MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ab2rexex Structured version   Visualization version   GIF version

Theorem ab2rexex 7917
Description: Existence of a class abstraction of existentially restricted sets. Variables 𝑥 and 𝑦 are normally free-variable parameters in the class expression substituted for 𝐶, which can be thought of as 𝐶(𝑥, 𝑦). See comments for abrexex 7900. (Contributed by NM, 20-Sep-2011.)
Hypotheses
Ref Expression
ab2rexex.1 𝐴 ∈ V
ab2rexex.2 𝐵 ∈ V
Assertion
Ref Expression
ab2rexex {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶} ∈ V
Distinct variable groups:   𝑥,𝑧,𝐴   𝑦,𝑧,𝐵   𝑧,𝐶
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem ab2rexex
StepHypRef Expression
1 ab2rexex.1 . 2 𝐴 ∈ V
2 ab2rexex.2 . . 3 𝐵 ∈ V
32abrexex 7900 . 2 {𝑧 ∣ ∃𝑦𝐵 𝑧 = 𝐶} ∈ V
41, 3abrexex2 7907 1 {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶} ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  {cab 2711  wrex 3057  Vcvv 3437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-v 3439  df-ss 3915  df-uni 4859  df-iun 4943
This theorem is referenced by:  plyval  26126  precsexlem4  28149  precsexlem5  28150  onmulscl  28212  zs12ex  28385  pstmfval  33930  pstmxmet  33931
  Copyright terms: Public domain W3C validator