| Step | Hyp | Ref
| Expression |
| 1 | | fvex 6874 |
. . . . 5
⊢ (𝐹‘𝐷) ∈ V |
| 2 | 1 | dfpred3 6288 |
. . . 4
⊢
Pred(𝑆, (𝐹 “ 𝐶), (𝐹‘𝐷)) = {𝑣 ∈ (𝐹 “ 𝐶) ∣ 𝑣𝑆(𝐹‘𝐷)} |
| 3 | | elrabi 3657 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} → 𝑢 ∈ 𝐶) |
| 4 | 3 | anim1i 615 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} ∧ (𝐹‘𝑢) = 𝑣) → (𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢) = 𝑣)) |
| 5 | 4 | reximi2 3063 |
. . . . . . . . 9
⊢
(∃𝑢 ∈
{𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣 → ∃𝑢 ∈ 𝐶 (𝐹‘𝑢) = 𝑣) |
| 6 | | fnrelpredd.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 7 | | fnrelpredd.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| 8 | 6, 7 | fvelimabd 6937 |
. . . . . . . . 9
⊢ (𝜑 → (𝑣 ∈ (𝐹 “ 𝐶) ↔ ∃𝑢 ∈ 𝐶 (𝐹‘𝑢) = 𝑣)) |
| 9 | 5, 8 | imbitrrid 246 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣 → 𝑣 ∈ (𝐹 “ 𝐶))) |
| 10 | | fveq2 6861 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑢 → (𝐹‘𝑥) = (𝐹‘𝑢)) |
| 11 | 10 | breq1d 5120 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑢 → ((𝐹‘𝑥)𝑆(𝐹‘𝐷) ↔ (𝐹‘𝑢)𝑆(𝐹‘𝐷))) |
| 12 | 11 | elrab 3662 |
. . . . . . . . . 10
⊢ (𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} ↔ (𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢)𝑆(𝐹‘𝐷))) |
| 13 | | breq1 5113 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑢) = 𝑣 → ((𝐹‘𝑢)𝑆(𝐹‘𝐷) ↔ 𝑣𝑆(𝐹‘𝐷))) |
| 14 | 13 | biimpac 478 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑢)𝑆(𝐹‘𝐷) ∧ (𝐹‘𝑢) = 𝑣) → 𝑣𝑆(𝐹‘𝐷)) |
| 15 | 14 | adantll 714 |
. . . . . . . . . 10
⊢ (((𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢)𝑆(𝐹‘𝐷)) ∧ (𝐹‘𝑢) = 𝑣) → 𝑣𝑆(𝐹‘𝐷)) |
| 16 | 12, 15 | sylanb 581 |
. . . . . . . . 9
⊢ ((𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} ∧ (𝐹‘𝑢) = 𝑣) → 𝑣𝑆(𝐹‘𝐷)) |
| 17 | 16 | rexlimiva 3127 |
. . . . . . . 8
⊢
(∃𝑢 ∈
{𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣 → 𝑣𝑆(𝐹‘𝐷)) |
| 18 | 9, 17 | jca2 513 |
. . . . . . 7
⊢ (𝜑 → (∃𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣 → (𝑣 ∈ (𝐹 “ 𝐶) ∧ 𝑣𝑆(𝐹‘𝐷)))) |
| 19 | 8 | biimpd 229 |
. . . . . . . . 9
⊢ (𝜑 → (𝑣 ∈ (𝐹 “ 𝐶) → ∃𝑢 ∈ 𝐶 (𝐹‘𝑢) = 𝑣)) |
| 20 | 19 | adantrd 491 |
. . . . . . . 8
⊢ (𝜑 → ((𝑣 ∈ (𝐹 “ 𝐶) ∧ 𝑣𝑆(𝐹‘𝐷)) → ∃𝑢 ∈ 𝐶 (𝐹‘𝑢) = 𝑣)) |
| 21 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢) = 𝑣) → 𝑢 ∈ 𝐶) |
| 22 | 21 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑣𝑆(𝐹‘𝐷) → ((𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢) = 𝑣) → 𝑢 ∈ 𝐶)) |
| 23 | 13 | biimprcd 250 |
. . . . . . . . . . . . 13
⊢ (𝑣𝑆(𝐹‘𝐷) → ((𝐹‘𝑢) = 𝑣 → (𝐹‘𝑢)𝑆(𝐹‘𝐷))) |
| 24 | 23 | adantld 490 |
. . . . . . . . . . . 12
⊢ (𝑣𝑆(𝐹‘𝐷) → ((𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢) = 𝑣) → (𝐹‘𝑢)𝑆(𝐹‘𝐷))) |
| 25 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢) = 𝑣) → (𝐹‘𝑢) = 𝑣) |
| 26 | 25 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑣𝑆(𝐹‘𝐷) → ((𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢) = 𝑣) → (𝐹‘𝑢) = 𝑣)) |
| 27 | 22, 24, 26 | 3jcad 1129 |
. . . . . . . . . . 11
⊢ (𝑣𝑆(𝐹‘𝐷) → ((𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢) = 𝑣) → (𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢)𝑆(𝐹‘𝐷) ∧ (𝐹‘𝑢) = 𝑣))) |
| 28 | 12 | biimpri 228 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢)𝑆(𝐹‘𝐷)) → 𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)}) |
| 29 | 28 | anim1i 615 |
. . . . . . . . . . . 12
⊢ (((𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢)𝑆(𝐹‘𝐷)) ∧ (𝐹‘𝑢) = 𝑣) → (𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} ∧ (𝐹‘𝑢) = 𝑣)) |
| 30 | 29 | 3impa 1109 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢)𝑆(𝐹‘𝐷) ∧ (𝐹‘𝑢) = 𝑣) → (𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} ∧ (𝐹‘𝑢) = 𝑣)) |
| 31 | 27, 30 | syl6 35 |
. . . . . . . . . 10
⊢ (𝑣𝑆(𝐹‘𝐷) → ((𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢) = 𝑣) → (𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} ∧ (𝐹‘𝑢) = 𝑣))) |
| 32 | 31 | reximdv2 3144 |
. . . . . . . . 9
⊢ (𝑣𝑆(𝐹‘𝐷) → (∃𝑢 ∈ 𝐶 (𝐹‘𝑢) = 𝑣 → ∃𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣)) |
| 33 | 32 | adantl 481 |
. . . . . . . 8
⊢ ((𝑣 ∈ (𝐹 “ 𝐶) ∧ 𝑣𝑆(𝐹‘𝐷)) → (∃𝑢 ∈ 𝐶 (𝐹‘𝑢) = 𝑣 → ∃𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣)) |
| 34 | 20, 33 | sylcom 30 |
. . . . . . 7
⊢ (𝜑 → ((𝑣 ∈ (𝐹 “ 𝐶) ∧ 𝑣𝑆(𝐹‘𝐷)) → ∃𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣)) |
| 35 | 18, 34 | impbid 212 |
. . . . . 6
⊢ (𝜑 → (∃𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣 ↔ (𝑣 ∈ (𝐹 “ 𝐶) ∧ 𝑣𝑆(𝐹‘𝐷)))) |
| 36 | 35 | abbidv 2796 |
. . . . 5
⊢ (𝜑 → {𝑣 ∣ ∃𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣} = {𝑣 ∣ (𝑣 ∈ (𝐹 “ 𝐶) ∧ 𝑣𝑆(𝐹‘𝐷))}) |
| 37 | | df-rab 3409 |
. . . . 5
⊢ {𝑣 ∈ (𝐹 “ 𝐶) ∣ 𝑣𝑆(𝐹‘𝐷)} = {𝑣 ∣ (𝑣 ∈ (𝐹 “ 𝐶) ∧ 𝑣𝑆(𝐹‘𝐷))} |
| 38 | 36, 37 | eqtr4di 2783 |
. . . 4
⊢ (𝜑 → {𝑣 ∣ ∃𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣} = {𝑣 ∈ (𝐹 “ 𝐶) ∣ 𝑣𝑆(𝐹‘𝐷)}) |
| 39 | 2, 38 | eqtr4id 2784 |
. . 3
⊢ (𝜑 → Pred(𝑆, (𝐹 “ 𝐶), (𝐹‘𝐷)) = {𝑣 ∣ ∃𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣}) |
| 40 | | fnfun 6621 |
. . . . 5
⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
| 41 | 6, 40 | syl 17 |
. . . 4
⊢ (𝜑 → Fun 𝐹) |
| 42 | | ssrab2 4046 |
. . . . . 6
⊢ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} ⊆ 𝐶 |
| 43 | 42, 7 | sstrid 3961 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} ⊆ 𝐴) |
| 44 | 6 | fndmd 6626 |
. . . . 5
⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 45 | 43, 44 | sseqtrrd 3987 |
. . . 4
⊢ (𝜑 → {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} ⊆ dom 𝐹) |
| 46 | | dfimafn 6926 |
. . . 4
⊢ ((Fun
𝐹 ∧ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} ⊆ dom 𝐹) → (𝐹 “ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)}) = {𝑣 ∣ ∃𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣}) |
| 47 | 41, 45, 46 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝐹 “ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)}) = {𝑣 ∣ ∃𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣}) |
| 48 | 39, 47 | eqtr4d 2768 |
. 2
⊢ (𝜑 → Pred(𝑆, (𝐹 “ 𝐶), (𝐹‘𝐷)) = (𝐹 “ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)})) |
| 49 | | fnrelpredd.4 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ 𝐴) |
| 50 | | dfpred3g 6289 |
. . . . 5
⊢ (𝐷 ∈ 𝐴 → Pred(𝑅, 𝐶, 𝐷) = {𝑥 ∈ 𝐶 ∣ 𝑥𝑅𝐷}) |
| 51 | 49, 50 | syl 17 |
. . . 4
⊢ (𝜑 → Pred(𝑅, 𝐶, 𝐷) = {𝑥 ∈ 𝐶 ∣ 𝑥𝑅𝐷}) |
| 52 | 7 | sselda 3949 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐴) |
| 53 | | fnrelpredd.2 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
| 54 | 53 | r19.21bi 3230 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
| 55 | | breq2 5114 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐷 → (𝑥𝑅𝑦 ↔ 𝑥𝑅𝐷)) |
| 56 | | fveq2 6861 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐷 → (𝐹‘𝑦) = (𝐹‘𝐷)) |
| 57 | 56 | breq2d 5122 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐷 → ((𝐹‘𝑥)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑥)𝑆(𝐹‘𝐷))) |
| 58 | 55, 57 | bibi12d 345 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐷 → ((𝑥𝑅𝑦 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦)) ↔ (𝑥𝑅𝐷 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝐷)))) |
| 59 | 58 | rspcv 3587 |
. . . . . . . . 9
⊢ (𝐷 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦)) → (𝑥𝑅𝐷 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝐷)))) |
| 60 | 49, 59 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦)) → (𝑥𝑅𝐷 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝐷)))) |
| 61 | 60 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦)) → (𝑥𝑅𝐷 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝐷)))) |
| 62 | 54, 61 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥𝑅𝐷 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝐷))) |
| 63 | 52, 62 | syldan 591 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥𝑅𝐷 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝐷))) |
| 64 | 63 | rabbidva 3415 |
. . . 4
⊢ (𝜑 → {𝑥 ∈ 𝐶 ∣ 𝑥𝑅𝐷} = {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)}) |
| 65 | 51, 64 | eqtrd 2765 |
. . 3
⊢ (𝜑 → Pred(𝑅, 𝐶, 𝐷) = {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)}) |
| 66 | 65 | imaeq2d 6034 |
. 2
⊢ (𝜑 → (𝐹 “ Pred(𝑅, 𝐶, 𝐷)) = (𝐹 “ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)})) |
| 67 | 48, 66 | eqtr4d 2768 |
1
⊢ (𝜑 → Pred(𝑆, (𝐹 “ 𝐶), (𝐹‘𝐷)) = (𝐹 “ Pred(𝑅, 𝐶, 𝐷))) |