Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lnrot1 | Structured version Visualization version GIF version |
Description: Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
Ref | Expression |
---|---|
btwnlng1.p | ⊢ 𝑃 = (Base‘𝐺) |
btwnlng1.i | ⊢ 𝐼 = (Itv‘𝐺) |
btwnlng1.l | ⊢ 𝐿 = (LineG‘𝐺) |
btwnlng1.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
btwnlng1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
btwnlng1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
btwnlng1.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
btwnlng1.d | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
lnrot1.1 | ⊢ (𝜑 → 𝑌 ∈ (𝑍𝐿𝑋)) |
lnrot1.2 | ⊢ (𝜑 → 𝑍 ≠ 𝑋) |
Ref | Expression |
---|---|
lnrot1 | ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnrot1.1 | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑍𝐿𝑋)) | |
2 | btwnlng1.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
3 | eqid 2758 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
4 | btwnlng1.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | btwnlng1.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | btwnlng1.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
7 | btwnlng1.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
8 | btwnlng1.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
9 | 2, 3, 4, 5, 6, 7, 8 | tgbtwncomb 26387 | . . . . 5 ⊢ (𝜑 → (𝑍 ∈ (𝑌𝐼𝑋) ↔ 𝑍 ∈ (𝑋𝐼𝑌))) |
10 | biidd 265 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (𝑍𝐼𝑌) ↔ 𝑋 ∈ (𝑍𝐼𝑌))) | |
11 | 2, 3, 4, 5, 7, 6, 8 | tgbtwncomb 26387 | . . . . 5 ⊢ (𝜑 → (𝑌 ∈ (𝑍𝐼𝑋) ↔ 𝑌 ∈ (𝑋𝐼𝑍))) |
12 | 9, 10, 11 | 3orbi123d 1432 | . . . 4 ⊢ (𝜑 → ((𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑍𝐼𝑋)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
13 | 3orrot 1089 | . . . . 5 ⊢ ((𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑍𝐼𝑋))) | |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → ((𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑍𝐼𝑋)))) |
15 | btwnlng1.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
16 | btwnlng1.d | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
17 | 2, 15, 4, 5, 8, 6, 16, 7 | tgellng 26451 | . . . 4 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
18 | 12, 14, 17 | 3bitr4rd 315 | . . 3 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌)))) |
19 | lnrot1.2 | . . . 4 ⊢ (𝜑 → 𝑍 ≠ 𝑋) | |
20 | 2, 15, 4, 5, 7, 8, 19, 6 | tgellng 26451 | . . 3 ⊢ (𝜑 → (𝑌 ∈ (𝑍𝐿𝑋) ↔ (𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌)))) |
21 | 18, 20 | bitr4d 285 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ 𝑌 ∈ (𝑍𝐿𝑋))) |
22 | 1, 21 | mpbird 260 | 1 ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∨ w3o 1083 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ‘cfv 6339 (class class class)co 7155 Basecbs 16546 distcds 16637 TarskiGcstrkg 26328 Itvcitv 26334 LineGclng 26335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-iota 6298 df-fun 6341 df-fv 6347 df-ov 7158 df-oprab 7159 df-mpo 7160 df-trkgc 26346 df-trkgb 26347 df-trkgcb 26348 df-trkg 26351 |
This theorem is referenced by: tglineelsb2 26530 tglineneq 26542 coltr3 26546 hlperpnel 26623 opphllem4 26648 lmieu 26682 |
Copyright terms: Public domain | W3C validator |