Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem5 Structured version   Visualization version   GIF version

Theorem dfon2lem5 32592
Description: Lemma for dfon2 32597. Two sets satisfying the new definition also satisfy trichotomy with respect to . (Contributed by Scott Fenton, 25-Feb-2011.)
Hypotheses
Ref Expression
dfon2lem5.1 𝐴 ∈ V
dfon2lem5.2 𝐵 ∈ V
Assertion
Ref Expression
dfon2lem5 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem dfon2lem5
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfon2lem5.1 . . . 4 𝐴 ∈ V
2 dfon2lem5.2 . . . 4 𝐵 ∈ V
31, 2dfon2lem4 32591 . . 3 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (𝐴𝐵𝐵𝐴))
4 dfpss2 3954 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
5 dfpss2 3954 . . . . . . 7 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐵 = 𝐴))
6 eqcom 2787 . . . . . . . . 9 (𝐵 = 𝐴𝐴 = 𝐵)
76notbii 312 . . . . . . . 8 𝐵 = 𝐴 ↔ ¬ 𝐴 = 𝐵)
87anbi2i 614 . . . . . . 7 ((𝐵𝐴 ∧ ¬ 𝐵 = 𝐴) ↔ (𝐵𝐴 ∧ ¬ 𝐴 = 𝐵))
95, 8bitri 267 . . . . . 6 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐴 = 𝐵))
104, 9orbi12i 899 . . . . 5 ((𝐴𝐵𝐵𝐴) ↔ ((𝐴𝐵 ∧ ¬ 𝐴 = 𝐵) ∨ (𝐵𝐴 ∧ ¬ 𝐴 = 𝐵)))
11 andir 992 . . . . 5 (((𝐴𝐵𝐵𝐴) ∧ ¬ 𝐴 = 𝐵) ↔ ((𝐴𝐵 ∧ ¬ 𝐴 = 𝐵) ∨ (𝐵𝐴 ∧ ¬ 𝐴 = 𝐵)))
1210, 11bitr4i 270 . . . 4 ((𝐴𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐵𝐴) ∧ ¬ 𝐴 = 𝐵))
13 orcom 857 . . . . 5 ((𝐴𝐵𝐵𝐴) ↔ (𝐵𝐴𝐴𝐵))
14 dfon2lem3 32590 . . . . . . . . 9 (𝐵 ∈ V → (∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵) → (Tr 𝐵 ∧ ∀𝑧𝐵 ¬ 𝑧𝑧)))
152, 14ax-mp 5 . . . . . . . 8 (∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵) → (Tr 𝐵 ∧ ∀𝑧𝐵 ¬ 𝑧𝑧))
1615simpld 487 . . . . . . 7 (∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵) → Tr 𝐵)
17 psseq1 3956 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
18 treq 5041 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (Tr 𝑥 ↔ Tr 𝐵))
1917, 18anbi12d 622 . . . . . . . . . . 11 (𝑥 = 𝐵 → ((𝑥𝐴 ∧ Tr 𝑥) ↔ (𝐵𝐴 ∧ Tr 𝐵)))
20 eleq1 2855 . . . . . . . . . . 11 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
2119, 20imbi12d 337 . . . . . . . . . 10 (𝑥 = 𝐵 → (((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ↔ ((𝐵𝐴 ∧ Tr 𝐵) → 𝐵𝐴)))
222, 21spcv 3526 . . . . . . . . 9 (∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) → ((𝐵𝐴 ∧ Tr 𝐵) → 𝐵𝐴))
2322expcomd 409 . . . . . . . 8 (∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) → (Tr 𝐵 → (𝐵𝐴𝐵𝐴)))
2423imp 398 . . . . . . 7 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ Tr 𝐵) → (𝐵𝐴𝐵𝐴))
2516, 24sylan2 584 . . . . . 6 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (𝐵𝐴𝐵𝐴))
26 dfon2lem3 32590 . . . . . . . . 9 (𝐴 ∈ V → (∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) → (Tr 𝐴 ∧ ∀𝑧𝐴 ¬ 𝑧𝑧)))
271, 26ax-mp 5 . . . . . . . 8 (∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) → (Tr 𝐴 ∧ ∀𝑧𝐴 ¬ 𝑧𝑧))
2827simpld 487 . . . . . . 7 (∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) → Tr 𝐴)
29 psseq1 3956 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦𝐵𝐴𝐵))
30 treq 5041 . . . . . . . . . . 11 (𝑦 = 𝐴 → (Tr 𝑦 ↔ Tr 𝐴))
3129, 30anbi12d 622 . . . . . . . . . 10 (𝑦 = 𝐴 → ((𝑦𝐵 ∧ Tr 𝑦) ↔ (𝐴𝐵 ∧ Tr 𝐴)))
32 eleq1 2855 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑦𝐵𝐴𝐵))
3331, 32imbi12d 337 . . . . . . . . 9 (𝑦 = 𝐴 → (((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵) ↔ ((𝐴𝐵 ∧ Tr 𝐴) → 𝐴𝐵)))
341, 33spcv 3526 . . . . . . . 8 (∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵) → ((𝐴𝐵 ∧ Tr 𝐴) → 𝐴𝐵))
3534expcomd 409 . . . . . . 7 (∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵) → (Tr 𝐴 → (𝐴𝐵𝐴𝐵)))
3628, 35mpan9 499 . . . . . 6 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (𝐴𝐵𝐴𝐵))
3725, 36orim12d 948 . . . . 5 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → ((𝐵𝐴𝐴𝐵) → (𝐵𝐴𝐴𝐵)))
3813, 37syl5bi 234 . . . 4 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → ((𝐴𝐵𝐵𝐴) → (𝐵𝐴𝐴𝐵)))
3912, 38syl5bir 235 . . 3 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (((𝐴𝐵𝐵𝐴) ∧ ¬ 𝐴 = 𝐵) → (𝐵𝐴𝐴𝐵)))
403, 39mpand 683 . 2 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (¬ 𝐴 = 𝐵 → (𝐵𝐴𝐴𝐵)))
41 3orrot 1074 . . 3 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ (𝐴 = 𝐵𝐵𝐴𝐴𝐵))
42 3orass 1072 . . . 4 ((𝐴 = 𝐵𝐵𝐴𝐴𝐵) ↔ (𝐴 = 𝐵 ∨ (𝐵𝐴𝐴𝐵)))
43 df-or 835 . . . 4 ((𝐴 = 𝐵 ∨ (𝐵𝐴𝐴𝐵)) ↔ (¬ 𝐴 = 𝐵 → (𝐵𝐴𝐴𝐵)))
4442, 43bitri 267 . . 3 ((𝐴 = 𝐵𝐵𝐴𝐴𝐵) ↔ (¬ 𝐴 = 𝐵 → (𝐵𝐴𝐴𝐵)))
4541, 44bitri 267 . 2 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ (¬ 𝐴 = 𝐵 → (𝐵𝐴𝐴𝐵)))
4640, 45sylibr 226 1 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  wo 834  w3o 1068  wal 1506   = wceq 1508  wcel 2051  wral 3090  Vcvv 3417  wss 3831  wpss 3832  Tr wtr 5035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-sep 5064  ax-nul 5071  ax-pr 5190  ax-un 7285
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-ral 3095  df-rex 3096  df-v 3419  df-sbc 3684  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-pw 4427  df-sn 4445  df-pr 4447  df-uni 4718  df-iun 4799  df-tr 5036  df-suc 6040
This theorem is referenced by:  dfon2lem6  32593  dfon2  32597
  Copyright terms: Public domain W3C validator