MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ab2rexex2 Structured version   Visualization version   GIF version

Theorem ab2rexex2 8004
Description: Existence of an existentially restricted class abstraction. 𝜑 normally has free-variable parameters 𝑥, 𝑦, and 𝑧. Compare abrexex2 7993. (Contributed by NM, 20-Sep-2011.)
Hypotheses
Ref Expression
ab2rexex2.1 𝐴 ∈ V
ab2rexex2.2 𝐵 ∈ V
ab2rexex2.3 {𝑧𝜑} ∈ V
Assertion
Ref Expression
ab2rexex2 {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑} ∈ V
Distinct variable groups:   𝑥,𝑧,𝐴   𝑦,𝑧,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑦)   𝐵(𝑥)

Proof of Theorem ab2rexex2
StepHypRef Expression
1 ab2rexex2.1 . 2 𝐴 ∈ V
2 ab2rexex2.2 . . 3 𝐵 ∈ V
3 ab2rexex2.3 . . 3 {𝑧𝜑} ∈ V
42, 3abrexex2 7993 . 2 {𝑧 ∣ ∃𝑦𝐵 𝜑} ∈ V
51, 4abrexex2 7993 1 {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  {cab 2712  wrex 3068  Vcvv 3478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-v 3480  df-ss 3980  df-uni 4913  df-iun 4998
This theorem is referenced by:  brdom7disj  10569  brdom6disj  10570  lineset  39721
  Copyright terms: Public domain W3C validator