![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elnnz | Structured version Visualization version GIF version |
Description: Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
elnnz | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 12161 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
2 | orc 866 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) | |
3 | nngt0 12185 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
4 | 1, 2, 3 | jca31 516 | . . 3 ⊢ (𝑁 ∈ ℕ → ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁)) |
5 | idd 24 | . . . . . . 7 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)) | |
6 | lt0neg2 11663 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℝ → (0 < 𝑁 ↔ -𝑁 < 0)) | |
7 | renegcl 11465 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℝ → -𝑁 ∈ ℝ) | |
8 | 0re 11158 | . . . . . . . . . . . . 13 ⊢ 0 ∈ ℝ | |
9 | ltnsym 11254 | . . . . . . . . . . . . 13 ⊢ ((-𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝑁 < 0 → ¬ 0 < -𝑁)) | |
10 | 7, 8, 9 | sylancl 587 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℝ → (-𝑁 < 0 → ¬ 0 < -𝑁)) |
11 | 6, 10 | sylbid 239 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℝ → (0 < 𝑁 → ¬ 0 < -𝑁)) |
12 | 11 | imp 408 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ 0 < -𝑁) |
13 | nngt0 12185 | . . . . . . . . . 10 ⊢ (-𝑁 ∈ ℕ → 0 < -𝑁) | |
14 | 12, 13 | nsyl 140 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ -𝑁 ∈ ℕ) |
15 | gt0ne0 11621 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → 𝑁 ≠ 0) | |
16 | 15 | neneqd 2949 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ 𝑁 = 0) |
17 | ioran 983 | . . . . . . . . 9 ⊢ (¬ (-𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (¬ -𝑁 ∈ ℕ ∧ ¬ 𝑁 = 0)) | |
18 | 14, 16, 17 | sylanbrc 584 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
19 | 18 | pm2.21d 121 | . . . . . . 7 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ((-𝑁 ∈ ℕ ∨ 𝑁 = 0) → 𝑁 ∈ ℕ)) |
20 | 5, 19 | jaod 858 | . . . . . 6 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → 𝑁 ∈ ℕ)) |
21 | 20 | ex 414 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (0 < 𝑁 → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → 𝑁 ∈ ℕ))) |
22 | 21 | com23 86 | . . . 4 ⊢ (𝑁 ∈ ℝ → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (0 < 𝑁 → 𝑁 ∈ ℕ))) |
23 | 22 | imp31 419 | . . 3 ⊢ (((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁) → 𝑁 ∈ ℕ) |
24 | 4, 23 | impbii 208 | . 2 ⊢ (𝑁 ∈ ℕ ↔ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁)) |
25 | elz 12502 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
26 | 3orrot 1093 | . . . . . 6 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
27 | 3orass 1091 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) | |
28 | 26, 27 | bitri 275 | . . . . 5 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) |
29 | 28 | anbi2i 624 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))) |
30 | 25, 29 | bitri 275 | . . 3 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))) |
31 | 30 | anbi1i 625 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 0 < 𝑁) ↔ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁)) |
32 | 24, 31 | bitr4i 278 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 ∨ w3o 1087 = wceq 1542 ∈ wcel 2107 class class class wbr 5106 ℝcr 11051 0cc0 11052 < clt 11190 -cneg 11387 ℕcn 12154 ℤcz 12500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-nn 12155 df-z 12501 |
This theorem is referenced by: elnn0z 12513 elnnz1 12530 znnsub 12550 nn0ge0div 12573 msqznn 12586 elpq 12901 lbfzo0 13613 elfzo0z 13615 fzofzim 13620 fzo1fzo0n0 13624 elfzodifsumelfzo 13639 elfznelfzo 13678 nnesq 14131 swrdlsw 14556 pfxccatin12lem3 14621 repswswrd 14673 cshwcsh2id 14718 swrd2lsw 14842 2swrd2eqwrdeq 14843 nnabscl 15211 iseralt 15570 sqrt2irrlem 16131 p1modz1 16144 nndivdvds 16146 oddge22np1 16232 evennn2n 16234 nno 16265 nnoddm1d2 16269 ndvdsadd 16293 bitsfzolem 16315 sqgcd 16442 qredeu 16535 prmind2 16562 qgt0numnn 16627 oddprm 16683 pythagtriplem6 16694 pythagtriplem11 16698 pythagtriplem13 16700 pythagtriplem19 16706 pc2dvds 16752 pcadd 16762 prmreclem3 16791 4sqlem11 16828 4sqlem12 16829 prmgaplem7 16930 cshwshashlem2 16970 subgmulg 18943 znidomb 20971 sgmnncl 26499 muinv 26545 mersenne 26578 bposlem6 26640 gausslemma2dlem1a 26716 lgseisenlem1 26726 lgsquadlem1 26731 lgsquadlem2 26732 2sqlem8 26777 2sqnn0 26789 dchrisum0flblem2 26860 clwlkclwwlklem2a2 28940 clwlkclwwlklem2a4 28944 clwlkclwwlklem2a 28945 eucrct2eupth1 29191 nn0prpwlem 34797 poimirlem7 36088 poimirlem29 36110 mblfinlem2 36119 lcmineqlem15 40503 lcmineqlem23 40511 aks4d1lem1 40522 aks4d1p1p2 40530 aks4d1p1 40536 aks4d1p2 40537 aks4d1p3 40538 aks4d1p5 40540 aks4d1p6 40541 aks4d1p7d1 40542 aks4d1p8 40547 2ap1caineq 40556 posqsqznn 40832 rtprmirr 40836 dffltz 40975 irrapxlem4 41151 rmspecnonsq 41233 rmynn 41283 jm2.24 41290 jm2.23 41323 jm2.20nn 41324 jm2.27a 41332 jm2.27c 41334 rmydioph 41341 jm3.1lem3 41346 sumnnodd 43878 dvnxpaek 44190 dirkertrigeqlem3 44348 fourierdlem47 44401 fouriersw 44479 etransclem15 44497 etransclem24 44506 etransclem25 44507 etransclem35 44517 etransclem48 44530 zm1nn 45541 iccpartigtl 45622 nnoALTV 45894 nneven 45897 ztprmneprm 46430 blennngt2o2 46685 |
Copyright terms: Public domain | W3C validator |