MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ab2rexex2 Structured version   Visualization version   GIF version

Theorem ab2rexex2 8021
Description: Existence of an existentially restricted class abstraction. 𝜑 normally has free-variable parameters 𝑥, 𝑦, and 𝑧. Compare abrexex2 8010. (Contributed by NM, 20-Sep-2011.)
Hypotheses
Ref Expression
ab2rexex2.1 𝐴 ∈ V
ab2rexex2.2 𝐵 ∈ V
ab2rexex2.3 {𝑧𝜑} ∈ V
Assertion
Ref Expression
ab2rexex2 {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑} ∈ V
Distinct variable groups:   𝑥,𝑧,𝐴   𝑦,𝑧,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑦)   𝐵(𝑥)

Proof of Theorem ab2rexex2
StepHypRef Expression
1 ab2rexex2.1 . 2 𝐴 ∈ V
2 ab2rexex2.2 . . 3 𝐵 ∈ V
3 ab2rexex2.3 . . 3 {𝑧𝜑} ∈ V
42, 3abrexex2 8010 . 2 {𝑧 ∣ ∃𝑦𝐵 𝜑} ∈ V
51, 4abrexex2 8010 1 {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  {cab 2717  wrex 3076  Vcvv 3488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-v 3490  df-ss 3993  df-uni 4932  df-iun 5017
This theorem is referenced by:  brdom7disj  10600  brdom6disj  10601  lineset  39695
  Copyright terms: Public domain W3C validator