| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ab2rexex | Structured version Visualization version GIF version | ||
| Description: Existence of a class abstraction of existentially restricted sets. Variables 𝑥 and 𝑦 are normally free-variable parameters in the class expression substituted for 𝐶, which can be thought of as 𝐶(𝑥, 𝑦). See comments for abrexex 7961. (Contributed by NM, 20-Sep-2011.) |
| Ref | Expression |
|---|---|
| ab2rexex.1 | ⊢ 𝐴 ∈ V |
| ab2rexex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| ab2rexex | ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ab2rexex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ab2rexex.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | abrexex 7961 | . 2 ⊢ {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V |
| 4 | 1, 3 | abrexex2 7968 | 1 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 {cab 2713 ∃wrex 3060 Vcvv 3459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-v 3461 df-ss 3943 df-uni 4884 df-iun 4969 |
| This theorem is referenced by: plyval 26150 precsexlem4 28164 precsexlem5 28165 onmulscl 28227 zs12ex 28390 pstmfval 33927 pstmxmet 33928 |
| Copyright terms: Public domain | W3C validator |