MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ab2rexex Structured version   Visualization version   GIF version

Theorem ab2rexex 7913
Description: Existence of a class abstraction of existentially restricted sets. Variables 𝑥 and 𝑦 are normally free-variable parameters in the class expression substituted for 𝐶, which can be thought of as 𝐶(𝑥, 𝑦). See comments for abrexex 7896. (Contributed by NM, 20-Sep-2011.)
Hypotheses
Ref Expression
ab2rexex.1 𝐴 ∈ V
ab2rexex.2 𝐵 ∈ V
Assertion
Ref Expression
ab2rexex {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶} ∈ V
Distinct variable groups:   𝑥,𝑧,𝐴   𝑦,𝑧,𝐵   𝑧,𝐶
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem ab2rexex
StepHypRef Expression
1 ab2rexex.1 . 2 𝐴 ∈ V
2 ab2rexex.2 . . 3 𝐵 ∈ V
32abrexex 7896 . 2 {𝑧 ∣ ∃𝑦𝐵 𝑧 = 𝐶} ∈ V
41, 3abrexex2 7903 1 {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶} ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  {cab 2714  wrex 3074  Vcvv 3446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ral 3066  df-rex 3075  df-v 3448  df-in 3918  df-ss 3928  df-uni 4867  df-iun 4957
This theorem is referenced by:  plyval  25557  pstmfval  32480  pstmxmet  32481
  Copyright terms: Public domain W3C validator