MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnnz Structured version   Visualization version   GIF version

Theorem elnnz 11839
Description: Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
elnnz (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))

Proof of Theorem elnnz
StepHypRef Expression
1 nnre 11493 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2 orc 862 . . . 4 (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
3 nngt0 11516 . . . 4 (𝑁 ∈ ℕ → 0 < 𝑁)
41, 2, 3jca31 515 . . 3 (𝑁 ∈ ℕ → ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁))
5 idd 24 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → (𝑁 ∈ ℕ → 𝑁 ∈ ℕ))
6 lt0neg2 10995 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (0 < 𝑁 ↔ -𝑁 < 0))
7 renegcl 10797 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → -𝑁 ∈ ℝ)
8 0re 10489 . . . . . . . . . . . . 13 0 ∈ ℝ
9 ltnsym 10585 . . . . . . . . . . . . 13 ((-𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝑁 < 0 → ¬ 0 < -𝑁))
107, 8, 9sylancl 586 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (-𝑁 < 0 → ¬ 0 < -𝑁))
116, 10sylbid 241 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (0 < 𝑁 → ¬ 0 < -𝑁))
1211imp 407 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ 0 < -𝑁)
13 nngt0 11516 . . . . . . . . . 10 (-𝑁 ∈ ℕ → 0 < -𝑁)
1412, 13nsyl 142 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ -𝑁 ∈ ℕ)
15 gt0ne0 10953 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → 𝑁 ≠ 0)
1615neneqd 2989 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ 𝑁 = 0)
17 ioran 978 . . . . . . . . 9 (¬ (-𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (¬ -𝑁 ∈ ℕ ∧ ¬ 𝑁 = 0))
1814, 16, 17sylanbrc 583 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))
1918pm2.21d 121 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ((-𝑁 ∈ ℕ ∨ 𝑁 = 0) → 𝑁 ∈ ℕ))
205, 19jaod 854 . . . . . 6 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → 𝑁 ∈ ℕ))
2120ex 413 . . . . 5 (𝑁 ∈ ℝ → (0 < 𝑁 → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → 𝑁 ∈ ℕ)))
2221com23 86 . . . 4 (𝑁 ∈ ℝ → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (0 < 𝑁𝑁 ∈ ℕ)))
2322imp31 418 . . 3 (((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁) → 𝑁 ∈ ℕ)
244, 23impbii 210 . 2 (𝑁 ∈ ℕ ↔ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁))
25 elz 11831 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
26 3orrot 1085 . . . . . 6 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0))
27 3orass 1083 . . . . . 6 ((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
2826, 27bitri 276 . . . . 5 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
2928anbi2i 622 . . . 4 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))))
3025, 29bitri 276 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))))
3130anbi1i 623 . 2 ((𝑁 ∈ ℤ ∧ 0 < 𝑁) ↔ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁))
3224, 31bitr4i 279 1 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  w3o 1079   = wceq 1522  wcel 2081   class class class wbr 4962  cr 10382  0cc0 10383   < clt 10521  -cneg 10718  cn 11486  cz 11829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-z 11830
This theorem is referenced by:  elnn0z  11842  nnsszOLD  11851  elnnz1  11857  znnsub  11877  nn0ge0div  11900  msqznn  11913  elpq  12224  lbfzo0  12927  elfzo0z  12929  fzofzim  12934  fzo1fzo0n0  12938  elfzodifsumelfzo  12953  elfznelfzo  12992  nnesq  13438  swrdlsw  13865  pfxccatin12lem3  13930  repswswrd  13982  cshwcsh2id  14026  swrd2lsw  14150  2swrd2eqwrdeq  14151  nnabscl  14519  iseralt  14875  sqrt2irrlem  15434  p1modz1  15447  nndivdvds  15449  oddge22np1  15531  evennn2n  15533  nno  15566  nnoddm1d2  15570  ndvdsadd  15594  bitsfzolem  15616  sqgcd  15738  qredeu  15831  prmind2  15858  qgt0numnn  15920  oddprm  15976  pythagtriplem6  15987  pythagtriplem11  15991  pythagtriplem13  15993  pythagtriplem19  15999  pc2dvds  16044  pcadd  16054  prmreclem3  16083  4sqlem11  16120  4sqlem12  16121  prmgaplem7  16222  cshwshashlem2  16259  subgmulg  18047  znidomb  20390  sgmnncl  25406  muinv  25452  mersenne  25485  bposlem6  25547  gausslemma2dlem1a  25623  lgseisenlem1  25633  lgsquadlem1  25638  lgsquadlem2  25639  2sqlem8  25684  2sqnn0  25696  dchrisum0flblem2  25767  clwlkclwwlklem2a2  27458  clwlkclwwlklem2a4  27462  clwlkclwwlklem2a  27463  eucrct2eupth1  27711  eucrct2eupth1OLD  27712  nn0prpwlem  33280  poimirlem7  34449  poimirlem29  34471  mblfinlem2  34480  rtprmirr  38735  dffltz  38787  irrapxlem4  38926  rmspecnonsq  39008  rmynn  39057  jm2.24  39064  jm2.23  39097  jm2.20nn  39098  jm2.27a  39106  jm2.27c  39108  rmydioph  39115  jm3.1lem3  39120  sumnnodd  41472  dvnxpaek  41788  dirkertrigeqlem3  41947  fourierdlem47  42000  fouriersw  42078  etransclem15  42096  etransclem24  42105  etransclem25  42106  etransclem35  42116  etransclem48  42129  zm1nn  43038  iccpartigtl  43085  nnoALTV  43362  nneven  43365  ztprmneprm  43893  blennngt2o2  44153
  Copyright terms: Public domain W3C validator