MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elznn Structured version   Visualization version   GIF version

Theorem elznn 11845
Description: Integer property expressed in terms of positive integers and nonnegative integers. (Contributed by NM, 12-Jul-2005.)
Assertion
Ref Expression
elznn (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ0)))

Proof of Theorem elznn
StepHypRef Expression
1 elz 11831 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
2 recn 10473 . . . . . . . 8 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
32negeq0d 10837 . . . . . . 7 (𝑁 ∈ ℝ → (𝑁 = 0 ↔ -𝑁 = 0))
43orbi2d 910 . . . . . 6 (𝑁 ∈ ℝ → ((-𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (-𝑁 ∈ ℕ ∨ -𝑁 = 0)))
5 elnn0 11747 . . . . . 6 (-𝑁 ∈ ℕ0 ↔ (-𝑁 ∈ ℕ ∨ -𝑁 = 0))
64, 5syl6rbbr 291 . . . . 5 (𝑁 ∈ ℝ → (-𝑁 ∈ ℕ0 ↔ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
76orbi2d 910 . . . 4 (𝑁 ∈ ℝ → ((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ0) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))))
8 3orrot 1085 . . . . 5 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0))
9 3orass 1083 . . . . 5 ((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
108, 9bitri 276 . . . 4 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
117, 10syl6rbbr 291 . . 3 (𝑁 ∈ ℝ → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ0)))
1211pm5.32i 575 . 2 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ0)))
131, 12bitri 276 1 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ0)))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396  wo 842  w3o 1079   = wceq 1522  wcel 2081  cr 10382  0cc0 10383  -cneg 10718  cn 11486  0cn0 11745  cz 11829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-po 5362  df-so 5363  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-ltxr 10526  df-sub 10719  df-neg 10720  df-n0 11746  df-z 11830
This theorem is referenced by:  zle0orge1  11846  znnn0nn  11943  expnngt1  13452  bitsf1  15628  eldmgm  25281  monotoddzzfi  39024
  Copyright terms: Public domain W3C validator