MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccid Structured version   Visualization version   GIF version

Theorem iccid 13106
Description: A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009.)
Assertion
Ref Expression
iccid (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})

Proof of Theorem iccid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elicc1 13105 . . . 4 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐴) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴)))
21anidms 566 . . 3 (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴[,]𝐴) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴)))
3 xrlenlt 11024 . . . . . . . 8 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐴𝑥 ↔ ¬ 𝑥 < 𝐴))
4 xrlenlt 11024 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥𝐴 ↔ ¬ 𝐴 < 𝑥))
54ancoms 458 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥𝐴 ↔ ¬ 𝐴 < 𝑥))
6 xrlttri3 12859 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 = 𝐴 ↔ (¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥)))
76biimprd 247 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → ((¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥) → 𝑥 = 𝐴))
87ancoms 458 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → ((¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥) → 𝑥 = 𝐴))
98expcomd 416 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (¬ 𝐴 < 𝑥 → (¬ 𝑥 < 𝐴𝑥 = 𝐴)))
105, 9sylbid 239 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥𝐴 → (¬ 𝑥 < 𝐴𝑥 = 𝐴)))
1110com23 86 . . . . . . . 8 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (¬ 𝑥 < 𝐴 → (𝑥𝐴𝑥 = 𝐴)))
123, 11sylbid 239 . . . . . . 7 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐴𝑥 → (𝑥𝐴𝑥 = 𝐴)))
1312ex 412 . . . . . 6 (𝐴 ∈ ℝ* → (𝑥 ∈ ℝ* → (𝐴𝑥 → (𝑥𝐴𝑥 = 𝐴))))
14133impd 1346 . . . . 5 (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴) → 𝑥 = 𝐴))
15 eleq1a 2835 . . . . . 6 (𝐴 ∈ ℝ* → (𝑥 = 𝐴𝑥 ∈ ℝ*))
16 xrleid 12867 . . . . . . 7 (𝐴 ∈ ℝ*𝐴𝐴)
17 breq2 5082 . . . . . . 7 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
1816, 17syl5ibrcom 246 . . . . . 6 (𝐴 ∈ ℝ* → (𝑥 = 𝐴𝐴𝑥))
19 breq1 5081 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
2016, 19syl5ibrcom 246 . . . . . 6 (𝐴 ∈ ℝ* → (𝑥 = 𝐴𝑥𝐴))
2115, 18, 203jcad 1127 . . . . 5 (𝐴 ∈ ℝ* → (𝑥 = 𝐴 → (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴)))
2214, 21impbid 211 . . . 4 (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴) ↔ 𝑥 = 𝐴))
23 velsn 4582 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
2422, 23bitr4di 288 . . 3 (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴) ↔ 𝑥 ∈ {𝐴}))
252, 24bitrd 278 . 2 (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴[,]𝐴) ↔ 𝑥 ∈ {𝐴}))
2625eqrdv 2737 1 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  {csn 4566   class class class wbr 5078  (class class class)co 7268  *cxr 10992   < clt 10993  cle 10994  [,]cicc 13064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-pre-lttri 10929  ax-pre-lttrn 10930
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-icc 13068
This theorem is referenced by:  ioounsn  13191  snunioo  13192  snunico  13193  snunioc  13194  prunioo  13195  icccmplem1  23966  ivthicc  24603  ioombl  24710  volivth  24752  mbfimasn  24777  itgspliticc  24982  dvivth  25155  cvmliftlem10  33235  mblfinlem2  35794  areacirc  35849  iocinico  41023  iocmbl  41024  snunioo1  43004  cncfiooicc  43389  vonsn  44183  seppcld  46175
  Copyright terms: Public domain W3C validator