Step | Hyp | Ref
| Expression |
1 | | fvex 6769 |
. . . . 5
⊢ (𝐹‘𝐷) ∈ V |
2 | 1 | dfpred3 6202 |
. . . 4
⊢
Pred(𝑆, (𝐹 “ 𝐶), (𝐹‘𝐷)) = {𝑣 ∈ (𝐹 “ 𝐶) ∣ 𝑣𝑆(𝐹‘𝐷)} |
3 | | elrabi 3611 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} → 𝑢 ∈ 𝐶) |
4 | 3 | anim1i 614 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} ∧ (𝐹‘𝑢) = 𝑣) → (𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢) = 𝑣)) |
5 | 4 | reximi2 3171 |
. . . . . . . . 9
⊢
(∃𝑢 ∈
{𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣 → ∃𝑢 ∈ 𝐶 (𝐹‘𝑢) = 𝑣) |
6 | | fnrelpredd.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 Fn 𝐴) |
7 | | fnrelpredd.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
8 | 6, 7 | fvelimabd 6824 |
. . . . . . . . 9
⊢ (𝜑 → (𝑣 ∈ (𝐹 “ 𝐶) ↔ ∃𝑢 ∈ 𝐶 (𝐹‘𝑢) = 𝑣)) |
9 | 5, 8 | syl5ibr 245 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣 → 𝑣 ∈ (𝐹 “ 𝐶))) |
10 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑢 → (𝐹‘𝑥) = (𝐹‘𝑢)) |
11 | 10 | breq1d 5080 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑢 → ((𝐹‘𝑥)𝑆(𝐹‘𝐷) ↔ (𝐹‘𝑢)𝑆(𝐹‘𝐷))) |
12 | 11 | elrab 3617 |
. . . . . . . . . 10
⊢ (𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} ↔ (𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢)𝑆(𝐹‘𝐷))) |
13 | | breq1 5073 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑢) = 𝑣 → ((𝐹‘𝑢)𝑆(𝐹‘𝐷) ↔ 𝑣𝑆(𝐹‘𝐷))) |
14 | 13 | biimpac 478 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑢)𝑆(𝐹‘𝐷) ∧ (𝐹‘𝑢) = 𝑣) → 𝑣𝑆(𝐹‘𝐷)) |
15 | 14 | adantll 710 |
. . . . . . . . . 10
⊢ (((𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢)𝑆(𝐹‘𝐷)) ∧ (𝐹‘𝑢) = 𝑣) → 𝑣𝑆(𝐹‘𝐷)) |
16 | 12, 15 | sylanb 580 |
. . . . . . . . 9
⊢ ((𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} ∧ (𝐹‘𝑢) = 𝑣) → 𝑣𝑆(𝐹‘𝐷)) |
17 | 16 | rexlimiva 3209 |
. . . . . . . 8
⊢
(∃𝑢 ∈
{𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣 → 𝑣𝑆(𝐹‘𝐷)) |
18 | 9, 17 | jca2 513 |
. . . . . . 7
⊢ (𝜑 → (∃𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣 → (𝑣 ∈ (𝐹 “ 𝐶) ∧ 𝑣𝑆(𝐹‘𝐷)))) |
19 | 8 | biimpd 228 |
. . . . . . . . 9
⊢ (𝜑 → (𝑣 ∈ (𝐹 “ 𝐶) → ∃𝑢 ∈ 𝐶 (𝐹‘𝑢) = 𝑣)) |
20 | 19 | adantrd 491 |
. . . . . . . 8
⊢ (𝜑 → ((𝑣 ∈ (𝐹 “ 𝐶) ∧ 𝑣𝑆(𝐹‘𝐷)) → ∃𝑢 ∈ 𝐶 (𝐹‘𝑢) = 𝑣)) |
21 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢) = 𝑣) → 𝑢 ∈ 𝐶) |
22 | 21 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑣𝑆(𝐹‘𝐷) → ((𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢) = 𝑣) → 𝑢 ∈ 𝐶)) |
23 | 13 | biimprcd 249 |
. . . . . . . . . . . . 13
⊢ (𝑣𝑆(𝐹‘𝐷) → ((𝐹‘𝑢) = 𝑣 → (𝐹‘𝑢)𝑆(𝐹‘𝐷))) |
24 | 23 | adantld 490 |
. . . . . . . . . . . 12
⊢ (𝑣𝑆(𝐹‘𝐷) → ((𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢) = 𝑣) → (𝐹‘𝑢)𝑆(𝐹‘𝐷))) |
25 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢) = 𝑣) → (𝐹‘𝑢) = 𝑣) |
26 | 25 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑣𝑆(𝐹‘𝐷) → ((𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢) = 𝑣) → (𝐹‘𝑢) = 𝑣)) |
27 | 22, 24, 26 | 3jcad 1127 |
. . . . . . . . . . 11
⊢ (𝑣𝑆(𝐹‘𝐷) → ((𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢) = 𝑣) → (𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢)𝑆(𝐹‘𝐷) ∧ (𝐹‘𝑢) = 𝑣))) |
28 | 12 | biimpri 227 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢)𝑆(𝐹‘𝐷)) → 𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)}) |
29 | 28 | anim1i 614 |
. . . . . . . . . . . 12
⊢ (((𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢)𝑆(𝐹‘𝐷)) ∧ (𝐹‘𝑢) = 𝑣) → (𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} ∧ (𝐹‘𝑢) = 𝑣)) |
30 | 29 | 3impa 1108 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢)𝑆(𝐹‘𝐷) ∧ (𝐹‘𝑢) = 𝑣) → (𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} ∧ (𝐹‘𝑢) = 𝑣)) |
31 | 27, 30 | syl6 35 |
. . . . . . . . . 10
⊢ (𝑣𝑆(𝐹‘𝐷) → ((𝑢 ∈ 𝐶 ∧ (𝐹‘𝑢) = 𝑣) → (𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} ∧ (𝐹‘𝑢) = 𝑣))) |
32 | 31 | reximdv2 3198 |
. . . . . . . . 9
⊢ (𝑣𝑆(𝐹‘𝐷) → (∃𝑢 ∈ 𝐶 (𝐹‘𝑢) = 𝑣 → ∃𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣)) |
33 | 32 | adantl 481 |
. . . . . . . 8
⊢ ((𝑣 ∈ (𝐹 “ 𝐶) ∧ 𝑣𝑆(𝐹‘𝐷)) → (∃𝑢 ∈ 𝐶 (𝐹‘𝑢) = 𝑣 → ∃𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣)) |
34 | 20, 33 | sylcom 30 |
. . . . . . 7
⊢ (𝜑 → ((𝑣 ∈ (𝐹 “ 𝐶) ∧ 𝑣𝑆(𝐹‘𝐷)) → ∃𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣)) |
35 | 18, 34 | impbid 211 |
. . . . . 6
⊢ (𝜑 → (∃𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣 ↔ (𝑣 ∈ (𝐹 “ 𝐶) ∧ 𝑣𝑆(𝐹‘𝐷)))) |
36 | 35 | abbidv 2808 |
. . . . 5
⊢ (𝜑 → {𝑣 ∣ ∃𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣} = {𝑣 ∣ (𝑣 ∈ (𝐹 “ 𝐶) ∧ 𝑣𝑆(𝐹‘𝐷))}) |
37 | | df-rab 3072 |
. . . . 5
⊢ {𝑣 ∈ (𝐹 “ 𝐶) ∣ 𝑣𝑆(𝐹‘𝐷)} = {𝑣 ∣ (𝑣 ∈ (𝐹 “ 𝐶) ∧ 𝑣𝑆(𝐹‘𝐷))} |
38 | 36, 37 | eqtr4di 2797 |
. . . 4
⊢ (𝜑 → {𝑣 ∣ ∃𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣} = {𝑣 ∈ (𝐹 “ 𝐶) ∣ 𝑣𝑆(𝐹‘𝐷)}) |
39 | 2, 38 | eqtr4id 2798 |
. . 3
⊢ (𝜑 → Pred(𝑆, (𝐹 “ 𝐶), (𝐹‘𝐷)) = {𝑣 ∣ ∃𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣}) |
40 | | fnfun 6517 |
. . . . 5
⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
41 | 6, 40 | syl 17 |
. . . 4
⊢ (𝜑 → Fun 𝐹) |
42 | | ssrab2 4009 |
. . . . . 6
⊢ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} ⊆ 𝐶 |
43 | 42, 7 | sstrid 3928 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} ⊆ 𝐴) |
44 | 6 | fndmd 6522 |
. . . . 5
⊢ (𝜑 → dom 𝐹 = 𝐴) |
45 | 43, 44 | sseqtrrd 3958 |
. . . 4
⊢ (𝜑 → {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} ⊆ dom 𝐹) |
46 | | dfimafn 6814 |
. . . 4
⊢ ((Fun
𝐹 ∧ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} ⊆ dom 𝐹) → (𝐹 “ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)}) = {𝑣 ∣ ∃𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣}) |
47 | 41, 45, 46 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝐹 “ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)}) = {𝑣 ∣ ∃𝑢 ∈ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)} (𝐹‘𝑢) = 𝑣}) |
48 | 39, 47 | eqtr4d 2781 |
. 2
⊢ (𝜑 → Pred(𝑆, (𝐹 “ 𝐶), (𝐹‘𝐷)) = (𝐹 “ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)})) |
49 | | fnrelpredd.4 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ 𝐴) |
50 | | dfpred3g 6203 |
. . . . 5
⊢ (𝐷 ∈ 𝐴 → Pred(𝑅, 𝐶, 𝐷) = {𝑥 ∈ 𝐶 ∣ 𝑥𝑅𝐷}) |
51 | 49, 50 | syl 17 |
. . . 4
⊢ (𝜑 → Pred(𝑅, 𝐶, 𝐷) = {𝑥 ∈ 𝐶 ∣ 𝑥𝑅𝐷}) |
52 | 7 | sselda 3917 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐴) |
53 | | fnrelpredd.2 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
54 | 53 | r19.21bi 3132 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
55 | | breq2 5074 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐷 → (𝑥𝑅𝑦 ↔ 𝑥𝑅𝐷)) |
56 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐷 → (𝐹‘𝑦) = (𝐹‘𝐷)) |
57 | 56 | breq2d 5082 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐷 → ((𝐹‘𝑥)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑥)𝑆(𝐹‘𝐷))) |
58 | 55, 57 | bibi12d 345 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐷 → ((𝑥𝑅𝑦 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦)) ↔ (𝑥𝑅𝐷 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝐷)))) |
59 | 58 | rspcv 3547 |
. . . . . . . . 9
⊢ (𝐷 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦)) → (𝑥𝑅𝐷 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝐷)))) |
60 | 49, 59 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦)) → (𝑥𝑅𝐷 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝐷)))) |
61 | 60 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦)) → (𝑥𝑅𝐷 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝐷)))) |
62 | 54, 61 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥𝑅𝐷 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝐷))) |
63 | 52, 62 | syldan 590 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥𝑅𝐷 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝐷))) |
64 | 63 | rabbidva 3402 |
. . . 4
⊢ (𝜑 → {𝑥 ∈ 𝐶 ∣ 𝑥𝑅𝐷} = {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)}) |
65 | 51, 64 | eqtrd 2778 |
. . 3
⊢ (𝜑 → Pred(𝑅, 𝐶, 𝐷) = {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)}) |
66 | 65 | imaeq2d 5958 |
. 2
⊢ (𝜑 → (𝐹 “ Pred(𝑅, 𝐶, 𝐷)) = (𝐹 “ {𝑥 ∈ 𝐶 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝐷)})) |
67 | 48, 66 | eqtr4d 2781 |
1
⊢ (𝜑 → Pred(𝑆, (𝐹 “ 𝐶), (𝐹‘𝐷)) = (𝐹 “ Pred(𝑅, 𝐶, 𝐷))) |