![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccid | Structured version Visualization version GIF version |
Description: A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009.) |
Ref | Expression |
---|---|
iccid | ⊢ (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc1 13451 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐴) ↔ (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴))) | |
2 | 1 | anidms 566 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴[,]𝐴) ↔ (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴))) |
3 | xrlenlt 11355 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝐴 ≤ 𝑥 ↔ ¬ 𝑥 < 𝐴)) | |
4 | xrlenlt 11355 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥)) | |
5 | 4 | ancoms 458 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥)) |
6 | xrlttri3 13205 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝑥 = 𝐴 ↔ (¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥))) | |
7 | 6 | biimprd 248 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → ((¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥) → 𝑥 = 𝐴)) |
8 | 7 | ancoms 458 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → ((¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥) → 𝑥 = 𝐴)) |
9 | 8 | expcomd 416 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (¬ 𝐴 < 𝑥 → (¬ 𝑥 < 𝐴 → 𝑥 = 𝐴))) |
10 | 5, 9 | sylbid 240 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝑥 ≤ 𝐴 → (¬ 𝑥 < 𝐴 → 𝑥 = 𝐴))) |
11 | 10 | com23 86 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (¬ 𝑥 < 𝐴 → (𝑥 ≤ 𝐴 → 𝑥 = 𝐴))) |
12 | 3, 11 | sylbid 240 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝐴 ≤ 𝑥 → (𝑥 ≤ 𝐴 → 𝑥 = 𝐴))) |
13 | 12 | ex 412 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝑥 ∈ ℝ* → (𝐴 ≤ 𝑥 → (𝑥 ≤ 𝐴 → 𝑥 = 𝐴)))) |
14 | 13 | 3impd 1348 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴) → 𝑥 = 𝐴)) |
15 | eleq1a 2839 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝑥 = 𝐴 → 𝑥 ∈ ℝ*)) | |
16 | xrleid 13213 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
17 | breq2 5170 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐴)) | |
18 | 16, 17 | syl5ibrcom 247 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝑥 = 𝐴 → 𝐴 ≤ 𝑥)) |
19 | breq1 5169 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 ≤ 𝐴 ↔ 𝐴 ≤ 𝐴)) | |
20 | 16, 19 | syl5ibrcom 247 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝑥 = 𝐴 → 𝑥 ≤ 𝐴)) |
21 | 15, 18, 20 | 3jcad 1129 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → (𝑥 = 𝐴 → (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴))) |
22 | 14, 21 | impbid 212 | . . . 4 ⊢ (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴) ↔ 𝑥 = 𝐴)) |
23 | velsn 4664 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
24 | 22, 23 | bitr4di 289 | . . 3 ⊢ (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴) ↔ 𝑥 ∈ {𝐴})) |
25 | 2, 24 | bitrd 279 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴[,]𝐴) ↔ 𝑥 ∈ {𝐴})) |
26 | 25 | eqrdv 2738 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {csn 4648 class class class wbr 5166 (class class class)co 7448 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 [,]cicc 13410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-icc 13414 |
This theorem is referenced by: ioounsn 13537 snunioo 13538 snunico 13539 snunioc 13540 prunioo 13541 icccmplem1 24863 ivthicc 25512 ioombl 25619 volivth 25661 mbfimasn 25686 itgspliticc 25892 dvivth 26069 cvmliftlem10 35262 mblfinlem2 37618 areacirc 37673 iocinico 43173 iocmbl 43174 snunioo1 45430 cncfiooicc 45815 vonsn 46612 seppcld 48609 |
Copyright terms: Public domain | W3C validator |