| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ab2rexex | Structured version Visualization version GIF version | ||
| Description: Existence of a class abstraction of existentially restricted sets. Variables 𝑥 and 𝑦 are normally free-variable parameters in the class expression substituted for 𝐶, which can be thought of as 𝐶(𝑥, 𝑦). See comments for abrexex 7900. (Contributed by NM, 20-Sep-2011.) |
| Ref | Expression |
|---|---|
| ab2rexex.1 | ⊢ 𝐴 ∈ V |
| ab2rexex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| ab2rexex | ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ab2rexex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ab2rexex.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | abrexex 7900 | . 2 ⊢ {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V |
| 4 | 1, 3 | abrexex2 7907 | 1 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 {cab 2711 ∃wrex 3057 Vcvv 3437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-v 3439 df-ss 3915 df-uni 4859 df-iun 4943 |
| This theorem is referenced by: plyval 26126 precsexlem4 28149 precsexlem5 28150 onmulscl 28212 zs12ex 28385 pstmfval 33930 pstmxmet 33931 |
| Copyright terms: Public domain | W3C validator |