 82 | impbid2 225 |
1
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝐹 ∪ 𝐺) ∈ (fBas‘𝑋) ↔ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 ∃𝑧 ∈ (𝐹 ∪ 𝐺)𝑧 ⊆ (𝑥 ∩ 𝑦))) |