|   | Mathbox for Scott Fenton | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > colinearperm3 | Structured version Visualization version GIF version | ||
| Description: Permutation law for colinearity. Part of theorem 4.11 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 5-Oct-2013.) | 
| Ref | Expression | 
|---|---|
| colinearperm3 | ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ 𝐵 Colinear 〈𝐶, 𝐴〉)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3orrot 1092 | . . 3 ⊢ ((𝐴 Btwn 〈𝐵, 𝐶〉 ∨ 𝐵 Btwn 〈𝐶, 𝐴〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉) ↔ (𝐵 Btwn 〈𝐶, 𝐴〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉 ∨ 𝐴 Btwn 〈𝐵, 𝐶〉)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn 〈𝐵, 𝐶〉 ∨ 𝐵 Btwn 〈𝐶, 𝐴〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉) ↔ (𝐵 Btwn 〈𝐶, 𝐴〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉 ∨ 𝐴 Btwn 〈𝐵, 𝐶〉))) | 
| 3 | brcolinear 36060 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ (𝐴 Btwn 〈𝐵, 𝐶〉 ∨ 𝐵 Btwn 〈𝐶, 𝐴〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉))) | |
| 4 | 3anrot 1100 | . . 3 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ↔ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) | |
| 5 | brcolinear 36060 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → (𝐵 Colinear 〈𝐶, 𝐴〉 ↔ (𝐵 Btwn 〈𝐶, 𝐴〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉 ∨ 𝐴 Btwn 〈𝐵, 𝐶〉))) | |
| 6 | 4, 5 | sylan2b 594 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Colinear 〈𝐶, 𝐴〉 ↔ (𝐵 Btwn 〈𝐶, 𝐴〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉 ∨ 𝐴 Btwn 〈𝐵, 𝐶〉))) | 
| 7 | 2, 3, 6 | 3bitr4d 311 | 1 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ 𝐵 Colinear 〈𝐶, 𝐴〉)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ w3o 1086 ∧ w3a 1087 ∈ wcel 2108 〈cop 4632 class class class wbr 5143 ‘cfv 6561 ℕcn 12266 𝔼cee 28903 Btwn cbtwn 28904 Colinear ccolin 36038 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-cnv 5693 df-iota 6514 df-fv 6569 df-oprab 7435 df-colinear 36040 | 
| This theorem is referenced by: colinearperm2 36065 colinearperm4 36066 btwncolinear4 36073 | 
| Copyright terms: Public domain | W3C validator |