MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnrot1 Structured version   Visualization version   GIF version

Theorem lnrot1 28368
Description: Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
btwnlng1.p 𝑃 = (Baseβ€˜πΊ)
btwnlng1.i 𝐼 = (Itvβ€˜πΊ)
btwnlng1.l 𝐿 = (LineGβ€˜πΊ)
btwnlng1.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
btwnlng1.x (πœ‘ β†’ 𝑋 ∈ 𝑃)
btwnlng1.y (πœ‘ β†’ π‘Œ ∈ 𝑃)
btwnlng1.z (πœ‘ β†’ 𝑍 ∈ 𝑃)
btwnlng1.d (πœ‘ β†’ 𝑋 β‰  π‘Œ)
lnrot1.1 (πœ‘ β†’ π‘Œ ∈ (𝑍𝐿𝑋))
lnrot1.2 (πœ‘ β†’ 𝑍 β‰  𝑋)
Assertion
Ref Expression
lnrot1 (πœ‘ β†’ 𝑍 ∈ (π‘‹πΏπ‘Œ))

Proof of Theorem lnrot1
StepHypRef Expression
1 lnrot1.1 . 2 (πœ‘ β†’ π‘Œ ∈ (𝑍𝐿𝑋))
2 btwnlng1.p . . . . . 6 𝑃 = (Baseβ€˜πΊ)
3 eqid 2724 . . . . . 6 (distβ€˜πΊ) = (distβ€˜πΊ)
4 btwnlng1.i . . . . . 6 𝐼 = (Itvβ€˜πΊ)
5 btwnlng1.g . . . . . 6 (πœ‘ β†’ 𝐺 ∈ TarskiG)
6 btwnlng1.y . . . . . 6 (πœ‘ β†’ π‘Œ ∈ 𝑃)
7 btwnlng1.z . . . . . 6 (πœ‘ β†’ 𝑍 ∈ 𝑃)
8 btwnlng1.x . . . . . 6 (πœ‘ β†’ 𝑋 ∈ 𝑃)
92, 3, 4, 5, 6, 7, 8tgbtwncomb 28234 . . . . 5 (πœ‘ β†’ (𝑍 ∈ (π‘ŒπΌπ‘‹) ↔ 𝑍 ∈ (π‘‹πΌπ‘Œ)))
10 biidd 262 . . . . 5 (πœ‘ β†’ (𝑋 ∈ (π‘πΌπ‘Œ) ↔ 𝑋 ∈ (π‘πΌπ‘Œ)))
112, 3, 4, 5, 7, 6, 8tgbtwncomb 28234 . . . . 5 (πœ‘ β†’ (π‘Œ ∈ (𝑍𝐼𝑋) ↔ π‘Œ ∈ (𝑋𝐼𝑍)))
129, 10, 113orbi123d 1431 . . . 4 (πœ‘ β†’ ((𝑍 ∈ (π‘ŒπΌπ‘‹) ∨ 𝑋 ∈ (π‘πΌπ‘Œ) ∨ π‘Œ ∈ (𝑍𝐼𝑋)) ↔ (𝑍 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑍))))
13 3orrot 1089 . . . . 5 ((π‘Œ ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (π‘ŒπΌπ‘‹) ∨ 𝑋 ∈ (π‘πΌπ‘Œ)) ↔ (𝑍 ∈ (π‘ŒπΌπ‘‹) ∨ 𝑋 ∈ (π‘πΌπ‘Œ) ∨ π‘Œ ∈ (𝑍𝐼𝑋)))
1413a1i 11 . . . 4 (πœ‘ β†’ ((π‘Œ ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (π‘ŒπΌπ‘‹) ∨ 𝑋 ∈ (π‘πΌπ‘Œ)) ↔ (𝑍 ∈ (π‘ŒπΌπ‘‹) ∨ 𝑋 ∈ (π‘πΌπ‘Œ) ∨ π‘Œ ∈ (𝑍𝐼𝑋))))
15 btwnlng1.l . . . . 5 𝐿 = (LineGβ€˜πΊ)
16 btwnlng1.d . . . . 5 (πœ‘ β†’ 𝑋 β‰  π‘Œ)
172, 15, 4, 5, 8, 6, 16, 7tgellng 28298 . . . 4 (πœ‘ β†’ (𝑍 ∈ (π‘‹πΏπ‘Œ) ↔ (𝑍 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑍))))
1812, 14, 173bitr4rd 312 . . 3 (πœ‘ β†’ (𝑍 ∈ (π‘‹πΏπ‘Œ) ↔ (π‘Œ ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (π‘ŒπΌπ‘‹) ∨ 𝑋 ∈ (π‘πΌπ‘Œ))))
19 lnrot1.2 . . . 4 (πœ‘ β†’ 𝑍 β‰  𝑋)
202, 15, 4, 5, 7, 8, 19, 6tgellng 28298 . . 3 (πœ‘ β†’ (π‘Œ ∈ (𝑍𝐿𝑋) ↔ (π‘Œ ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (π‘ŒπΌπ‘‹) ∨ 𝑋 ∈ (π‘πΌπ‘Œ))))
2118, 20bitr4d 282 . 2 (πœ‘ β†’ (𝑍 ∈ (π‘‹πΏπ‘Œ) ↔ π‘Œ ∈ (𝑍𝐿𝑋)))
221, 21mpbird 257 1 (πœ‘ β†’ 𝑍 ∈ (π‘‹πΏπ‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∨ w3o 1083   = wceq 1533   ∈ wcel 2098   β‰  wne 2932  β€˜cfv 6534  (class class class)co 7402  Basecbs 17149  distcds 17211  TarskiGcstrkg 28172  Itvcitv 28178  LineGclng 28179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6486  df-fun 6536  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-trkgc 28193  df-trkgb 28194  df-trkgcb 28195  df-trkg 28198
This theorem is referenced by:  tglineelsb2  28377  tglineneq  28389  coltr3  28393  hlperpnel  28470  opphllem4  28495  lmieu  28529
  Copyright terms: Public domain W3C validator