| Metamath
Proof Explorer Theorem List (p. 80 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | cnvex 7901 | The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 19-Dec-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ◡𝐴 ∈ V | ||
| Theorem | relcnvexb 7902 | A relation is a set iff its converse is a set. (Contributed by FL, 3-Mar-2007.) |
| ⊢ (Rel 𝑅 → (𝑅 ∈ V ↔ ◡𝑅 ∈ V)) | ||
| Theorem | f1oexrnex 7903 | If the range of a 1-1 onto function is a set, the function itself is a set. (Contributed by AV, 2-Jun-2019.) |
| ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ V) | ||
| Theorem | f1oexbi 7904* | There is a one-to-one onto function from a set to a second set iff there is a one-to-one onto function from the second set to the first set. (Contributed by Alexander van der Vekens, 30-Sep-2018.) |
| ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 ↔ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) | ||
| Theorem | coexg 7905 | The composition of two sets is a set. (Contributed by NM, 19-Mar-1998.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) | ||
| Theorem | coex 7906 | The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∘ 𝐵) ∈ V | ||
| Theorem | coexd 7907 | The composition of two sets is a set. (Contributed by SN, 7-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴 ∘ 𝐵) ∈ V) | ||
| Theorem | funcnvuni 7908* | The union of a chain (with respect to inclusion) of single-rooted sets is single-rooted. (See funcnv 6585 for "single-rooted" definition.) (Contributed by NM, 11-Aug-2004.) |
| ⊢ (∀𝑓 ∈ 𝐴 (Fun ◡𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → Fun ◡∪ 𝐴) | ||
| Theorem | fun11uni 7909* | The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by NM, 11-Aug-2004.) |
| ⊢ (∀𝑓 ∈ 𝐴 ((Fun 𝑓 ∧ Fun ◡𝑓) ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → (Fun ∪ 𝐴 ∧ Fun ◡∪ 𝐴)) | ||
| Theorem | resf1extb 7910 | Extension of an injection which is a restriction of a function. (Contributed by AV, 3-Oct-2025.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → (((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶)) ↔ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1→𝐵)) | ||
| Theorem | resf1ext2b 7911 | Extension of an injection which is a restriction of a function. (Contributed by AV, 3-Oct-2025.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → ((Fun ◡(𝐹 ↾ 𝐶) ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶)) ↔ Fun ◡(𝐹 ↾ (𝐶 ∪ {𝑋})))) | ||
| Theorem | fex2 7912 | A function with bounded domain and codomain is a set. This version of fex 7200 is proven without the Axiom of Replacement ax-rep 5234, but depends on ax-un 7711, which is not required for the proof of fex 7200. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) | ||
| Theorem | fabexd 7913* | Existence of a set of functions. In contrast to fabex 7916 or fabexg 7914, the condition in the class abstraction does not contain the function explicitly, but the function can be derived from it. Therefore, this theorem is also applicable for more special functions like one-to-one, onto or one-to-one onto functions. (Contributed by AV, 20-May-2025.) |
| ⊢ ((𝜑 ∧ 𝜓) → 𝑓:𝑋⟶𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑊) ⇒ ⊢ (𝜑 → {𝑓 ∣ 𝜓} ∈ V) | ||
| Theorem | fabexg 7914* | Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.) (Proof shortened by AV, 9-Jun-2025.) |
| ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) | ||
| Theorem | fabexgOLD 7915* | Obsolete version of fabexg 7914 as of 9-Jun-2025. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) | ||
| Theorem | fabex 7916* | Existence of a set of functions. (Contributed by NM, 3-Dec-2007.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} ⇒ ⊢ 𝐹 ∈ V | ||
| Theorem | mapex 7917* | The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.) (Proof shortened by AV, 16-Jun-2025.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) | ||
| Theorem | f1oabexg 7918* | The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008.) (Proof shortened by AV, 9-Jun-2025.) |
| ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) | ||
| Theorem | f1oabexgOLD 7919* | Obsolete version of f1oabexg 7918 as of 9-Jun-2025. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) | ||
| Theorem | fiunlem 7920* | Lemma for fiun 7921 and f1iun 7922. Formerly part of f1iun 7922. (Contributed by AV, 6-Oct-2023.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (((𝐵:𝐷⟶𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑢 = 𝐵) → ∀𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) | ||
| Theorem | fiun 7921* | The union of a chain (with respect to inclusion) of functions is a function. Analogous to f1iun 7922. (Contributed by AV, 6-Oct-2023.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) & ⊢ 𝐵 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 (𝐵:𝐷⟶𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → ∪ 𝑥 ∈ 𝐴 𝐵:∪ 𝑥 ∈ 𝐴 𝐷⟶𝑆) | ||
| Theorem | f1iun 7922* | The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by Mario Carneiro, 20-May-2013.) (Revised by Mario Carneiro, 24-Jun-2015.) (Proof shortened by AV, 5-Nov-2023.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) & ⊢ 𝐵 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → ∪ 𝑥 ∈ 𝐴 𝐵:∪ 𝑥 ∈ 𝐴 𝐷–1-1→𝑆) | ||
| Theorem | fviunfun 7923* | The function value of an indexed union is the value of one of the indexed functions. (Contributed by AV, 4-Nov-2023.) |
| ⊢ 𝑈 = ∪ 𝑖 ∈ 𝐼 (𝐹‘𝑖) ⇒ ⊢ ((Fun 𝑈 ∧ 𝐽 ∈ 𝐼 ∧ 𝑋 ∈ dom (𝐹‘𝐽)) → (𝑈‘𝑋) = ((𝐹‘𝐽)‘𝑋)) | ||
| Theorem | ffoss 7924* | Relationship between a mapping and an onto mapping. Figure 38 of [Enderton] p. 145. (Contributed by NM, 10-May-1998.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹:𝐴⟶𝐵 ↔ ∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) | ||
| Theorem | f11o 7925* | Relationship between one-to-one and one-to-one onto function. (Contributed by NM, 4-Apr-1998.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹:𝐴–1-1→𝐵 ↔ ∃𝑥(𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) | ||
| Theorem | resfunexgALT 7926 | Alternate proof of resfunexg 7189, shorter but requiring ax-pow 5320 and ax-un 7711. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) | ||
| Theorem | cofunexg 7927 | Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.) |
| ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∘ 𝐵) ∈ V) | ||
| Theorem | cofunex2g 7928 | Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ Fun ◡𝐵) → (𝐴 ∘ 𝐵) ∈ V) | ||
| Theorem | fnexALT 7929 | Alternate proof of fnex 7191, derived using the Axiom of Replacement in the form of funimaexg 6603. This version uses ax-pow 5320 and ax-un 7711, whereas fnex 7191 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) | ||
| Theorem | funexw 7930 | Weak version of funex 7193 that holds without ax-rep 5234. If the domain and codomain of a function exist, so does the function. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ 𝐵 ∧ ran 𝐹 ∈ 𝐶) → 𝐹 ∈ V) | ||
| Theorem | mptexw 7931* | Weak version of mptex 7197 that holds without ax-rep 5234. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐶 ∈ V & ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V | ||
| Theorem | funrnex 7932 | If the domain of a function exists, so does its range. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of funex 7193. (Contributed by NM, 11-Nov-1995.) |
| ⊢ (dom 𝐹 ∈ 𝐵 → (Fun 𝐹 → ran 𝐹 ∈ V)) | ||
| Theorem | zfrep6 7933* | A version of the Axiom of Replacement. Normally 𝜑 would have free variables 𝑥 and 𝑦. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 5251 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version in place of our ax-rep 5234. (Contributed by NM, 10-Oct-2003.) |
| ⊢ (∀𝑥 ∈ 𝑧 ∃!𝑦𝜑 → ∃𝑤∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑤 𝜑) | ||
| Theorem | focdmex 7934 | If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.) |
| ⊢ (𝐴 ∈ 𝐶 → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) | ||
| Theorem | f1dmex 7935 | If the codomain of a one-to-one function exists, so does its domain. This theorem is equivalent to the Axiom of Replacement ax-rep 5234. (Contributed by NM, 4-Sep-2004.) |
| ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | ||
| Theorem | f1ovv 7936 | The codomain/range of a 1-1 onto function is a set iff its domain is a set. (Contributed by AV, 21-Mar-2019.) |
| ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | ||
| Theorem | fvclex 7937* | Existence of the class of values of a set. (Contributed by NM, 9-Nov-1995.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ∈ V | ||
| Theorem | fvresex 7938* | Existence of the class of values of a restricted class. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 11-Sep-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)} ∈ V | ||
| Theorem | abrexexg 7939* | Existence of a class abstraction of existentially restricted sets. The class 𝐵 can be thought of as an expression in 𝑥 (which is typically a free variable in the class expression substituted for 𝐵) and the class abstraction appearing in the statement as the class of values 𝐵 as 𝑥 varies through 𝐴. If the "domain" 𝐴 is a set, then the abstraction is also a set. Therefore, this statement is a kind of Replacement. This can be seen by tracing back through the path axrep6g 5245, axrep6 5243, ax-rep 5234. See also abrexex2g 7943. There are partial converses under additional conditions, see for instance abnexg 7732. (Contributed by NM, 3-Nov-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) Avoid ax-10 2142, ax-11 2158, ax-12 2178, ax-pr 5387, ax-un 7711 and shorten proof. (Revised by SN, 11-Dec-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | ||
| Theorem | abrexexgOLD 7940* |
Obsolete version of abrexexg 7939 as of 11-Dec-2024. EDITORIAL: Comment
kept since the line of equivalences to ax-rep 5234 is different.
Existence of a class abstraction of existentially restricted sets. The class 𝐵 can be thought of as an expression in 𝑥 (which is typically a free variable in the class expression substituted for 𝐵) and the class abstraction appearing in the statement as the class of values 𝐵 as 𝑥 varies through 𝐴. If the "domain" 𝐴 is a set, then the abstraction is also a set. Therefore, this statement is a kind of Replacement. This can be seen by tracing back through the path mptexg 7195, funex 7193, fnex 7191, resfunexg 7189, and funimaexg 6603. See also abrexex2g 7943. There are partial converses under additional conditions, see for instance abnexg 7732. (Contributed by NM, 3-Nov-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | ||
| Theorem | abrexex 7941* | Existence of a class abstraction of existentially restricted sets. See the comment of abrexexg 7939. See also abrexex2 7948. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V | ||
| Theorem | iunexg 7942* | The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵. (Contributed by NM, 23-Mar-2006.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | ||
| Theorem | abrexex2g 7943* | Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ 𝑊) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V) | ||
| Theorem | opabex3d 7944* | Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017.) (Revised by AV, 9-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → {𝑦 ∣ 𝜓} ∈ V) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} ∈ V) | ||
| Theorem | opabex3rd 7945* | Existence of an ordered pair abstraction if the second components are elements of a set. (Contributed by AV, 17-Sep-2023.) (Revised by AV, 9-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → {𝑥 ∣ 𝜓} ∈ V) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} ∈ V) | ||
| Theorem | opabex3 7946* | Existence of an ordered pair abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 ∈ 𝐴 → {𝑦 ∣ 𝜑} ∈ V) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V | ||
| Theorem | iunex 7947* | The existence of an indexed union. 𝑥 is normally a free-variable parameter in the class expression substituted for 𝐵, which can be read informally as 𝐵(𝑥). (Contributed by NM, 13-Oct-2003.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V | ||
| Theorem | abrexex2 7948* | Existence of an existentially restricted class abstraction. 𝜑 normally has free-variable parameters 𝑥 and 𝑦. See also abrexex 7941. (Contributed by NM, 12-Sep-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V | ||
| Theorem | abexssex 7949* | Existence of a class abstraction with an existentially quantified expression. Both 𝑥 and 𝑦 can be free in 𝜑. (Contributed by NM, 29-Jul-2006.) |
| ⊢ 𝐴 ∈ V & ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V | ||
| Theorem | abexex 7950* | A condition where a class abstraction continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝜑 → 𝑥 ∈ 𝐴) & ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥𝜑} ∈ V | ||
| Theorem | f1oweALT 7951* | Alternate proof of f1owe 7328, more direct since not using the isomorphism predicate, but requiring ax-un 7711. (Contributed by NM, 4-Mar-1997.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝑦)} ⇒ ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑆 We 𝐵 → 𝑅 We 𝐴)) | ||
| Theorem | wemoiso 7952* | Thus, there is at most one isomorphism between any two well-ordered sets. TODO: Shorten finnisoeu 10066. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| ⊢ (𝑅 We 𝐴 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | ||
| Theorem | wemoiso2 7953* | Thus, there is at most one isomorphism between any two well-ordered sets. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| ⊢ (𝑆 We 𝐵 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | ||
| Theorem | oprabexd 7954* | Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by AV, 9-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑧𝜓) & ⊢ (𝜑 → 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)}) ⇒ ⊢ (𝜑 → 𝐹 ∈ V) | ||
| Theorem | oprabex 7955* | Existence of an operation class abstraction. (Contributed by NM, 19-Oct-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃*𝑧𝜑) & ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⇒ ⊢ 𝐹 ∈ V | ||
| Theorem | oprabex3 7956* | Existence of an operation class abstraction (special case). (Contributed by NM, 19-Oct-2004.) |
| ⊢ 𝐻 ∈ V & ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅))} ⇒ ⊢ 𝐹 ∈ V | ||
| Theorem | oprabrexex2 7957* | Existence of an existentially restricted operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) |
| ⊢ 𝐴 ∈ V & ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ∈ V ⇒ ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑤 ∈ 𝐴 𝜑} ∈ V | ||
| Theorem | ab2rexex 7958* | Existence of a class abstraction of existentially restricted sets. Variables 𝑥 and 𝑦 are normally free-variable parameters in the class expression substituted for 𝐶, which can be thought of as 𝐶(𝑥, 𝑦). See comments for abrexex 7941. (Contributed by NM, 20-Sep-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V | ||
| Theorem | ab2rexex2 7959* | Existence of an existentially restricted class abstraction. 𝜑 normally has free-variable parameters 𝑥, 𝑦, and 𝑧. Compare abrexex2 7948. (Contributed by NM, 20-Sep-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ {𝑧 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑} ∈ V | ||
| Theorem | xpexgALT 7960 | Alternate proof of xpexg 7726 requiring Replacement (ax-rep 5234) but not Power Set (ax-pow 5320). (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | ||
| Theorem | offval3 7961* | General value of (𝐹 ∘f 𝑅𝐺) with no assumptions on functionality of 𝐹 and 𝐺. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) | ||
| Theorem | offres 7962 | Pointwise combination commutes with restriction. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘f 𝑅𝐺) ↾ 𝐷) = ((𝐹 ↾ 𝐷) ∘f 𝑅(𝐺 ↾ 𝐷))) | ||
| Theorem | ofmres 7963* | Equivalent expressions for a restriction of the function operation map. Unlike ∘f 𝑅 which is a proper class, ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) can be a set by ofmresex 7964, allowing it to be used as a function or structure argument. By ofmresval 7669, the restricted operation map values are the same as the original values, allowing theorems for ∘f 𝑅 to be reused. (Contributed by NM, 20-Oct-2014.) |
| ⊢ ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘f 𝑅𝑔)) | ||
| Theorem | ofmresex 7964 | Existence of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) ∈ V) | ||
| Theorem | mptcnfimad 7965* | The converse of a mapping of subsets to their image of a bijection. (Contributed by AV, 23-Apr-2025.) |
| ⊢ 𝑀 = (𝑥 ∈ 𝐴 ↦ (𝐹 “ 𝑥)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑊) & ⊢ (𝜑 → 𝐴 ⊆ 𝒫 𝑉) & ⊢ (𝜑 → ran 𝑀 ⊆ 𝒫 𝑊) & ⊢ (𝜑 → 𝑉 ∈ 𝑈) ⇒ ⊢ (𝜑 → ◡𝑀 = (𝑦 ∈ ran 𝑀 ↦ (◡𝐹 “ 𝑦))) | ||
| Syntax | c1st 7966 | Extend the definition of a class to include the first member an ordered pair function. |
| class 1st | ||
| Syntax | c2nd 7967 | Extend the definition of a class to include the second member an ordered pair function. |
| class 2nd | ||
| Definition | df-1st 7968 | Define a function that extracts the first member, or abscissa, of an ordered pair. Theorem op1st 7976 proves that it does this. For example, (1st ‘〈3, 4〉) = 3. Equivalent to Definition 5.13 (i) of [Monk1] p. 52 (compare op1sta 6198 and op1stb 5431). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.) |
| ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | ||
| Definition | df-2nd 7969 | Define a function that extracts the second member, or ordinate, of an ordered pair. Theorem op2nd 7977 proves that it does this. For example, (2nd ‘〈3, 4〉) = 4. Equivalent to Definition 5.13 (ii) of [Monk1] p. 52 (compare op2nda 6201 and op2ndb 6200). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.) |
| ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | ||
| Theorem | 1stval 7970 | The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ (1st ‘𝐴) = ∪ dom {𝐴} | ||
| Theorem | 2ndval 7971 | The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ (2nd ‘𝐴) = ∪ ran {𝐴} | ||
| Theorem | 1stnpr 7972 | Value of the first-member function at non-pairs. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
| ⊢ (¬ 𝐴 ∈ (V × V) → (1st ‘𝐴) = ∅) | ||
| Theorem | 2ndnpr 7973 | Value of the second-member function at non-pairs. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
| ⊢ (¬ 𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∅) | ||
| Theorem | 1st0 7974 | The value of the first-member function at the empty set. (Contributed by NM, 23-Apr-2007.) |
| ⊢ (1st ‘∅) = ∅ | ||
| Theorem | 2nd0 7975 | The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.) |
| ⊢ (2nd ‘∅) = ∅ | ||
| Theorem | op1st 7976 | Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (1st ‘〈𝐴, 𝐵〉) = 𝐴 | ||
| Theorem | op2nd 7977 | Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 | ||
| Theorem | op1std 7978 | Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = 𝐴) | ||
| Theorem | op2ndd 7979 | Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = 𝐵) | ||
| Theorem | op1stg 7980 | Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | ||
| Theorem | op2ndg 7981 | Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | ||
| Theorem | ot1stg 7982 | Extract the first member of an ordered triple. (Due to infrequent usage, it isn't worthwhile at this point to define special extractors for triples, so we reuse the ordered pair extractors for ot1stg 7982, ot2ndg 7983, ot3rdg 7984.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴) | ||
| Theorem | ot2ndg 7983 | Extract the second member of an ordered triple. (See ot1stg 7982 comment.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵) | ||
| Theorem | ot3rdg 7984 | Extract the third member of an ordered triple. (See ot1stg 7982 comment.) (Contributed by NM, 3-Apr-2015.) |
| ⊢ (𝐶 ∈ 𝑉 → (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶) | ||
| Theorem | 1stval2 7985 | Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) |
| ⊢ (𝐴 ∈ (V × V) → (1st ‘𝐴) = ∩ ∩ 𝐴) | ||
| Theorem | 2ndval2 7986 | Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) |
| ⊢ (𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) | ||
| Theorem | oteqimp 7987 | The components of an ordered triple. (Contributed by Alexander van der Vekens, 2-Mar-2018.) |
| ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((1st ‘(1st ‘𝑇)) = 𝐴 ∧ (2nd ‘(1st ‘𝑇)) = 𝐵 ∧ (2nd ‘𝑇) = 𝐶))) | ||
| Theorem | fo1st 7988 | The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ 1st :V–onto→V | ||
| Theorem | fo2nd 7989 | The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ 2nd :V–onto→V | ||
| Theorem | br1steqg 7990 | Uniqueness condition for the binary relation 1st. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on 𝐶. (Revised by Peter Mazsa, 17-Jan-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉1st 𝐶 ↔ 𝐶 = 𝐴)) | ||
| Theorem | br2ndeqg 7991 | Uniqueness condition for the binary relation 2nd. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on 𝐶. (Revised by Peter Mazsa, 17-Jan-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵)) | ||
| Theorem | f1stres 7992 | Mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 | ||
| Theorem | f2ndres 7993 | Mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 | ||
| Theorem | fo1stres 7994 | Onto mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 14-Dec-2008.) |
| ⊢ (𝐵 ≠ ∅ → (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto→𝐴) | ||
| Theorem | fo2ndres 7995 | Onto mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 14-Dec-2008.) |
| ⊢ (𝐴 ≠ ∅ → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto→𝐵) | ||
| Theorem | 1st2val 7996* | Value of an alternate definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 30-Dec-2014.) |
| ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥}‘𝐴) = (1st ‘𝐴) | ||
| Theorem | 2nd2val 7997* | Value of an alternate definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 30-Dec-2014.) |
| ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦}‘𝐴) = (2nd ‘𝐴) | ||
| Theorem | 1stcof 7998 | Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.) |
| ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st ∘ 𝐹):𝐴⟶𝐵) | ||
| Theorem | 2ndcof 7999 | Composition of the second member function with another function. (Contributed by FL, 15-Oct-2012.) |
| ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd ∘ 𝐹):𝐴⟶𝐶) | ||
| Theorem | xp1st 8000 | Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (1st ‘𝐴) ∈ 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |