| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lnrot1 | Structured version Visualization version GIF version | ||
| Description: Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
| Ref | Expression |
|---|---|
| btwnlng1.p | ⊢ 𝑃 = (Base‘𝐺) |
| btwnlng1.i | ⊢ 𝐼 = (Itv‘𝐺) |
| btwnlng1.l | ⊢ 𝐿 = (LineG‘𝐺) |
| btwnlng1.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| btwnlng1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| btwnlng1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| btwnlng1.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| btwnlng1.d | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| lnrot1.1 | ⊢ (𝜑 → 𝑌 ∈ (𝑍𝐿𝑋)) |
| lnrot1.2 | ⊢ (𝜑 → 𝑍 ≠ 𝑋) |
| Ref | Expression |
|---|---|
| lnrot1 | ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnrot1.1 | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑍𝐿𝑋)) | |
| 2 | btwnlng1.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | eqid 2736 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 4 | btwnlng1.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | btwnlng1.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | btwnlng1.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 7 | btwnlng1.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
| 8 | btwnlng1.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | tgbtwncomb 28473 | . . . . 5 ⊢ (𝜑 → (𝑍 ∈ (𝑌𝐼𝑋) ↔ 𝑍 ∈ (𝑋𝐼𝑌))) |
| 10 | biidd 262 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (𝑍𝐼𝑌) ↔ 𝑋 ∈ (𝑍𝐼𝑌))) | |
| 11 | 2, 3, 4, 5, 7, 6, 8 | tgbtwncomb 28473 | . . . . 5 ⊢ (𝜑 → (𝑌 ∈ (𝑍𝐼𝑋) ↔ 𝑌 ∈ (𝑋𝐼𝑍))) |
| 12 | 9, 10, 11 | 3orbi123d 1437 | . . . 4 ⊢ (𝜑 → ((𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑍𝐼𝑋)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
| 13 | 3orrot 1091 | . . . . 5 ⊢ ((𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑍𝐼𝑋))) | |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → ((𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑍𝐼𝑋)))) |
| 15 | btwnlng1.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
| 16 | btwnlng1.d | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
| 17 | 2, 15, 4, 5, 8, 6, 16, 7 | tgellng 28537 | . . . 4 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
| 18 | 12, 14, 17 | 3bitr4rd 312 | . . 3 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌)))) |
| 19 | lnrot1.2 | . . . 4 ⊢ (𝜑 → 𝑍 ≠ 𝑋) | |
| 20 | 2, 15, 4, 5, 7, 8, 19, 6 | tgellng 28537 | . . 3 ⊢ (𝜑 → (𝑌 ∈ (𝑍𝐿𝑋) ↔ (𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌)))) |
| 21 | 18, 20 | bitr4d 282 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ 𝑌 ∈ (𝑍𝐿𝑋))) |
| 22 | 1, 21 | mpbird 257 | 1 ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 distcds 17285 TarskiGcstrkg 28411 Itvcitv 28417 LineGclng 28418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-trkgc 28432 df-trkgb 28433 df-trkgcb 28434 df-trkg 28437 |
| This theorem is referenced by: tglineelsb2 28616 tglineneq 28628 coltr3 28632 hlperpnel 28709 opphllem4 28734 lmieu 28768 |
| Copyright terms: Public domain | W3C validator |