![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ab2rexex | Structured version Visualization version GIF version |
Description: Existence of a class abstraction of existentially restricted sets. Variables 𝑥 and 𝑦 are normally free-variable parameters in the class expression substituted for 𝐶, which can be thought of as 𝐶(𝑥, 𝑦). See comments for abrexex 7986. (Contributed by NM, 20-Sep-2011.) |
Ref | Expression |
---|---|
ab2rexex.1 | ⊢ 𝐴 ∈ V |
ab2rexex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
ab2rexex | ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ab2rexex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | ab2rexex.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | abrexex 7986 | . 2 ⊢ {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V |
4 | 1, 3 | abrexex2 7993 | 1 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 {cab 2712 ∃wrex 3068 Vcvv 3478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-v 3480 df-ss 3980 df-uni 4913 df-iun 4998 |
This theorem is referenced by: plyval 26247 precsexlem4 28249 precsexlem5 28250 onmulscl 28302 zs12ex 28437 pstmfval 33857 pstmxmet 33858 |
Copyright terms: Public domain | W3C validator |