MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnrot2 Structured version   Visualization version   GIF version

Theorem lnrot2 28602
Description: Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
btwnlng1.p 𝑃 = (Base‘𝐺)
btwnlng1.i 𝐼 = (Itv‘𝐺)
btwnlng1.l 𝐿 = (LineG‘𝐺)
btwnlng1.g (𝜑𝐺 ∈ TarskiG)
btwnlng1.x (𝜑𝑋𝑃)
btwnlng1.y (𝜑𝑌𝑃)
btwnlng1.z (𝜑𝑍𝑃)
btwnlng1.d (𝜑𝑋𝑌)
lnrot2.1 (𝜑𝑋 ∈ (𝑌𝐿𝑍))
lnrot2.2 (𝜑𝑌𝑍)
Assertion
Ref Expression
lnrot2 (𝜑𝑍 ∈ (𝑋𝐿𝑌))

Proof of Theorem lnrot2
StepHypRef Expression
1 lnrot2.1 . 2 (𝜑𝑋 ∈ (𝑌𝐿𝑍))
2 btwnlng1.p . . . . . 6 𝑃 = (Base‘𝐺)
3 eqid 2731 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
4 btwnlng1.i . . . . . 6 𝐼 = (Itv‘𝐺)
5 btwnlng1.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
6 btwnlng1.y . . . . . 6 (𝜑𝑌𝑃)
7 btwnlng1.x . . . . . 6 (𝜑𝑋𝑃)
8 btwnlng1.z . . . . . 6 (𝜑𝑍𝑃)
92, 3, 4, 5, 6, 7, 8tgbtwncomb 28467 . . . . 5 (𝜑 → (𝑋 ∈ (𝑌𝐼𝑍) ↔ 𝑋 ∈ (𝑍𝐼𝑌)))
10 biidd 262 . . . . 5 (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ↔ 𝑌 ∈ (𝑋𝐼𝑍)))
112, 3, 4, 5, 6, 8, 7tgbtwncomb 28467 . . . . 5 (𝜑 → (𝑍 ∈ (𝑌𝐼𝑋) ↔ 𝑍 ∈ (𝑋𝐼𝑌)))
129, 10, 113orbi123d 1437 . . . 4 (𝜑 → ((𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑌𝐼𝑋)) ↔ (𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌))))
13 3orrot 1091 . . . 4 ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌)))
1412, 13bitr4di 289 . . 3 (𝜑 → ((𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑌𝐼𝑋)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
15 btwnlng1.l . . . 4 𝐿 = (LineG‘𝐺)
16 lnrot2.2 . . . 4 (𝜑𝑌𝑍)
172, 15, 4, 5, 6, 8, 16, 7tgellng 28531 . . 3 (𝜑 → (𝑋 ∈ (𝑌𝐿𝑍) ↔ (𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑌𝐼𝑋))))
18 btwnlng1.d . . . 4 (𝜑𝑋𝑌)
192, 15, 4, 5, 7, 6, 18, 8tgellng 28531 . . 3 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
2014, 17, 193bitr4d 311 . 2 (𝜑 → (𝑋 ∈ (𝑌𝐿𝑍) ↔ 𝑍 ∈ (𝑋𝐿𝑌)))
211, 20mpbid 232 1 (𝜑𝑍 ∈ (𝑋𝐿𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085   = wceq 1541  wcel 2111  wne 2928  cfv 6481  (class class class)co 7346  Basecbs 17120  distcds 17170  TarskiGcstrkg 28405  Itvcitv 28411  LineGclng 28412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-trkgc 28426  df-trkgb 28427  df-trkgcb 28428  df-trkg 28431
This theorem is referenced by:  coltr  28625  mideulem2  28712
  Copyright terms: Public domain W3C validator