Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pstmfval Structured version   Visualization version   GIF version

Theorem pstmfval 31024
 Description: Function value of the metric induced by a pseudometric 𝐷 (Contributed by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
pstmval.1 = (~Met𝐷)
Assertion
Ref Expression
pstmfval ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ([𝐴] (pstoMet‘𝐷)[𝐵] ) = (𝐴𝐷𝐵))

Proof of Theorem pstmfval
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pstmval.1 . . . . 5 = (~Met𝐷)
21pstmval 31023 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) = (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)}))
323ad2ant1 1127 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (pstoMet‘𝐷) = (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)}))
43oveqd 7168 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ([𝐴] (pstoMet‘𝐷)[𝐵] ) = ([𝐴] (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)})[𝐵] ))
51fvexi 6680 . . . . 5 ∈ V
65ecelqsi 8346 . . . 4 (𝐴𝑋 → [𝐴] ∈ (𝑋 / ))
763ad2ant2 1128 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → [𝐴] ∈ (𝑋 / ))
85ecelqsi 8346 . . . 4 (𝐵𝑋 → [𝐵] ∈ (𝑋 / ))
983ad2ant3 1129 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → [𝐵] ∈ (𝑋 / ))
10 rexeq 3411 . . . . . 6 (𝑥 = [𝐴] → (∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏) ↔ ∃𝑎 ∈ [ 𝐴] 𝑏𝑦 𝑧 = (𝑎𝐷𝑏)))
1110abbidv 2889 . . . . 5 (𝑥 = [𝐴] → {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)} = {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏𝑦 𝑧 = (𝑎𝐷𝑏)})
1211unieqd 4846 . . . 4 (𝑥 = [𝐴] {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)} = {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏𝑦 𝑧 = (𝑎𝐷𝑏)})
13 rexeq 3411 . . . . . . 7 (𝑦 = [𝐵] → (∃𝑏𝑦 𝑧 = (𝑎𝐷𝑏) ↔ ∃𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)))
1413rexbidv 3301 . . . . . 6 (𝑦 = [𝐵] → (∃𝑎 ∈ [ 𝐴] 𝑏𝑦 𝑧 = (𝑎𝐷𝑏) ↔ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)))
1514abbidv 2889 . . . . 5 (𝑦 = [𝐵] → {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏𝑦 𝑧 = (𝑎𝐷𝑏)} = {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)})
1615unieqd 4846 . . . 4 (𝑦 = [𝐵] {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏𝑦 𝑧 = (𝑎𝐷𝑏)} = {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)})
17 eqid 2825 . . . 4 (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)}) = (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)})
18 ecexg 8286 . . . . . . 7 ( ∈ V → [𝐴] ∈ V)
195, 18ax-mp 5 . . . . . 6 [𝐴] ∈ V
20 ecexg 8286 . . . . . . 7 ( ∈ V → [𝐵] ∈ V)
215, 20ax-mp 5 . . . . . 6 [𝐵] ∈ V
2219, 21ab2rexex 7674 . . . . 5 {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)} ∈ V
2322uniex 7458 . . . 4 {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)} ∈ V
2412, 16, 17, 23ovmpo 7303 . . 3 (([𝐴] ∈ (𝑋 / ) ∧ [𝐵] ∈ (𝑋 / )) → ([𝐴] (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)})[𝐵] ) = {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)})
257, 9, 24syl2anc 584 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ([𝐴] (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)})[𝐵] ) = {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)})
26 simpr3 1190 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → 𝑧 = (𝑒𝐷𝑓))
27 simpl1 1185 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → 𝐷 ∈ (PsMet‘𝑋))
28 simpr1 1188 . . . . . . . . . . . . . 14 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → 𝑒 ∈ [𝐴] )
29 metidss 31019 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) ⊆ (𝑋 × 𝑋))
301, 29eqsstrid 4018 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ (PsMet‘𝑋) → ⊆ (𝑋 × 𝑋))
31 xpss 5569 . . . . . . . . . . . . . . . . . . 19 (𝑋 × 𝑋) ⊆ (V × V)
3230, 31syl6ss 3982 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ (PsMet‘𝑋) → ⊆ (V × V))
33 df-rel 5560 . . . . . . . . . . . . . . . . . 18 (Rel ⊆ (V × V))
3432, 33sylibr 235 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (PsMet‘𝑋) → Rel )
35343ad2ant1 1127 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → Rel )
3635adantr 481 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → Rel )
37 relelec 8327 . . . . . . . . . . . . . . 15 (Rel → (𝑒 ∈ [𝐴] 𝐴 𝑒))
3836, 37syl 17 . . . . . . . . . . . . . 14 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → (𝑒 ∈ [𝐴] 𝐴 𝑒))
3928, 38mpbid 233 . . . . . . . . . . . . 13 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → 𝐴 𝑒)
401breqi 5068 . . . . . . . . . . . . 13 (𝐴 𝑒𝐴(~Met𝐷)𝑒)
4139, 40sylib 219 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → 𝐴(~Met𝐷)𝑒)
42 simpr2 1189 . . . . . . . . . . . . . 14 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → 𝑓 ∈ [𝐵] )
43 relelec 8327 . . . . . . . . . . . . . . 15 (Rel → (𝑓 ∈ [𝐵] 𝐵 𝑓))
4436, 43syl 17 . . . . . . . . . . . . . 14 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → (𝑓 ∈ [𝐵] 𝐵 𝑓))
4542, 44mpbid 233 . . . . . . . . . . . . 13 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → 𝐵 𝑓)
461breqi 5068 . . . . . . . . . . . . 13 (𝐵 𝑓𝐵(~Met𝐷)𝑓)
4745, 46sylib 219 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → 𝐵(~Met𝐷)𝑓)
48 metideq 31021 . . . . . . . . . . . 12 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝑒𝐵(~Met𝐷)𝑓)) → (𝐴𝐷𝐵) = (𝑒𝐷𝑓))
4927, 41, 47, 48syl12anc 834 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → (𝐴𝐷𝐵) = (𝑒𝐷𝑓))
5026, 49eqtr4d 2863 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → 𝑧 = (𝐴𝐷𝐵))
5150adantlr 711 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → 𝑧 = (𝐴𝐷𝐵))
52513anassrs 1354 . . . . . . . 8 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)) ∧ 𝑒 ∈ [𝐴] ) ∧ 𝑓 ∈ [𝐵] ) ∧ 𝑧 = (𝑒𝐷𝑓)) → 𝑧 = (𝐴𝐷𝐵))
53 oveq1 7158 . . . . . . . . . . . 12 (𝑎 = 𝑒 → (𝑎𝐷𝑏) = (𝑒𝐷𝑏))
5453eqeq2d 2836 . . . . . . . . . . 11 (𝑎 = 𝑒 → (𝑧 = (𝑎𝐷𝑏) ↔ 𝑧 = (𝑒𝐷𝑏)))
55 oveq2 7159 . . . . . . . . . . . 12 (𝑏 = 𝑓 → (𝑒𝐷𝑏) = (𝑒𝐷𝑓))
5655eqeq2d 2836 . . . . . . . . . . 11 (𝑏 = 𝑓 → (𝑧 = (𝑒𝐷𝑏) ↔ 𝑧 = (𝑒𝐷𝑓)))
5754, 56cbvrex2v 3470 . . . . . . . . . 10 (∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏) ↔ ∃𝑒 ∈ [ 𝐴] 𝑓 ∈ [ 𝐵] 𝑧 = (𝑒𝐷𝑓))
5857biimpi 217 . . . . . . . . 9 (∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏) → ∃𝑒 ∈ [ 𝐴] 𝑓 ∈ [ 𝐵] 𝑧 = (𝑒𝐷𝑓))
5958adantl 482 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)) → ∃𝑒 ∈ [ 𝐴] 𝑓 ∈ [ 𝐵] 𝑧 = (𝑒𝐷𝑓))
6052, 59r19.29vva 3340 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)) → 𝑧 = (𝐴𝐷𝐵))
61 simpl1 1185 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → 𝐷 ∈ (PsMet‘𝑋))
62 simpl2 1186 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → 𝐴𝑋)
63 psmet0 22835 . . . . . . . . . 10 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)
6461, 62, 63syl2anc 584 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → (𝐴𝐷𝐴) = 0)
65 relelec 8327 . . . . . . . . . . 11 (Rel → (𝐴 ∈ [𝐴] 𝐴 𝐴))
6661, 34, 653syl 18 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → (𝐴 ∈ [𝐴] 𝐴 𝐴))
671a1i 11 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → = (~Met𝐷))
6867breqd 5073 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → (𝐴 𝐴𝐴(~Met𝐷)𝐴))
69 metidv 31020 . . . . . . . . . . 11 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐴𝑋)) → (𝐴(~Met𝐷)𝐴 ↔ (𝐴𝐷𝐴) = 0))
7061, 62, 62, 69syl12anc 834 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → (𝐴(~Met𝐷)𝐴 ↔ (𝐴𝐷𝐴) = 0))
7166, 68, 703bitrd 306 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → (𝐴 ∈ [𝐴] ↔ (𝐴𝐷𝐴) = 0))
7264, 71mpbird 258 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → 𝐴 ∈ [𝐴] )
73 simpl3 1187 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → 𝐵𝑋)
74 psmet0 22835 . . . . . . . . . 10 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵𝑋) → (𝐵𝐷𝐵) = 0)
7561, 73, 74syl2anc 584 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → (𝐵𝐷𝐵) = 0)
76 relelec 8327 . . . . . . . . . . 11 (Rel → (𝐵 ∈ [𝐵] 𝐵 𝐵))
7761, 34, 763syl 18 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → (𝐵 ∈ [𝐵] 𝐵 𝐵))
7867breqd 5073 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → (𝐵 𝐵𝐵(~Met𝐷)𝐵))
79 metidv 31020 . . . . . . . . . . 11 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐵𝑋𝐵𝑋)) → (𝐵(~Met𝐷)𝐵 ↔ (𝐵𝐷𝐵) = 0))
8061, 73, 73, 79syl12anc 834 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → (𝐵(~Met𝐷)𝐵 ↔ (𝐵𝐷𝐵) = 0))
8177, 78, 803bitrd 306 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → (𝐵 ∈ [𝐵] ↔ (𝐵𝐷𝐵) = 0))
8275, 81mpbird 258 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → 𝐵 ∈ [𝐵] )
83 simpr 485 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → 𝑧 = (𝐴𝐷𝐵))
84 rspceov 7198 . . . . . . . 8 ((𝐴 ∈ [𝐴] 𝐵 ∈ [𝐵] 𝑧 = (𝐴𝐷𝐵)) → ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏))
8572, 82, 83, 84syl3anc 1365 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏))
8660, 85impbida 797 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏) ↔ 𝑧 = (𝐴𝐷𝐵)))
8786abbidv 2889 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)} = {𝑧𝑧 = (𝐴𝐷𝐵)})
88 df-sn 4564 . . . . 5 {(𝐴𝐷𝐵)} = {𝑧𝑧 = (𝐴𝐷𝐵)}
8987, 88syl6eqr 2878 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)} = {(𝐴𝐷𝐵)})
9089unieqd 4846 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)} = {(𝐴𝐷𝐵)})
91 ovex 7184 . . . 4 (𝐴𝐷𝐵) ∈ V
9291unisn 4852 . . 3 {(𝐴𝐷𝐵)} = (𝐴𝐷𝐵)
9390, 92syl6eq 2876 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)} = (𝐴𝐷𝐵))
944, 25, 933eqtrd 2864 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ([𝐴] (pstoMet‘𝐷)[𝐵] ) = (𝐴𝐷𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107  {cab 2803  ∃wrex 3143  Vcvv 3499   ⊆ wss 3939  {csn 4563  ∪ cuni 4836   class class class wbr 5062   × cxp 5551  Rel wrel 5558  ‘cfv 6351  (class class class)co 7151   ∈ cmpo 7153  [cec 8280   / cqs 8281  0cc0 10529  PsMetcpsmet 20447  ~Metcmetid 31014  pstoMetcpstm 31015 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-po 5472  df-so 5473  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7683  df-2nd 7684  df-er 8282  df-ec 8284  df-qs 8288  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-xadd 12501  df-psmet 20455  df-metid 31016  df-pstm 31017 This theorem is referenced by:  pstmxmet  31025
 Copyright terms: Public domain W3C validator