Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iccid | Structured version Visualization version GIF version |
Description: A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009.) |
Ref | Expression |
---|---|
iccid | ⊢ (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc1 13123 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐴) ↔ (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴))) | |
2 | 1 | anidms 567 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴[,]𝐴) ↔ (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴))) |
3 | xrlenlt 11040 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝐴 ≤ 𝑥 ↔ ¬ 𝑥 < 𝐴)) | |
4 | xrlenlt 11040 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥)) | |
5 | 4 | ancoms 459 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥)) |
6 | xrlttri3 12877 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝑥 = 𝐴 ↔ (¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥))) | |
7 | 6 | biimprd 247 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → ((¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥) → 𝑥 = 𝐴)) |
8 | 7 | ancoms 459 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → ((¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥) → 𝑥 = 𝐴)) |
9 | 8 | expcomd 417 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (¬ 𝐴 < 𝑥 → (¬ 𝑥 < 𝐴 → 𝑥 = 𝐴))) |
10 | 5, 9 | sylbid 239 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝑥 ≤ 𝐴 → (¬ 𝑥 < 𝐴 → 𝑥 = 𝐴))) |
11 | 10 | com23 86 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (¬ 𝑥 < 𝐴 → (𝑥 ≤ 𝐴 → 𝑥 = 𝐴))) |
12 | 3, 11 | sylbid 239 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝐴 ≤ 𝑥 → (𝑥 ≤ 𝐴 → 𝑥 = 𝐴))) |
13 | 12 | ex 413 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝑥 ∈ ℝ* → (𝐴 ≤ 𝑥 → (𝑥 ≤ 𝐴 → 𝑥 = 𝐴)))) |
14 | 13 | 3impd 1347 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴) → 𝑥 = 𝐴)) |
15 | eleq1a 2834 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝑥 = 𝐴 → 𝑥 ∈ ℝ*)) | |
16 | xrleid 12885 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
17 | breq2 5078 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐴)) | |
18 | 16, 17 | syl5ibrcom 246 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝑥 = 𝐴 → 𝐴 ≤ 𝑥)) |
19 | breq1 5077 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 ≤ 𝐴 ↔ 𝐴 ≤ 𝐴)) | |
20 | 16, 19 | syl5ibrcom 246 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝑥 = 𝐴 → 𝑥 ≤ 𝐴)) |
21 | 15, 18, 20 | 3jcad 1128 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → (𝑥 = 𝐴 → (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴))) |
22 | 14, 21 | impbid 211 | . . . 4 ⊢ (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴) ↔ 𝑥 = 𝐴)) |
23 | velsn 4577 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
24 | 22, 23 | bitr4di 289 | . . 3 ⊢ (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴) ↔ 𝑥 ∈ {𝐴})) |
25 | 2, 24 | bitrd 278 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴[,]𝐴) ↔ 𝑥 ∈ {𝐴})) |
26 | 25 | eqrdv 2736 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {csn 4561 class class class wbr 5074 (class class class)co 7275 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 [,]cicc 13082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-icc 13086 |
This theorem is referenced by: ioounsn 13209 snunioo 13210 snunico 13211 snunioc 13212 prunioo 13213 icccmplem1 23985 ivthicc 24622 ioombl 24729 volivth 24771 mbfimasn 24796 itgspliticc 25001 dvivth 25174 cvmliftlem10 33256 mblfinlem2 35815 areacirc 35870 iocinico 41043 iocmbl 41044 snunioo1 43050 cncfiooicc 43435 vonsn 44229 seppcld 46223 |
Copyright terms: Public domain | W3C validator |