| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccid | Structured version Visualization version GIF version | ||
| Description: A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009.) |
| Ref | Expression |
|---|---|
| iccid | ⊢ (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc1 13289 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐴) ↔ (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴))) | |
| 2 | 1 | anidms 566 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴[,]𝐴) ↔ (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴))) |
| 3 | xrlenlt 11177 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝐴 ≤ 𝑥 ↔ ¬ 𝑥 < 𝐴)) | |
| 4 | xrlenlt 11177 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥)) | |
| 5 | 4 | ancoms 458 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥)) |
| 6 | xrlttri3 13042 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝑥 = 𝐴 ↔ (¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥))) | |
| 7 | 6 | biimprd 248 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → ((¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥) → 𝑥 = 𝐴)) |
| 8 | 7 | ancoms 458 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → ((¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥) → 𝑥 = 𝐴)) |
| 9 | 8 | expcomd 416 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (¬ 𝐴 < 𝑥 → (¬ 𝑥 < 𝐴 → 𝑥 = 𝐴))) |
| 10 | 5, 9 | sylbid 240 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝑥 ≤ 𝐴 → (¬ 𝑥 < 𝐴 → 𝑥 = 𝐴))) |
| 11 | 10 | com23 86 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (¬ 𝑥 < 𝐴 → (𝑥 ≤ 𝐴 → 𝑥 = 𝐴))) |
| 12 | 3, 11 | sylbid 240 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝐴 ≤ 𝑥 → (𝑥 ≤ 𝐴 → 𝑥 = 𝐴))) |
| 13 | 12 | ex 412 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝑥 ∈ ℝ* → (𝐴 ≤ 𝑥 → (𝑥 ≤ 𝐴 → 𝑥 = 𝐴)))) |
| 14 | 13 | 3impd 1349 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴) → 𝑥 = 𝐴)) |
| 15 | eleq1a 2826 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝑥 = 𝐴 → 𝑥 ∈ ℝ*)) | |
| 16 | xrleid 13050 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
| 17 | breq2 5093 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐴)) | |
| 18 | 16, 17 | syl5ibrcom 247 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝑥 = 𝐴 → 𝐴 ≤ 𝑥)) |
| 19 | breq1 5092 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 ≤ 𝐴 ↔ 𝐴 ≤ 𝐴)) | |
| 20 | 16, 19 | syl5ibrcom 247 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝑥 = 𝐴 → 𝑥 ≤ 𝐴)) |
| 21 | 15, 18, 20 | 3jcad 1129 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → (𝑥 = 𝐴 → (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴))) |
| 22 | 14, 21 | impbid 212 | . . . 4 ⊢ (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴) ↔ 𝑥 = 𝐴)) |
| 23 | velsn 4589 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 24 | 22, 23 | bitr4di 289 | . . 3 ⊢ (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴) ↔ 𝑥 ∈ {𝐴})) |
| 25 | 2, 24 | bitrd 279 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴[,]𝐴) ↔ 𝑥 ∈ {𝐴})) |
| 26 | 25 | eqrdv 2729 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {csn 4573 class class class wbr 5089 (class class class)co 7346 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 [,]cicc 13248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-icc 13252 |
| This theorem is referenced by: ioounsn 13377 snunioo 13378 snunico 13379 snunioc 13380 prunioo 13381 icccmplem1 24738 ivthicc 25386 ioombl 25493 volivth 25535 mbfimasn 25560 itgspliticc 25765 dvivth 25942 cvmliftlem10 35338 mblfinlem2 37706 areacirc 37761 iocinico 43253 iocmbl 43254 snunioo1 45560 cncfiooicc 45940 vonsn 46737 seppcld 48969 |
| Copyright terms: Public domain | W3C validator |