![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lnrot1 | Structured version Visualization version GIF version |
Description: Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
Ref | Expression |
---|---|
btwnlng1.p | ⊢ 𝑃 = (Base‘𝐺) |
btwnlng1.i | ⊢ 𝐼 = (Itv‘𝐺) |
btwnlng1.l | ⊢ 𝐿 = (LineG‘𝐺) |
btwnlng1.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
btwnlng1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
btwnlng1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
btwnlng1.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
btwnlng1.d | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
lnrot1.1 | ⊢ (𝜑 → 𝑌 ∈ (𝑍𝐿𝑋)) |
lnrot1.2 | ⊢ (𝜑 → 𝑍 ≠ 𝑋) |
Ref | Expression |
---|---|
lnrot1 | ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnrot1.1 | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑍𝐿𝑋)) | |
2 | btwnlng1.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
3 | eqid 2799 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
4 | btwnlng1.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | btwnlng1.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | btwnlng1.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
7 | btwnlng1.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
8 | btwnlng1.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
9 | 2, 3, 4, 5, 6, 7, 8 | tgbtwncomb 25740 | . . . . 5 ⊢ (𝜑 → (𝑍 ∈ (𝑌𝐼𝑋) ↔ 𝑍 ∈ (𝑋𝐼𝑌))) |
10 | biidd 254 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (𝑍𝐼𝑌) ↔ 𝑋 ∈ (𝑍𝐼𝑌))) | |
11 | 2, 3, 4, 5, 7, 6, 8 | tgbtwncomb 25740 | . . . . 5 ⊢ (𝜑 → (𝑌 ∈ (𝑍𝐼𝑋) ↔ 𝑌 ∈ (𝑋𝐼𝑍))) |
12 | 9, 10, 11 | 3orbi123d 1560 | . . . 4 ⊢ (𝜑 → ((𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑍𝐼𝑋)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
13 | 3orrot 1113 | . . . . 5 ⊢ ((𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑍𝐼𝑋))) | |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → ((𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑍𝐼𝑋)))) |
15 | btwnlng1.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
16 | btwnlng1.d | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
17 | 2, 15, 4, 5, 8, 6, 16, 7 | tgellng 25804 | . . . 4 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
18 | 12, 14, 17 | 3bitr4rd 304 | . . 3 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌)))) |
19 | lnrot1.2 | . . . 4 ⊢ (𝜑 → 𝑍 ≠ 𝑋) | |
20 | 2, 15, 4, 5, 7, 8, 19, 6 | tgellng 25804 | . . 3 ⊢ (𝜑 → (𝑌 ∈ (𝑍𝐿𝑋) ↔ (𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌)))) |
21 | 18, 20 | bitr4d 274 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ 𝑌 ∈ (𝑍𝐿𝑋))) |
22 | 1, 21 | mpbird 249 | 1 ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∨ w3o 1107 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ‘cfv 6101 (class class class)co 6878 Basecbs 16184 distcds 16276 TarskiGcstrkg 25681 Itvcitv 25687 LineGclng 25688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-iota 6064 df-fun 6103 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-trkgc 25699 df-trkgb 25700 df-trkgcb 25701 df-trkg 25704 |
This theorem is referenced by: tglineelsb2 25883 tglineneq 25895 coltr3 25899 hlperpnel 25973 opphllem4 25998 lmieu 26032 |
Copyright terms: Public domain | W3C validator |