| Metamath
Proof Explorer Theorem List (p. 80 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fdmexb 7901 | The domain of a function is a set iff the function is a set. (Contributed by AV, 8-Aug-2024.) |
| ⊢ (𝐹:𝐴⟶𝐵 → (𝐴 ∈ V ↔ 𝐹 ∈ V)) | ||
| Theorem | dmfexALT 7902 | Alternate proof of dmfex 7899: shorter but using ax-rep 5249. (Contributed by NM, 27-Aug-2006.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Proof shortened by AV, 23-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐹 ∈ 𝐶 ∧ 𝐹:𝐴⟶𝐵) → 𝐴 ∈ V) | ||
| Theorem | dmex 7903 | The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ dom 𝐴 ∈ V | ||
| Theorem | rnex 7904 | The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 7-Jul-2008.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ran 𝐴 ∈ V | ||
| Theorem | iprc 7905 | The identity function is a proper class. This means, for example, that we cannot use it as a member of the class of continuous functions unless it is restricted to a set, as in idcn 23193. (Contributed by NM, 1-Jan-2007.) |
| ⊢ ¬ I ∈ V | ||
| Theorem | resiexg 7906 | The existence of a restricted identity function, proved without using the Axiom of Replacement (unlike resfunexg 7206). (Contributed by NM, 13-Jan-2007.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) | ||
| Theorem | imaexg 7907 | The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by NM, 24-Jul-1995.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) | ||
| Theorem | imaex 7908 | The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by JJ, 24-Sep-2021.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 “ 𝐵) ∈ V | ||
| Theorem | rnexd 7909 | The range of a set is a set. Deduction version of rnexd 7909. (Contributed by Thierry Arnoux, 14-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ran 𝐴 ∈ V) | ||
| Theorem | imaexd 7910 | The image of a set is a set. Deduction version of imaexg 7907. (Contributed by Thierry Arnoux, 14-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 “ 𝐵) ∈ V) | ||
| Theorem | exse2 7911 | Any set relation is set-like. (Contributed by Mario Carneiro, 22-Jun-2015.) |
| ⊢ (𝑅 ∈ 𝑉 → 𝑅 Se 𝐴) | ||
| Theorem | xpexr 7912 | If a Cartesian product is a set, one of its components must be a set. (Contributed by NM, 27-Aug-2006.) |
| ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → (𝐴 ∈ V ∨ 𝐵 ∈ V)) | ||
| Theorem | xpexr2 7913 | If a nonempty Cartesian product is a set, so are both of its components. (Contributed by NM, 27-Aug-2006.) |
| ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
| Theorem | xpexcnv 7914 | A condition where the converse of xpex 7745 holds as well. Corollary 6.9(2) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.) |
| ⊢ ((𝐵 ≠ ∅ ∧ (𝐴 × 𝐵) ∈ V) → 𝐴 ∈ V) | ||
| Theorem | soex 7915 | If the relation in a strict order is a set, then the base field is also a set. (Contributed by Mario Carneiro, 27-Apr-2015.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) → 𝐴 ∈ V) | ||
| Theorem | elxp4 7916 | Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp5 7917, elxp6 8020, and elxp7 8021. (Contributed by NM, 17-Feb-2004.) |
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∧ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶))) | ||
| Theorem | elxp5 7917 | Membership in a Cartesian product requiring no quantifiers or dummy variables. Provides a slightly shorter version of elxp4 7916 when the double intersection does not create class existence problems (caused by int0 4938). (Contributed by NM, 1-Aug-2004.) |
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈∩ ∩ 𝐴, ∪ ran {𝐴}〉 ∧ (∩ ∩ 𝐴 ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶))) | ||
| Theorem | cnvexg 7918 | The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.) |
| ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) | ||
| Theorem | cnvex 7919 | The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 19-Dec-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ◡𝐴 ∈ V | ||
| Theorem | relcnvexb 7920 | A relation is a set iff its converse is a set. (Contributed by FL, 3-Mar-2007.) |
| ⊢ (Rel 𝑅 → (𝑅 ∈ V ↔ ◡𝑅 ∈ V)) | ||
| Theorem | f1oexrnex 7921 | If the range of a 1-1 onto function is a set, the function itself is a set. (Contributed by AV, 2-Jun-2019.) |
| ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ V) | ||
| Theorem | f1oexbi 7922* | There is a one-to-one onto function from a set to a second set iff there is a one-to-one onto function from the second set to the first set. (Contributed by Alexander van der Vekens, 30-Sep-2018.) |
| ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 ↔ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) | ||
| Theorem | coexg 7923 | The composition of two sets is a set. (Contributed by NM, 19-Mar-1998.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) | ||
| Theorem | coex 7924 | The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∘ 𝐵) ∈ V | ||
| Theorem | coexd 7925 | The composition of two sets is a set. (Contributed by SN, 7-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴 ∘ 𝐵) ∈ V) | ||
| Theorem | funcnvuni 7926* | The union of a chain (with respect to inclusion) of single-rooted sets is single-rooted. (See funcnv 6604 for "single-rooted" definition.) (Contributed by NM, 11-Aug-2004.) |
| ⊢ (∀𝑓 ∈ 𝐴 (Fun ◡𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → Fun ◡∪ 𝐴) | ||
| Theorem | fun11uni 7927* | The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by NM, 11-Aug-2004.) |
| ⊢ (∀𝑓 ∈ 𝐴 ((Fun 𝑓 ∧ Fun ◡𝑓) ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → (Fun ∪ 𝐴 ∧ Fun ◡∪ 𝐴)) | ||
| Theorem | resf1extb 7928 | Extension of an injection which is a restriction of a function. (Contributed by AV, 3-Oct-2025.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → (((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶)) ↔ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1→𝐵)) | ||
| Theorem | resf1ext2b 7929 | Extension of an injection which is a restriction of a function. (Contributed by AV, 3-Oct-2025.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → ((Fun ◡(𝐹 ↾ 𝐶) ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶)) ↔ Fun ◡(𝐹 ↾ (𝐶 ∪ {𝑋})))) | ||
| Theorem | fex2 7930 | A function with bounded domain and codomain is a set. This version of fex 7217 is proven without the Axiom of Replacement ax-rep 5249, but depends on ax-un 7727, which is not required for the proof of fex 7217. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) | ||
| Theorem | fabexd 7931* | Existence of a set of functions. In contrast to fabex 7934 or fabexg 7932, the condition in the class abstraction does not contain the function explicitly, but the function can be derived from it. Therefore, this theorem is also applicable for more special functions like one-to-one, onto or one-to-one onto functions. (Contributed by AV, 20-May-2025.) |
| ⊢ ((𝜑 ∧ 𝜓) → 𝑓:𝑋⟶𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑊) ⇒ ⊢ (𝜑 → {𝑓 ∣ 𝜓} ∈ V) | ||
| Theorem | fabexg 7932* | Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.) (Proof shortened by AV, 9-Jun-2025.) |
| ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) | ||
| Theorem | fabexgOLD 7933* | Obsolete version of fabexg 7932 as of 9-Jun-2025. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) | ||
| Theorem | fabex 7934* | Existence of a set of functions. (Contributed by NM, 3-Dec-2007.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} ⇒ ⊢ 𝐹 ∈ V | ||
| Theorem | mapex 7935* | The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.) (Proof shortened by AV, 16-Jun-2025.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) | ||
| Theorem | f1oabexg 7936* | The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008.) (Proof shortened by AV, 9-Jun-2025.) |
| ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) | ||
| Theorem | f1oabexgOLD 7937* | Obsolete version of f1oabexg 7936 as of 9-Jun-2025. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) | ||
| Theorem | fiunlem 7938* | Lemma for fiun 7939 and f1iun 7940. Formerly part of f1iun 7940. (Contributed by AV, 6-Oct-2023.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (((𝐵:𝐷⟶𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑢 = 𝐵) → ∀𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) | ||
| Theorem | fiun 7939* | The union of a chain (with respect to inclusion) of functions is a function. Analogous to f1iun 7940. (Contributed by AV, 6-Oct-2023.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) & ⊢ 𝐵 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 (𝐵:𝐷⟶𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → ∪ 𝑥 ∈ 𝐴 𝐵:∪ 𝑥 ∈ 𝐴 𝐷⟶𝑆) | ||
| Theorem | f1iun 7940* | The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by Mario Carneiro, 20-May-2013.) (Revised by Mario Carneiro, 24-Jun-2015.) (Proof shortened by AV, 5-Nov-2023.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) & ⊢ 𝐵 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → ∪ 𝑥 ∈ 𝐴 𝐵:∪ 𝑥 ∈ 𝐴 𝐷–1-1→𝑆) | ||
| Theorem | fviunfun 7941* | The function value of an indexed union is the value of one of the indexed functions. (Contributed by AV, 4-Nov-2023.) |
| ⊢ 𝑈 = ∪ 𝑖 ∈ 𝐼 (𝐹‘𝑖) ⇒ ⊢ ((Fun 𝑈 ∧ 𝐽 ∈ 𝐼 ∧ 𝑋 ∈ dom (𝐹‘𝐽)) → (𝑈‘𝑋) = ((𝐹‘𝐽)‘𝑋)) | ||
| Theorem | ffoss 7942* | Relationship between a mapping and an onto mapping. Figure 38 of [Enderton] p. 145. (Contributed by NM, 10-May-1998.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹:𝐴⟶𝐵 ↔ ∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) | ||
| Theorem | f11o 7943* | Relationship between one-to-one and one-to-one onto function. (Contributed by NM, 4-Apr-1998.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹:𝐴–1-1→𝐵 ↔ ∃𝑥(𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) | ||
| Theorem | resfunexgALT 7944 | Alternate proof of resfunexg 7206, shorter but requiring ax-pow 5335 and ax-un 7727. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) | ||
| Theorem | cofunexg 7945 | Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.) |
| ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∘ 𝐵) ∈ V) | ||
| Theorem | cofunex2g 7946 | Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ Fun ◡𝐵) → (𝐴 ∘ 𝐵) ∈ V) | ||
| Theorem | fnexALT 7947 | Alternate proof of fnex 7208, derived using the Axiom of Replacement in the form of funimaexg 6622. This version uses ax-pow 5335 and ax-un 7727, whereas fnex 7208 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) | ||
| Theorem | funexw 7948 | Weak version of funex 7210 that holds without ax-rep 5249. If the domain and codomain of a function exist, so does the function. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ 𝐵 ∧ ran 𝐹 ∈ 𝐶) → 𝐹 ∈ V) | ||
| Theorem | mptexw 7949* | Weak version of mptex 7214 that holds without ax-rep 5249. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐶 ∈ V & ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V | ||
| Theorem | funrnex 7950 | If the domain of a function exists, so does its range. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of funex 7210. (Contributed by NM, 11-Nov-1995.) |
| ⊢ (dom 𝐹 ∈ 𝐵 → (Fun 𝐹 → ran 𝐹 ∈ V)) | ||
| Theorem | zfrep6 7951* | A version of the Axiom of Replacement. Normally 𝜑 would have free variables 𝑥 and 𝑦. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 5266 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version in place of our ax-rep 5249. (Contributed by NM, 10-Oct-2003.) |
| ⊢ (∀𝑥 ∈ 𝑧 ∃!𝑦𝜑 → ∃𝑤∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑤 𝜑) | ||
| Theorem | focdmex 7952 | If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.) |
| ⊢ (𝐴 ∈ 𝐶 → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) | ||
| Theorem | f1dmex 7953 | If the codomain of a one-to-one function exists, so does its domain. This theorem is equivalent to the Axiom of Replacement ax-rep 5249. (Contributed by NM, 4-Sep-2004.) |
| ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | ||
| Theorem | f1ovv 7954 | The codomain/range of a 1-1 onto function is a set iff its domain is a set. (Contributed by AV, 21-Mar-2019.) |
| ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | ||
| Theorem | fvclex 7955* | Existence of the class of values of a set. (Contributed by NM, 9-Nov-1995.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ∈ V | ||
| Theorem | fvresex 7956* | Existence of the class of values of a restricted class. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 11-Sep-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)} ∈ V | ||
| Theorem | abrexexg 7957* | Existence of a class abstraction of existentially restricted sets. The class 𝐵 can be thought of as an expression in 𝑥 (which is typically a free variable in the class expression substituted for 𝐵) and the class abstraction appearing in the statement as the class of values 𝐵 as 𝑥 varies through 𝐴. If the "domain" 𝐴 is a set, then the abstraction is also a set. Therefore, this statement is a kind of Replacement. This can be seen by tracing back through the path axrep6g 5260, axrep6 5258, ax-rep 5249. See also abrexex2g 7961. There are partial converses under additional conditions, see for instance abnexg 7748. (Contributed by NM, 3-Nov-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) Avoid ax-10 2141, ax-11 2157, ax-12 2177, ax-pr 5402, ax-un 7727 and shorten proof. (Revised by SN, 11-Dec-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | ||
| Theorem | abrexexgOLD 7958* |
Obsolete version of abrexexg 7957 as of 11-Dec-2024. EDITORIAL: Comment
kept since the line of equivalences to ax-rep 5249 is different.
Existence of a class abstraction of existentially restricted sets. The class 𝐵 can be thought of as an expression in 𝑥 (which is typically a free variable in the class expression substituted for 𝐵) and the class abstraction appearing in the statement as the class of values 𝐵 as 𝑥 varies through 𝐴. If the "domain" 𝐴 is a set, then the abstraction is also a set. Therefore, this statement is a kind of Replacement. This can be seen by tracing back through the path mptexg 7212, funex 7210, fnex 7208, resfunexg 7206, and funimaexg 6622. See also abrexex2g 7961. There are partial converses under additional conditions, see for instance abnexg 7748. (Contributed by NM, 3-Nov-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | ||
| Theorem | abrexex 7959* | Existence of a class abstraction of existentially restricted sets. See the comment of abrexexg 7957. See also abrexex2 7966. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V | ||
| Theorem | iunexg 7960* | The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵. (Contributed by NM, 23-Mar-2006.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | ||
| Theorem | abrexex2g 7961* | Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ 𝑊) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V) | ||
| Theorem | opabex3d 7962* | Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017.) (Revised by AV, 9-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → {𝑦 ∣ 𝜓} ∈ V) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} ∈ V) | ||
| Theorem | opabex3rd 7963* | Existence of an ordered pair abstraction if the second components are elements of a set. (Contributed by AV, 17-Sep-2023.) (Revised by AV, 9-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → {𝑥 ∣ 𝜓} ∈ V) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} ∈ V) | ||
| Theorem | opabex3 7964* | Existence of an ordered pair abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 ∈ 𝐴 → {𝑦 ∣ 𝜑} ∈ V) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V | ||
| Theorem | iunex 7965* | The existence of an indexed union. 𝑥 is normally a free-variable parameter in the class expression substituted for 𝐵, which can be read informally as 𝐵(𝑥). (Contributed by NM, 13-Oct-2003.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V | ||
| Theorem | abrexex2 7966* | Existence of an existentially restricted class abstraction. 𝜑 normally has free-variable parameters 𝑥 and 𝑦. See also abrexex 7959. (Contributed by NM, 12-Sep-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V | ||
| Theorem | abexssex 7967* | Existence of a class abstraction with an existentially quantified expression. Both 𝑥 and 𝑦 can be free in 𝜑. (Contributed by NM, 29-Jul-2006.) |
| ⊢ 𝐴 ∈ V & ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V | ||
| Theorem | abexex 7968* | A condition where a class abstraction continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝜑 → 𝑥 ∈ 𝐴) & ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥𝜑} ∈ V | ||
| Theorem | f1oweALT 7969* | Alternate proof of f1owe 7345, more direct since not using the isomorphism predicate, but requiring ax-un 7727. (Contributed by NM, 4-Mar-1997.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝑦)} ⇒ ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑆 We 𝐵 → 𝑅 We 𝐴)) | ||
| Theorem | wemoiso 7970* | Thus, there is at most one isomorphism between any two well-ordered sets. TODO: Shorten finnisoeu 10125. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| ⊢ (𝑅 We 𝐴 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | ||
| Theorem | wemoiso2 7971* | Thus, there is at most one isomorphism between any two well-ordered sets. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| ⊢ (𝑆 We 𝐵 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | ||
| Theorem | oprabexd 7972* | Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by AV, 9-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑧𝜓) & ⊢ (𝜑 → 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)}) ⇒ ⊢ (𝜑 → 𝐹 ∈ V) | ||
| Theorem | oprabex 7973* | Existence of an operation class abstraction. (Contributed by NM, 19-Oct-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃*𝑧𝜑) & ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⇒ ⊢ 𝐹 ∈ V | ||
| Theorem | oprabex3 7974* | Existence of an operation class abstraction (special case). (Contributed by NM, 19-Oct-2004.) |
| ⊢ 𝐻 ∈ V & ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅))} ⇒ ⊢ 𝐹 ∈ V | ||
| Theorem | oprabrexex2 7975* | Existence of an existentially restricted operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) |
| ⊢ 𝐴 ∈ V & ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ∈ V ⇒ ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑤 ∈ 𝐴 𝜑} ∈ V | ||
| Theorem | ab2rexex 7976* | Existence of a class abstraction of existentially restricted sets. Variables 𝑥 and 𝑦 are normally free-variable parameters in the class expression substituted for 𝐶, which can be thought of as 𝐶(𝑥, 𝑦). See comments for abrexex 7959. (Contributed by NM, 20-Sep-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V | ||
| Theorem | ab2rexex2 7977* | Existence of an existentially restricted class abstraction. 𝜑 normally has free-variable parameters 𝑥, 𝑦, and 𝑧. Compare abrexex2 7966. (Contributed by NM, 20-Sep-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ {𝑧 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑} ∈ V | ||
| Theorem | xpexgALT 7978 | Alternate proof of xpexg 7742 requiring Replacement (ax-rep 5249) but not Power Set (ax-pow 5335). (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | ||
| Theorem | offval3 7979* | General value of (𝐹 ∘f 𝑅𝐺) with no assumptions on functionality of 𝐹 and 𝐺. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) | ||
| Theorem | offres 7980 | Pointwise combination commutes with restriction. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘f 𝑅𝐺) ↾ 𝐷) = ((𝐹 ↾ 𝐷) ∘f 𝑅(𝐺 ↾ 𝐷))) | ||
| Theorem | ofmres 7981* | Equivalent expressions for a restriction of the function operation map. Unlike ∘f 𝑅 which is a proper class, ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) can be a set by ofmresex 7982, allowing it to be used as a function or structure argument. By ofmresval 7685, the restricted operation map values are the same as the original values, allowing theorems for ∘f 𝑅 to be reused. (Contributed by NM, 20-Oct-2014.) |
| ⊢ ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘f 𝑅𝑔)) | ||
| Theorem | ofmresex 7982 | Existence of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) ∈ V) | ||
| Theorem | mptcnfimad 7983* | The converse of a mapping of subsets to their image of a bijection. (Contributed by AV, 23-Apr-2025.) |
| ⊢ 𝑀 = (𝑥 ∈ 𝐴 ↦ (𝐹 “ 𝑥)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑊) & ⊢ (𝜑 → 𝐴 ⊆ 𝒫 𝑉) & ⊢ (𝜑 → ran 𝑀 ⊆ 𝒫 𝑊) & ⊢ (𝜑 → 𝑉 ∈ 𝑈) ⇒ ⊢ (𝜑 → ◡𝑀 = (𝑦 ∈ ran 𝑀 ↦ (◡𝐹 “ 𝑦))) | ||
| Syntax | c1st 7984 | Extend the definition of a class to include the first member an ordered pair function. |
| class 1st | ||
| Syntax | c2nd 7985 | Extend the definition of a class to include the second member an ordered pair function. |
| class 2nd | ||
| Definition | df-1st 7986 | Define a function that extracts the first member, or abscissa, of an ordered pair. Theorem op1st 7994 proves that it does this. For example, (1st ‘〈3, 4〉) = 3. Equivalent to Definition 5.13 (i) of [Monk1] p. 52 (compare op1sta 6214 and op1stb 5446). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.) |
| ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | ||
| Definition | df-2nd 7987 | Define a function that extracts the second member, or ordinate, of an ordered pair. Theorem op2nd 7995 proves that it does this. For example, (2nd ‘〈3, 4〉) = 4. Equivalent to Definition 5.13 (ii) of [Monk1] p. 52 (compare op2nda 6217 and op2ndb 6216). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.) |
| ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | ||
| Theorem | 1stval 7988 | The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ (1st ‘𝐴) = ∪ dom {𝐴} | ||
| Theorem | 2ndval 7989 | The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ (2nd ‘𝐴) = ∪ ran {𝐴} | ||
| Theorem | 1stnpr 7990 | Value of the first-member function at non-pairs. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
| ⊢ (¬ 𝐴 ∈ (V × V) → (1st ‘𝐴) = ∅) | ||
| Theorem | 2ndnpr 7991 | Value of the second-member function at non-pairs. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
| ⊢ (¬ 𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∅) | ||
| Theorem | 1st0 7992 | The value of the first-member function at the empty set. (Contributed by NM, 23-Apr-2007.) |
| ⊢ (1st ‘∅) = ∅ | ||
| Theorem | 2nd0 7993 | The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.) |
| ⊢ (2nd ‘∅) = ∅ | ||
| Theorem | op1st 7994 | Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (1st ‘〈𝐴, 𝐵〉) = 𝐴 | ||
| Theorem | op2nd 7995 | Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 | ||
| Theorem | op1std 7996 | Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = 𝐴) | ||
| Theorem | op2ndd 7997 | Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = 𝐵) | ||
| Theorem | op1stg 7998 | Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | ||
| Theorem | op2ndg 7999 | Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | ||
| Theorem | ot1stg 8000 | Extract the first member of an ordered triple. (Due to infrequent usage, it isn't worthwhile at this point to define special extractors for triples, so we reuse the ordered pair extractors for ot1stg 8000, ot2ndg 8001, ot3rdg 8002.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |