MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnnz Structured version   Visualization version   GIF version

Theorem elnnz 12546
Description: Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
elnnz (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))

Proof of Theorem elnnz
StepHypRef Expression
1 nnre 12200 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2 orc 867 . . . 4 (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
3 nngt0 12224 . . . 4 (𝑁 ∈ ℕ → 0 < 𝑁)
41, 2, 3jca31 514 . . 3 (𝑁 ∈ ℕ → ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁))
5 idd 24 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → (𝑁 ∈ ℕ → 𝑁 ∈ ℕ))
6 lt0neg2 11692 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (0 < 𝑁 ↔ -𝑁 < 0))
7 renegcl 11492 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → -𝑁 ∈ ℝ)
8 0re 11183 . . . . . . . . . . . . 13 0 ∈ ℝ
9 ltnsym 11279 . . . . . . . . . . . . 13 ((-𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝑁 < 0 → ¬ 0 < -𝑁))
107, 8, 9sylancl 586 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (-𝑁 < 0 → ¬ 0 < -𝑁))
116, 10sylbid 240 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (0 < 𝑁 → ¬ 0 < -𝑁))
1211imp 406 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ 0 < -𝑁)
13 nngt0 12224 . . . . . . . . . 10 (-𝑁 ∈ ℕ → 0 < -𝑁)
1412, 13nsyl 140 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ -𝑁 ∈ ℕ)
15 gt0ne0 11650 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → 𝑁 ≠ 0)
1615neneqd 2931 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ 𝑁 = 0)
17 ioran 985 . . . . . . . . 9 (¬ (-𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (¬ -𝑁 ∈ ℕ ∧ ¬ 𝑁 = 0))
1814, 16, 17sylanbrc 583 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))
1918pm2.21d 121 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ((-𝑁 ∈ ℕ ∨ 𝑁 = 0) → 𝑁 ∈ ℕ))
205, 19jaod 859 . . . . . 6 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → 𝑁 ∈ ℕ))
2120ex 412 . . . . 5 (𝑁 ∈ ℝ → (0 < 𝑁 → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → 𝑁 ∈ ℕ)))
2221com23 86 . . . 4 (𝑁 ∈ ℝ → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (0 < 𝑁𝑁 ∈ ℕ)))
2322imp31 417 . . 3 (((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁) → 𝑁 ∈ ℕ)
244, 23impbii 209 . 2 (𝑁 ∈ ℕ ↔ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁))
25 elz 12538 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
26 3orrot 1091 . . . . . 6 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0))
27 3orass 1089 . . . . . 6 ((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
2826, 27bitri 275 . . . . 5 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
2928anbi2i 623 . . . 4 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))))
3025, 29bitri 275 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))))
3130anbi1i 624 . 2 ((𝑁 ∈ ℤ ∧ 0 < 𝑁) ↔ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁))
3224, 31bitr4i 278 1 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109   class class class wbr 5110  cr 11074  0cc0 11075   < clt 11215  -cneg 11413  cn 12193  cz 12536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-z 12537
This theorem is referenced by:  elnn0z  12549  elnnz1  12566  znnsub  12586  nn0ge0div  12610  msqznn  12623  elpq  12941  lbfzo0  13667  elfzo0z  13669  fzofzim  13677  fzo1fzo0n0  13683  elfzodifsumelfzo  13699  elfznelfzo  13740  nnesq  14199  swrdlsw  14639  pfxccatin12lem3  14704  repswswrd  14756  cshwcsh2id  14801  swrd2lsw  14925  2swrd2eqwrdeq  14926  nnabscl  15299  iseralt  15658  sqrt2irrlem  16223  p1modz1  16236  nndivdvds  16238  oddge22np1  16326  evennn2n  16328  nno  16359  nnoddm1d2  16363  ndvdsadd  16387  bitsfzolem  16411  sqgcd  16539  qredeu  16635  prmind2  16662  qgt0numnn  16728  oddprm  16788  pythagtriplem6  16799  pythagtriplem11  16803  pythagtriplem13  16805  pythagtriplem19  16811  pc2dvds  16857  pcadd  16867  prmreclem3  16896  4sqlem11  16933  4sqlem12  16934  prmgaplem7  17035  cshwshashlem2  17074  subgmulg  19079  znidomb  21478  rtprmirr  26677  sgmnncl  27064  muinv  27110  mersenne  27145  bposlem6  27207  gausslemma2dlem1a  27283  lgseisenlem1  27293  lgsquadlem1  27298  lgsquadlem2  27299  2sqlem8  27344  2sqnn0  27356  dchrisum0flblem2  27427  clwlkclwwlklem2a2  29929  clwlkclwwlklem2a4  29933  clwlkclwwlklem2a  29934  eucrct2eupth1  30180  nn0prpwlem  36317  poimirlem7  37628  poimirlem29  37650  mblfinlem2  37659  lcmineqlem15  42038  lcmineqlem23  42046  aks4d1lem1  42057  aks4d1p1p2  42065  aks4d1p1  42071  aks4d1p2  42072  aks4d1p3  42073  aks4d1p5  42075  aks4d1p6  42076  aks4d1p7d1  42077  aks4d1p8  42082  posbezout  42095  aks6d1c1  42111  hashscontpow1  42116  aks6d1c4  42119  aks6d1c2  42125  aks6d1c5lem2  42133  2ap1caineq  42140  aks6d1c7lem1  42175  aks6d1c7lem2  42176  aks6d1c7  42179  aks5lem6  42187  aks5lem8  42196  posqsqznn  42331  fimgmcyc  42529  dffltz  42629  irrapxlem4  42820  rmspecnonsq  42902  rmynn  42952  jm2.24  42959  jm2.23  42992  jm2.20nn  42993  jm2.27a  43001  jm2.27c  43003  rmydioph  43010  jm3.1lem3  43015  sumnnodd  45635  dvnxpaek  45947  dirkertrigeqlem3  46105  fourierdlem47  46158  fouriersw  46236  etransclem15  46254  etransclem24  46263  etransclem25  46264  etransclem35  46274  etransclem48  46287  zm1nn  47307  modm1p1ne  47375  iccpartigtl  47428  nnoALTV  47700  nneven  47703  ztprmneprm  48339  blennngt2o2  48585
  Copyright terms: Public domain W3C validator