| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ab2rexex2 | Structured version Visualization version GIF version | ||
| Description: Existence of an existentially restricted class abstraction. 𝜑 normally has free-variable parameters 𝑥, 𝑦, and 𝑧. Compare abrexex2 7951. (Contributed by NM, 20-Sep-2011.) |
| Ref | Expression |
|---|---|
| ab2rexex2.1 | ⊢ 𝐴 ∈ V |
| ab2rexex2.2 | ⊢ 𝐵 ∈ V |
| ab2rexex2.3 | ⊢ {𝑧 ∣ 𝜑} ∈ V |
| Ref | Expression |
|---|---|
| ab2rexex2 | ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ab2rexex2.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ab2rexex2.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | ab2rexex2.3 | . . 3 ⊢ {𝑧 ∣ 𝜑} ∈ V | |
| 4 | 2, 3 | abrexex2 7951 | . 2 ⊢ {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝜑} ∈ V |
| 5 | 1, 4 | abrexex2 7951 | 1 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {cab 2708 ∃wrex 3054 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-v 3452 df-ss 3934 df-uni 4875 df-iun 4960 |
| This theorem is referenced by: brdom7disj 10491 brdom6disj 10492 lineset 39739 |
| Copyright terms: Public domain | W3C validator |