![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elznn | Structured version Visualization version GIF version |
Description: Integer property expressed in terms of positive integers and nonnegative integers. (Contributed by NM, 12-Jul-2005.) |
Ref | Expression |
---|---|
elznn | ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 12584 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
2 | 3orrot 1090 | . . . . 5 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
3 | 3orass 1088 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) | |
4 | 2, 3 | bitri 275 | . . . 4 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) |
5 | elnn0 12498 | . . . . . 6 ⊢ (-𝑁 ∈ ℕ0 ↔ (-𝑁 ∈ ℕ ∨ -𝑁 = 0)) | |
6 | recn 11222 | . . . . . . . 8 ⊢ (𝑁 ∈ ℝ → 𝑁 ∈ ℂ) | |
7 | 6 | negeq0d 11587 | . . . . . . 7 ⊢ (𝑁 ∈ ℝ → (𝑁 = 0 ↔ -𝑁 = 0)) |
8 | 7 | orbi2d 914 | . . . . . 6 ⊢ (𝑁 ∈ ℝ → ((-𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (-𝑁 ∈ ℕ ∨ -𝑁 = 0))) |
9 | 5, 8 | bitr4id 290 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (-𝑁 ∈ ℕ0 ↔ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) |
10 | 9 | orbi2d 914 | . . . 4 ⊢ (𝑁 ∈ ℝ → ((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ0) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))) |
11 | 4, 10 | bitr4id 290 | . . 3 ⊢ (𝑁 ∈ ℝ → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ0))) |
12 | 11 | pm5.32i 574 | . 2 ⊢ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ0))) |
13 | 1, 12 | bitri 275 | 1 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ0))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∨ wo 846 ∨ w3o 1084 = wceq 1534 ∈ wcel 2099 ℝcr 11131 0cc0 11132 -cneg 11469 ℕcn 12236 ℕ0cn0 12496 ℤcz 12582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-ltxr 11277 df-sub 11470 df-neg 11471 df-n0 12497 df-z 12583 |
This theorem is referenced by: zle0orge1 12599 znnn0nn 12697 zzlesq 14195 expnngt1 14229 bitsf1 16414 eldmgm 26947 monotoddzzfi 42357 |
Copyright terms: Public domain | W3C validator |