MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnrot2 Structured version   Visualization version   GIF version

Theorem lnrot2 26337
Description: Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
btwnlng1.p 𝑃 = (Base‘𝐺)
btwnlng1.i 𝐼 = (Itv‘𝐺)
btwnlng1.l 𝐿 = (LineG‘𝐺)
btwnlng1.g (𝜑𝐺 ∈ TarskiG)
btwnlng1.x (𝜑𝑋𝑃)
btwnlng1.y (𝜑𝑌𝑃)
btwnlng1.z (𝜑𝑍𝑃)
btwnlng1.d (𝜑𝑋𝑌)
lnrot2.1 (𝜑𝑋 ∈ (𝑌𝐿𝑍))
lnrot2.2 (𝜑𝑌𝑍)
Assertion
Ref Expression
lnrot2 (𝜑𝑍 ∈ (𝑋𝐿𝑌))

Proof of Theorem lnrot2
StepHypRef Expression
1 lnrot2.1 . 2 (𝜑𝑋 ∈ (𝑌𝐿𝑍))
2 btwnlng1.p . . . . . 6 𝑃 = (Base‘𝐺)
3 eqid 2818 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
4 btwnlng1.i . . . . . 6 𝐼 = (Itv‘𝐺)
5 btwnlng1.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
6 btwnlng1.y . . . . . 6 (𝜑𝑌𝑃)
7 btwnlng1.x . . . . . 6 (𝜑𝑋𝑃)
8 btwnlng1.z . . . . . 6 (𝜑𝑍𝑃)
92, 3, 4, 5, 6, 7, 8tgbtwncomb 26202 . . . . 5 (𝜑 → (𝑋 ∈ (𝑌𝐼𝑍) ↔ 𝑋 ∈ (𝑍𝐼𝑌)))
10 biidd 263 . . . . 5 (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ↔ 𝑌 ∈ (𝑋𝐼𝑍)))
112, 3, 4, 5, 6, 8, 7tgbtwncomb 26202 . . . . 5 (𝜑 → (𝑍 ∈ (𝑌𝐼𝑋) ↔ 𝑍 ∈ (𝑋𝐼𝑌)))
129, 10, 113orbi123d 1426 . . . 4 (𝜑 → ((𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑌𝐼𝑋)) ↔ (𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌))))
13 3orrot 1084 . . . 4 ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌)))
1412, 13syl6bbr 290 . . 3 (𝜑 → ((𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑌𝐼𝑋)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
15 btwnlng1.l . . . 4 𝐿 = (LineG‘𝐺)
16 lnrot2.2 . . . 4 (𝜑𝑌𝑍)
172, 15, 4, 5, 6, 8, 16, 7tgellng 26266 . . 3 (𝜑 → (𝑋 ∈ (𝑌𝐿𝑍) ↔ (𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑌𝐼𝑋))))
18 btwnlng1.d . . . 4 (𝜑𝑋𝑌)
192, 15, 4, 5, 7, 6, 18, 8tgellng 26266 . . 3 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
2014, 17, 193bitr4d 312 . 2 (𝜑 → (𝑋 ∈ (𝑌𝐿𝑍) ↔ 𝑍 ∈ (𝑋𝐿𝑌)))
211, 20mpbid 233 1 (𝜑𝑍 ∈ (𝑋𝐿𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1078   = wceq 1528  wcel 2105  wne 3013  cfv 6348  (class class class)co 7145  Basecbs 16471  distcds 16562  TarskiGcstrkg 26143  Itvcitv 26149  LineGclng 26150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-trkgc 26161  df-trkgb 26162  df-trkgcb 26163  df-trkg 26166
This theorem is referenced by:  coltr  26360  mideulem2  26447
  Copyright terms: Public domain W3C validator