Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lnrot2 | Structured version Visualization version GIF version |
Description: Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
Ref | Expression |
---|---|
btwnlng1.p | ⊢ 𝑃 = (Base‘𝐺) |
btwnlng1.i | ⊢ 𝐼 = (Itv‘𝐺) |
btwnlng1.l | ⊢ 𝐿 = (LineG‘𝐺) |
btwnlng1.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
btwnlng1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
btwnlng1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
btwnlng1.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
btwnlng1.d | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
lnrot2.1 | ⊢ (𝜑 → 𝑋 ∈ (𝑌𝐿𝑍)) |
lnrot2.2 | ⊢ (𝜑 → 𝑌 ≠ 𝑍) |
Ref | Expression |
---|---|
lnrot2 | ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnrot2.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝑌𝐿𝑍)) | |
2 | btwnlng1.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
3 | eqid 2738 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
4 | btwnlng1.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | btwnlng1.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | btwnlng1.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
7 | btwnlng1.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
8 | btwnlng1.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
9 | 2, 3, 4, 5, 6, 7, 8 | tgbtwncomb 26754 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (𝑌𝐼𝑍) ↔ 𝑋 ∈ (𝑍𝐼𝑌))) |
10 | biidd 261 | . . . . 5 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ↔ 𝑌 ∈ (𝑋𝐼𝑍))) | |
11 | 2, 3, 4, 5, 6, 8, 7 | tgbtwncomb 26754 | . . . . 5 ⊢ (𝜑 → (𝑍 ∈ (𝑌𝐼𝑋) ↔ 𝑍 ∈ (𝑋𝐼𝑌))) |
12 | 9, 10, 11 | 3orbi123d 1433 | . . . 4 ⊢ (𝜑 → ((𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑌𝐼𝑋)) ↔ (𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌)))) |
13 | 3orrot 1090 | . . . 4 ⊢ ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌))) | |
14 | 12, 13 | bitr4di 288 | . . 3 ⊢ (𝜑 → ((𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑌𝐼𝑋)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
15 | btwnlng1.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
16 | lnrot2.2 | . . . 4 ⊢ (𝜑 → 𝑌 ≠ 𝑍) | |
17 | 2, 15, 4, 5, 6, 8, 16, 7 | tgellng 26818 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝑌𝐿𝑍) ↔ (𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑌𝐼𝑋)))) |
18 | btwnlng1.d | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
19 | 2, 15, 4, 5, 7, 6, 18, 8 | tgellng 26818 | . . 3 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
20 | 14, 17, 19 | 3bitr4d 310 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑌𝐿𝑍) ↔ 𝑍 ∈ (𝑋𝐿𝑌))) |
21 | 1, 20 | mpbid 231 | 1 ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1084 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 distcds 16897 TarskiGcstrkg 26693 Itvcitv 26699 LineGclng 26700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-trkgc 26713 df-trkgb 26714 df-trkgcb 26715 df-trkg 26718 |
This theorem is referenced by: coltr 26912 mideulem2 26999 |
Copyright terms: Public domain | W3C validator |