MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnnz Structured version   Visualization version   GIF version

Theorem elnnz 12478
Description: Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
elnnz (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))

Proof of Theorem elnnz
StepHypRef Expression
1 nnre 12132 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2 orc 867 . . . 4 (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
3 nngt0 12156 . . . 4 (𝑁 ∈ ℕ → 0 < 𝑁)
41, 2, 3jca31 514 . . 3 (𝑁 ∈ ℕ → ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁))
5 idd 24 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → (𝑁 ∈ ℕ → 𝑁 ∈ ℕ))
6 lt0neg2 11624 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (0 < 𝑁 ↔ -𝑁 < 0))
7 renegcl 11424 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → -𝑁 ∈ ℝ)
8 0re 11114 . . . . . . . . . . . . 13 0 ∈ ℝ
9 ltnsym 11211 . . . . . . . . . . . . 13 ((-𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝑁 < 0 → ¬ 0 < -𝑁))
107, 8, 9sylancl 586 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (-𝑁 < 0 → ¬ 0 < -𝑁))
116, 10sylbid 240 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (0 < 𝑁 → ¬ 0 < -𝑁))
1211imp 406 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ 0 < -𝑁)
13 nngt0 12156 . . . . . . . . . 10 (-𝑁 ∈ ℕ → 0 < -𝑁)
1412, 13nsyl 140 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ -𝑁 ∈ ℕ)
15 gt0ne0 11582 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → 𝑁 ≠ 0)
1615neneqd 2933 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ 𝑁 = 0)
17 ioran 985 . . . . . . . . 9 (¬ (-𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (¬ -𝑁 ∈ ℕ ∧ ¬ 𝑁 = 0))
1814, 16, 17sylanbrc 583 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))
1918pm2.21d 121 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ((-𝑁 ∈ ℕ ∨ 𝑁 = 0) → 𝑁 ∈ ℕ))
205, 19jaod 859 . . . . . 6 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → 𝑁 ∈ ℕ))
2120ex 412 . . . . 5 (𝑁 ∈ ℝ → (0 < 𝑁 → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → 𝑁 ∈ ℕ)))
2221com23 86 . . . 4 (𝑁 ∈ ℝ → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (0 < 𝑁𝑁 ∈ ℕ)))
2322imp31 417 . . 3 (((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁) → 𝑁 ∈ ℕ)
244, 23impbii 209 . 2 (𝑁 ∈ ℕ ↔ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁))
25 elz 12470 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
26 3orrot 1091 . . . . . 6 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0))
27 3orass 1089 . . . . . 6 ((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
2826, 27bitri 275 . . . . 5 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
2928anbi2i 623 . . . 4 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))))
3025, 29bitri 275 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))))
3130anbi1i 624 . 2 ((𝑁 ∈ ℤ ∧ 0 < 𝑁) ↔ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁))
3224, 31bitr4i 278 1 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1541  wcel 2111   class class class wbr 5091  cr 11005  0cc0 11006   < clt 11146  -cneg 11345  cn 12125  cz 12468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-z 12469
This theorem is referenced by:  elnn0z  12481  elnnz1  12498  znnsub  12518  nn0ge0div  12542  msqznn  12555  elpq  12873  lbfzo0  13599  elfzo0z  13601  fzofzim  13609  fzo1fzo0n0  13615  elfzodifsumelfzo  13631  elfznelfzo  13673  nnesq  14134  swrdlsw  14575  pfxccatin12lem3  14639  repswswrd  14691  cshwcsh2id  14735  swrd2lsw  14859  2swrd2eqwrdeq  14860  nnabscl  15233  iseralt  15592  sqrt2irrlem  16157  p1modz1  16170  nndivdvds  16172  oddge22np1  16260  evennn2n  16262  nno  16293  nnoddm1d2  16297  ndvdsadd  16321  bitsfzolem  16345  sqgcd  16473  qredeu  16569  prmind2  16596  qgt0numnn  16662  oddprm  16722  pythagtriplem6  16733  pythagtriplem11  16737  pythagtriplem13  16739  pythagtriplem19  16745  pc2dvds  16791  pcadd  16801  prmreclem3  16830  4sqlem11  16867  4sqlem12  16868  prmgaplem7  16969  cshwshashlem2  17008  subgmulg  19053  znidomb  21499  rtprmirr  26698  sgmnncl  27085  muinv  27131  mersenne  27166  bposlem6  27228  gausslemma2dlem1a  27304  lgseisenlem1  27314  lgsquadlem1  27319  lgsquadlem2  27320  2sqlem8  27365  2sqnn0  27377  dchrisum0flblem2  27448  clwlkclwwlklem2a2  29971  clwlkclwwlklem2a4  29975  clwlkclwwlklem2a  29976  eucrct2eupth1  30222  nn0prpwlem  36362  poimirlem7  37673  poimirlem29  37695  mblfinlem2  37704  lcmineqlem15  42082  lcmineqlem23  42090  aks4d1lem1  42101  aks4d1p1p2  42109  aks4d1p1  42115  aks4d1p2  42116  aks4d1p3  42117  aks4d1p5  42119  aks4d1p6  42120  aks4d1p7d1  42121  aks4d1p8  42126  posbezout  42139  aks6d1c1  42155  hashscontpow1  42160  aks6d1c4  42163  aks6d1c2  42169  aks6d1c5lem2  42177  2ap1caineq  42184  aks6d1c7lem1  42219  aks6d1c7lem2  42220  aks6d1c7  42223  aks5lem6  42231  aks5lem8  42240  posqsqznn  42375  fimgmcyc  42573  dffltz  42673  irrapxlem4  42864  rmspecnonsq  42946  rmynn  42995  jm2.24  43002  jm2.23  43035  jm2.20nn  43036  jm2.27a  43044  jm2.27c  43046  rmydioph  43053  jm3.1lem3  43058  sumnnodd  45676  dvnxpaek  45986  dirkertrigeqlem3  46144  fourierdlem47  46197  fouriersw  46275  etransclem15  46293  etransclem24  46302  etransclem25  46303  etransclem35  46313  etransclem48  46326  zm1nn  47339  modm1p1ne  47407  iccpartigtl  47460  nnoALTV  47732  nneven  47735  ztprmneprm  48384  blennngt2o2  48630
  Copyright terms: Public domain W3C validator