Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem5 Structured version   Visualization version   GIF version

Theorem dfon2lem5 32138
Description: Lemma for dfon2 32143. Two sets satisfying the new definition also satisfy trichotomy with respect to . (Contributed by Scott Fenton, 25-Feb-2011.)
Hypotheses
Ref Expression
dfon2lem5.1 𝐴 ∈ V
dfon2lem5.2 𝐵 ∈ V
Assertion
Ref Expression
dfon2lem5 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem dfon2lem5
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfon2lem5.1 . . . 4 𝐴 ∈ V
2 dfon2lem5.2 . . . 4 𝐵 ∈ V
31, 2dfon2lem4 32137 . . 3 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (𝐴𝐵𝐵𝐴))
4 dfpss2 3855 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
5 dfpss2 3855 . . . . . . 7 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐵 = 𝐴))
6 eqcom 2772 . . . . . . . . 9 (𝐵 = 𝐴𝐴 = 𝐵)
76notbii 311 . . . . . . . 8 𝐵 = 𝐴 ↔ ¬ 𝐴 = 𝐵)
87anbi2i 616 . . . . . . 7 ((𝐵𝐴 ∧ ¬ 𝐵 = 𝐴) ↔ (𝐵𝐴 ∧ ¬ 𝐴 = 𝐵))
95, 8bitri 266 . . . . . 6 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐴 = 𝐵))
104, 9orbi12i 938 . . . . 5 ((𝐴𝐵𝐵𝐴) ↔ ((𝐴𝐵 ∧ ¬ 𝐴 = 𝐵) ∨ (𝐵𝐴 ∧ ¬ 𝐴 = 𝐵)))
11 andir 1031 . . . . 5 (((𝐴𝐵𝐵𝐴) ∧ ¬ 𝐴 = 𝐵) ↔ ((𝐴𝐵 ∧ ¬ 𝐴 = 𝐵) ∨ (𝐵𝐴 ∧ ¬ 𝐴 = 𝐵)))
1210, 11bitr4i 269 . . . 4 ((𝐴𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐵𝐴) ∧ ¬ 𝐴 = 𝐵))
13 orcom 896 . . . . 5 ((𝐴𝐵𝐵𝐴) ↔ (𝐵𝐴𝐴𝐵))
14 dfon2lem3 32136 . . . . . . . . 9 (𝐵 ∈ V → (∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵) → (Tr 𝐵 ∧ ∀𝑧𝐵 ¬ 𝑧𝑧)))
152, 14ax-mp 5 . . . . . . . 8 (∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵) → (Tr 𝐵 ∧ ∀𝑧𝐵 ¬ 𝑧𝑧))
1615simpld 488 . . . . . . 7 (∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵) → Tr 𝐵)
17 psseq1 3857 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
18 treq 4919 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (Tr 𝑥 ↔ Tr 𝐵))
1917, 18anbi12d 624 . . . . . . . . . . 11 (𝑥 = 𝐵 → ((𝑥𝐴 ∧ Tr 𝑥) ↔ (𝐵𝐴 ∧ Tr 𝐵)))
20 eleq1 2832 . . . . . . . . . . 11 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
2119, 20imbi12d 335 . . . . . . . . . 10 (𝑥 = 𝐵 → (((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ↔ ((𝐵𝐴 ∧ Tr 𝐵) → 𝐵𝐴)))
222, 21spcv 3452 . . . . . . . . 9 (∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) → ((𝐵𝐴 ∧ Tr 𝐵) → 𝐵𝐴))
2322expcomd 406 . . . . . . . 8 (∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) → (Tr 𝐵 → (𝐵𝐴𝐵𝐴)))
2423imp 395 . . . . . . 7 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ Tr 𝐵) → (𝐵𝐴𝐵𝐴))
2516, 24sylan2 586 . . . . . 6 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (𝐵𝐴𝐵𝐴))
26 dfon2lem3 32136 . . . . . . . . 9 (𝐴 ∈ V → (∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) → (Tr 𝐴 ∧ ∀𝑧𝐴 ¬ 𝑧𝑧)))
271, 26ax-mp 5 . . . . . . . 8 (∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) → (Tr 𝐴 ∧ ∀𝑧𝐴 ¬ 𝑧𝑧))
2827simpld 488 . . . . . . 7 (∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) → Tr 𝐴)
29 psseq1 3857 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦𝐵𝐴𝐵))
30 treq 4919 . . . . . . . . . . 11 (𝑦 = 𝐴 → (Tr 𝑦 ↔ Tr 𝐴))
3129, 30anbi12d 624 . . . . . . . . . 10 (𝑦 = 𝐴 → ((𝑦𝐵 ∧ Tr 𝑦) ↔ (𝐴𝐵 ∧ Tr 𝐴)))
32 eleq1 2832 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑦𝐵𝐴𝐵))
3331, 32imbi12d 335 . . . . . . . . 9 (𝑦 = 𝐴 → (((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵) ↔ ((𝐴𝐵 ∧ Tr 𝐴) → 𝐴𝐵)))
341, 33spcv 3452 . . . . . . . 8 (∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵) → ((𝐴𝐵 ∧ Tr 𝐴) → 𝐴𝐵))
3534expcomd 406 . . . . . . 7 (∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵) → (Tr 𝐴 → (𝐴𝐵𝐴𝐵)))
3628, 35mpan9 502 . . . . . 6 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (𝐴𝐵𝐴𝐵))
3725, 36orim12d 987 . . . . 5 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → ((𝐵𝐴𝐴𝐵) → (𝐵𝐴𝐴𝐵)))
3813, 37syl5bi 233 . . . 4 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → ((𝐴𝐵𝐵𝐴) → (𝐵𝐴𝐴𝐵)))
3912, 38syl5bir 234 . . 3 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (((𝐴𝐵𝐵𝐴) ∧ ¬ 𝐴 = 𝐵) → (𝐵𝐴𝐴𝐵)))
403, 39mpand 686 . 2 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (¬ 𝐴 = 𝐵 → (𝐵𝐴𝐴𝐵)))
41 3orrot 1112 . . 3 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ (𝐴 = 𝐵𝐵𝐴𝐴𝐵))
42 3orass 1110 . . . 4 ((𝐴 = 𝐵𝐵𝐴𝐴𝐵) ↔ (𝐴 = 𝐵 ∨ (𝐵𝐴𝐴𝐵)))
43 df-or 874 . . . 4 ((𝐴 = 𝐵 ∨ (𝐵𝐴𝐴𝐵)) ↔ (¬ 𝐴 = 𝐵 → (𝐵𝐴𝐴𝐵)))
4442, 43bitri 266 . . 3 ((𝐴 = 𝐵𝐵𝐴𝐴𝐵) ↔ (¬ 𝐴 = 𝐵 → (𝐵𝐴𝐴𝐵)))
4541, 44bitri 266 . 2 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ (¬ 𝐴 = 𝐵 → (𝐵𝐴𝐴𝐵)))
4640, 45sylibr 225 1 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wo 873  w3o 1106  wal 1650   = wceq 1652  wcel 2155  wral 3055  Vcvv 3350  wss 3734  wpss 3735  Tr wtr 4913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pr 5064  ax-un 7149
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-v 3352  df-sbc 3599  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-pw 4319  df-sn 4337  df-pr 4339  df-uni 4597  df-iun 4680  df-tr 4914  df-suc 5916
This theorem is referenced by:  dfon2lem6  32139  dfon2  32143
  Copyright terms: Public domain W3C validator