![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccid | Structured version Visualization version GIF version |
Description: A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009.) |
Ref | Expression |
---|---|
iccid | ⊢ (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc1 12531 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐴) ↔ (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴))) | |
2 | 1 | anidms 562 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴[,]𝐴) ↔ (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴))) |
3 | xrlenlt 10442 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝐴 ≤ 𝑥 ↔ ¬ 𝑥 < 𝐴)) | |
4 | xrlenlt 10442 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥)) | |
5 | 4 | ancoms 452 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥)) |
6 | xrlttri3 12286 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝑥 = 𝐴 ↔ (¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥))) | |
7 | 6 | biimprd 240 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → ((¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥) → 𝑥 = 𝐴)) |
8 | 7 | ancoms 452 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → ((¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥) → 𝑥 = 𝐴)) |
9 | 8 | expcomd 408 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (¬ 𝐴 < 𝑥 → (¬ 𝑥 < 𝐴 → 𝑥 = 𝐴))) |
10 | 5, 9 | sylbid 232 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝑥 ≤ 𝐴 → (¬ 𝑥 < 𝐴 → 𝑥 = 𝐴))) |
11 | 10 | com23 86 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (¬ 𝑥 < 𝐴 → (𝑥 ≤ 𝐴 → 𝑥 = 𝐴))) |
12 | 3, 11 | sylbid 232 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝐴 ≤ 𝑥 → (𝑥 ≤ 𝐴 → 𝑥 = 𝐴))) |
13 | 12 | ex 403 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝑥 ∈ ℝ* → (𝐴 ≤ 𝑥 → (𝑥 ≤ 𝐴 → 𝑥 = 𝐴)))) |
14 | 13 | 3impd 1410 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴) → 𝑥 = 𝐴)) |
15 | eleq1a 2854 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝑥 = 𝐴 → 𝑥 ∈ ℝ*)) | |
16 | xrleid 12294 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
17 | breq2 4890 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐴)) | |
18 | 16, 17 | syl5ibrcom 239 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝑥 = 𝐴 → 𝐴 ≤ 𝑥)) |
19 | breq1 4889 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 ≤ 𝐴 ↔ 𝐴 ≤ 𝐴)) | |
20 | 16, 19 | syl5ibrcom 239 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝑥 = 𝐴 → 𝑥 ≤ 𝐴)) |
21 | 15, 18, 20 | 3jcad 1120 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → (𝑥 = 𝐴 → (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴))) |
22 | 14, 21 | impbid 204 | . . . 4 ⊢ (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴) ↔ 𝑥 = 𝐴)) |
23 | velsn 4414 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
24 | 22, 23 | syl6bbr 281 | . . 3 ⊢ (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴) ↔ 𝑥 ∈ {𝐴})) |
25 | 2, 24 | bitrd 271 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴[,]𝐴) ↔ 𝑥 ∈ {𝐴})) |
26 | 25 | eqrdv 2776 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 {csn 4398 class class class wbr 4886 (class class class)co 6922 ℝ*cxr 10410 < clt 10411 ≤ cle 10412 [,]cicc 12490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-pre-lttri 10346 ax-pre-lttrn 10347 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-icc 12494 |
This theorem is referenced by: ioounsn 12613 ioounsnOLD 12614 snunioo 12615 snunico 12616 snunioc 12617 prunioo 12618 icccmplem1 23033 ivthicc 23662 ioombl 23769 volivth 23811 mbfimasn 23836 itgspliticc 24040 dvivth 24210 cvmliftlem10 31875 mblfinlem2 34073 areacirc 34130 iocinico 38755 iocmbl 38756 snunioo1 40647 cncfiooicc 41035 vonsn 41832 |
Copyright terms: Public domain | W3C validator |