![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ab2rexex2 | Structured version Visualization version GIF version |
Description: Existence of an existentially restricted class abstraction. 𝜑 normally has free-variable parameters 𝑥, 𝑦, and 𝑧. Compare abrexex2 7955. (Contributed by NM, 20-Sep-2011.) |
Ref | Expression |
---|---|
ab2rexex2.1 | ⊢ 𝐴 ∈ V |
ab2rexex2.2 | ⊢ 𝐵 ∈ V |
ab2rexex2.3 | ⊢ {𝑧 ∣ 𝜑} ∈ V |
Ref | Expression |
---|---|
ab2rexex2 | ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ab2rexex2.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | ab2rexex2.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | ab2rexex2.3 | . . 3 ⊢ {𝑧 ∣ 𝜑} ∈ V | |
4 | 2, 3 | abrexex2 7955 | . 2 ⊢ {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝜑} ∈ V |
5 | 1, 4 | abrexex2 7955 | 1 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 {cab 2709 ∃wrex 3070 Vcvv 3474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-v 3476 df-in 3955 df-ss 3965 df-uni 4909 df-iun 4999 |
This theorem is referenced by: brdom7disj 10525 brdom6disj 10526 lineset 38604 |
Copyright terms: Public domain | W3C validator |