![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ab2rexex | Structured version Visualization version GIF version |
Description: Existence of a class abstraction of existentially restricted sets. Variables 𝑥 and 𝑦 are normally free-variable parameters in the class expression substituted for 𝐶, which can be thought of as 𝐶(𝑥, 𝑦). See comments for abrexex 8003. (Contributed by NM, 20-Sep-2011.) |
Ref | Expression |
---|---|
ab2rexex.1 | ⊢ 𝐴 ∈ V |
ab2rexex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
ab2rexex | ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ab2rexex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | ab2rexex.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | abrexex 8003 | . 2 ⊢ {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V |
4 | 1, 3 | abrexex2 8010 | 1 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-v 3490 df-ss 3993 df-uni 4932 df-iun 5017 |
This theorem is referenced by: plyval 26252 precsexlem4 28252 precsexlem5 28253 onmulscl 28305 zs12ex 28440 pstmfval 33842 pstmxmet 33843 |
Copyright terms: Public domain | W3C validator |