| Metamath
Proof Explorer Theorem List (p. 80 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fvclex 7901* | Existence of the class of values of a set. (Contributed by NM, 9-Nov-1995.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ∈ V | ||
| Theorem | fvresex 7902* | Existence of the class of values of a restricted class. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 11-Sep-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)} ∈ V | ||
| Theorem | abrexexg 7903* | Existence of a class abstraction of existentially restricted sets. The class 𝐵 can be thought of as an expression in 𝑥 (which is typically a free variable in the class expression substituted for 𝐵) and the class abstraction appearing in the statement as the class of values 𝐵 as 𝑥 varies through 𝐴. If the "domain" 𝐴 is a set, then the abstraction is also a set. Therefore, this statement is a kind of Replacement. This can be seen by tracing back through the path axrep6g 5232, axrep6 5230, ax-rep 5221. See also abrexex2g 7906. There are partial converses under additional conditions, see for instance abnexg 7696. (Contributed by NM, 3-Nov-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) Avoid ax-10 2142, ax-11 2158, ax-12 2178, ax-pr 5374, ax-un 7675 and shorten proof. (Revised by SN, 11-Dec-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | ||
| Theorem | abrexex 7904* | Existence of a class abstraction of existentially restricted sets. See the comment of abrexexg 7903. See also abrexex2 7911. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V | ||
| Theorem | iunexg 7905* | The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵. (Contributed by NM, 23-Mar-2006.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | ||
| Theorem | abrexex2g 7906* | Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ 𝑊) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V) | ||
| Theorem | opabex3d 7907* | Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017.) (Revised by AV, 9-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → {𝑦 ∣ 𝜓} ∈ V) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} ∈ V) | ||
| Theorem | opabex3rd 7908* | Existence of an ordered pair abstraction if the second components are elements of a set. (Contributed by AV, 17-Sep-2023.) (Revised by AV, 9-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → {𝑥 ∣ 𝜓} ∈ V) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} ∈ V) | ||
| Theorem | opabex3 7909* | Existence of an ordered pair abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 ∈ 𝐴 → {𝑦 ∣ 𝜑} ∈ V) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V | ||
| Theorem | iunex 7910* | The existence of an indexed union. 𝑥 is normally a free-variable parameter in the class expression substituted for 𝐵, which can be read informally as 𝐵(𝑥). (Contributed by NM, 13-Oct-2003.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V | ||
| Theorem | abrexex2 7911* | Existence of an existentially restricted class abstraction. 𝜑 normally has free-variable parameters 𝑥 and 𝑦. See also abrexex 7904. (Contributed by NM, 12-Sep-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V | ||
| Theorem | abexssex 7912* | Existence of a class abstraction with an existentially quantified expression. Both 𝑥 and 𝑦 can be free in 𝜑. (Contributed by NM, 29-Jul-2006.) |
| ⊢ 𝐴 ∈ V & ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V | ||
| Theorem | abexex 7913* | A condition where a class abstraction continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝜑 → 𝑥 ∈ 𝐴) & ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥𝜑} ∈ V | ||
| Theorem | f1oweALT 7914* | Alternate proof of f1owe 7294, more direct since not using the isomorphism predicate, but requiring ax-un 7675. (Contributed by NM, 4-Mar-1997.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝑦)} ⇒ ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑆 We 𝐵 → 𝑅 We 𝐴)) | ||
| Theorem | wemoiso 7915* | Thus, there is at most one isomorphism between any two well-ordered sets. TODO: Shorten finnisoeu 10026. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| ⊢ (𝑅 We 𝐴 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | ||
| Theorem | wemoiso2 7916* | Thus, there is at most one isomorphism between any two well-ordered sets. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| ⊢ (𝑆 We 𝐵 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | ||
| Theorem | oprabexd 7917* | Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by AV, 9-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑧𝜓) & ⊢ (𝜑 → 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)}) ⇒ ⊢ (𝜑 → 𝐹 ∈ V) | ||
| Theorem | oprabex 7918* | Existence of an operation class abstraction. (Contributed by NM, 19-Oct-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃*𝑧𝜑) & ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⇒ ⊢ 𝐹 ∈ V | ||
| Theorem | oprabex3 7919* | Existence of an operation class abstraction (special case). (Contributed by NM, 19-Oct-2004.) |
| ⊢ 𝐻 ∈ V & ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅))} ⇒ ⊢ 𝐹 ∈ V | ||
| Theorem | oprabrexex2 7920* | Existence of an existentially restricted operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) |
| ⊢ 𝐴 ∈ V & ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ∈ V ⇒ ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑤 ∈ 𝐴 𝜑} ∈ V | ||
| Theorem | ab2rexex 7921* | Existence of a class abstraction of existentially restricted sets. Variables 𝑥 and 𝑦 are normally free-variable parameters in the class expression substituted for 𝐶, which can be thought of as 𝐶(𝑥, 𝑦). See comments for abrexex 7904. (Contributed by NM, 20-Sep-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V | ||
| Theorem | ab2rexex2 7922* | Existence of an existentially restricted class abstraction. 𝜑 normally has free-variable parameters 𝑥, 𝑦, and 𝑧. Compare abrexex2 7911. (Contributed by NM, 20-Sep-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ {𝑧 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑} ∈ V | ||
| Theorem | xpexgALT 7923 | Alternate proof of xpexg 7690 requiring Replacement (ax-rep 5221) but not Power Set (ax-pow 5307). (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | ||
| Theorem | offval3 7924* | General value of (𝐹 ∘f 𝑅𝐺) with no assumptions on functionality of 𝐹 and 𝐺. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) | ||
| Theorem | offres 7925 | Pointwise combination commutes with restriction. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘f 𝑅𝐺) ↾ 𝐷) = ((𝐹 ↾ 𝐷) ∘f 𝑅(𝐺 ↾ 𝐷))) | ||
| Theorem | ofmres 7926* | Equivalent expressions for a restriction of the function operation map. Unlike ∘f 𝑅 which is a proper class, ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) can be a set by ofmresex 7927, allowing it to be used as a function or structure argument. By ofmresval 7633, the restricted operation map values are the same as the original values, allowing theorems for ∘f 𝑅 to be reused. (Contributed by NM, 20-Oct-2014.) |
| ⊢ ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘f 𝑅𝑔)) | ||
| Theorem | ofmresex 7927 | Existence of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) ∈ V) | ||
| Theorem | mptcnfimad 7928* | The converse of a mapping of subsets to their image of a bijection. (Contributed by AV, 23-Apr-2025.) |
| ⊢ 𝑀 = (𝑥 ∈ 𝐴 ↦ (𝐹 “ 𝑥)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑊) & ⊢ (𝜑 → 𝐴 ⊆ 𝒫 𝑉) & ⊢ (𝜑 → ran 𝑀 ⊆ 𝒫 𝑊) & ⊢ (𝜑 → 𝑉 ∈ 𝑈) ⇒ ⊢ (𝜑 → ◡𝑀 = (𝑦 ∈ ran 𝑀 ↦ (◡𝐹 “ 𝑦))) | ||
| Syntax | c1st 7929 | Extend the definition of a class to include the first member an ordered pair function. |
| class 1st | ||
| Syntax | c2nd 7930 | Extend the definition of a class to include the second member an ordered pair function. |
| class 2nd | ||
| Definition | df-1st 7931 | Define a function that extracts the first member, or abscissa, of an ordered pair. Theorem op1st 7939 proves that it does this. For example, (1st ‘〈3, 4〉) = 3. Equivalent to Definition 5.13 (i) of [Monk1] p. 52 (compare op1sta 6178 and op1stb 5418). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.) |
| ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | ||
| Definition | df-2nd 7932 | Define a function that extracts the second member, or ordinate, of an ordered pair. Theorem op2nd 7940 proves that it does this. For example, (2nd ‘〈3, 4〉) = 4. Equivalent to Definition 5.13 (ii) of [Monk1] p. 52 (compare op2nda 6181 and op2ndb 6180). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.) |
| ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | ||
| Theorem | 1stval 7933 | The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ (1st ‘𝐴) = ∪ dom {𝐴} | ||
| Theorem | 2ndval 7934 | The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ (2nd ‘𝐴) = ∪ ran {𝐴} | ||
| Theorem | 1stnpr 7935 | Value of the first-member function at non-pairs. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
| ⊢ (¬ 𝐴 ∈ (V × V) → (1st ‘𝐴) = ∅) | ||
| Theorem | 2ndnpr 7936 | Value of the second-member function at non-pairs. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
| ⊢ (¬ 𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∅) | ||
| Theorem | 1st0 7937 | The value of the first-member function at the empty set. (Contributed by NM, 23-Apr-2007.) |
| ⊢ (1st ‘∅) = ∅ | ||
| Theorem | 2nd0 7938 | The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.) |
| ⊢ (2nd ‘∅) = ∅ | ||
| Theorem | op1st 7939 | Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (1st ‘〈𝐴, 𝐵〉) = 𝐴 | ||
| Theorem | op2nd 7940 | Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 | ||
| Theorem | op1std 7941 | Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = 𝐴) | ||
| Theorem | op2ndd 7942 | Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = 𝐵) | ||
| Theorem | op1stg 7943 | Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | ||
| Theorem | op2ndg 7944 | Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | ||
| Theorem | ot1stg 7945 | Extract the first member of an ordered triple. (Due to infrequent usage, it isn't worthwhile at this point to define special extractors for triples, so we reuse the ordered pair extractors for ot1stg 7945, ot2ndg 7946, ot3rdg 7947.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴) | ||
| Theorem | ot2ndg 7946 | Extract the second member of an ordered triple. (See ot1stg 7945 comment.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵) | ||
| Theorem | ot3rdg 7947 | Extract the third member of an ordered triple. (See ot1stg 7945 comment.) (Contributed by NM, 3-Apr-2015.) |
| ⊢ (𝐶 ∈ 𝑉 → (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶) | ||
| Theorem | 1stval2 7948 | Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) |
| ⊢ (𝐴 ∈ (V × V) → (1st ‘𝐴) = ∩ ∩ 𝐴) | ||
| Theorem | 2ndval2 7949 | Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) |
| ⊢ (𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) | ||
| Theorem | oteqimp 7950 | The components of an ordered triple. (Contributed by Alexander van der Vekens, 2-Mar-2018.) |
| ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((1st ‘(1st ‘𝑇)) = 𝐴 ∧ (2nd ‘(1st ‘𝑇)) = 𝐵 ∧ (2nd ‘𝑇) = 𝐶))) | ||
| Theorem | fo1st 7951 | The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ 1st :V–onto→V | ||
| Theorem | fo2nd 7952 | The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ 2nd :V–onto→V | ||
| Theorem | br1steqg 7953 | Uniqueness condition for the binary relation 1st. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on 𝐶. (Revised by Peter Mazsa, 17-Jan-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉1st 𝐶 ↔ 𝐶 = 𝐴)) | ||
| Theorem | br2ndeqg 7954 | Uniqueness condition for the binary relation 2nd. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on 𝐶. (Revised by Peter Mazsa, 17-Jan-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵)) | ||
| Theorem | f1stres 7955 | Mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 | ||
| Theorem | f2ndres 7956 | Mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 | ||
| Theorem | fo1stres 7957 | Onto mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 14-Dec-2008.) |
| ⊢ (𝐵 ≠ ∅ → (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto→𝐴) | ||
| Theorem | fo2ndres 7958 | Onto mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 14-Dec-2008.) |
| ⊢ (𝐴 ≠ ∅ → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto→𝐵) | ||
| Theorem | 1st2val 7959* | Value of an alternate definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 30-Dec-2014.) |
| ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥}‘𝐴) = (1st ‘𝐴) | ||
| Theorem | 2nd2val 7960* | Value of an alternate definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 30-Dec-2014.) |
| ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦}‘𝐴) = (2nd ‘𝐴) | ||
| Theorem | 1stcof 7961 | Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.) |
| ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st ∘ 𝐹):𝐴⟶𝐵) | ||
| Theorem | 2ndcof 7962 | Composition of the second member function with another function. (Contributed by FL, 15-Oct-2012.) |
| ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd ∘ 𝐹):𝐴⟶𝐶) | ||
| Theorem | xp1st 7963 | Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (1st ‘𝐴) ∈ 𝐵) | ||
| Theorem | xp2nd 7964 | Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (2nd ‘𝐴) ∈ 𝐶) | ||
| Theorem | elxp6 7965 | Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp4 7862. (Contributed by NM, 9-Oct-2004.) |
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | ||
| Theorem | elxp7 7966 | Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp4 7862. (Contributed by NM, 19-Aug-2006.) |
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | ||
| Theorem | eqopi 7967 | Equality with an ordered pair. (Contributed by NM, 15-Dec-2008.) (Revised by Mario Carneiro, 23-Feb-2014.) |
| ⊢ ((𝐴 ∈ (𝑉 × 𝑊) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) → 𝐴 = 〈𝐵, 𝐶〉) | ||
| Theorem | xp2 7968* | Representation of Cartesian product based on ordered pair component functions. (Contributed by NM, 16-Sep-2006.) |
| ⊢ (𝐴 × 𝐵) = {𝑥 ∈ (V × V) ∣ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ 𝐵)} | ||
| Theorem | unielxp 7969 | The membership relation for a Cartesian product is inherited by union. (Contributed by NM, 16-Sep-2006.) |
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ 𝐴 ∈ ∪ (𝐵 × 𝐶)) | ||
| Theorem | 1st2nd2 7970 | Reconstruction of a member of a Cartesian product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) |
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | ||
| Theorem | 1st2ndb 7971 | Reconstruction of an ordered pair in terms of its components. (Contributed by NM, 25-Feb-2014.) |
| ⊢ (𝐴 ∈ (V × V) ↔ 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | ||
| Theorem | xpopth 7972 | An ordered pair theorem for members of Cartesian products. (Contributed by NM, 20-Jun-2007.) |
| ⊢ ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) ↔ 𝐴 = 𝐵)) | ||
| Theorem | eqop 7973 | Two ways to express equality with an ordered pair. (Contributed by NM, 3-Sep-2007.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = 〈𝐵, 𝐶〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) | ||
| Theorem | eqop2 7974 | Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 = 〈𝐵, 𝐶〉 ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) | ||
| Theorem | op1steq 7975* | Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.) |
| ⊢ (𝐴 ∈ (𝑉 × 𝑊) → ((1st ‘𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) | ||
| Theorem | opreuopreu 7976* | There is a unique ordered pair fulfilling a wff iff its components fulfil a corresponding wff. (Contributed by AV, 2-Jul-2023.) |
| ⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → (𝜓 ↔ 𝜑)) ⇒ ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃!𝑝 ∈ (𝐴 × 𝐵)∃𝑎∃𝑏(𝑝 = 〈𝑎, 𝑏〉 ∧ 𝜓)) | ||
| Theorem | el2xptp 7977* | A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.) |
| ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉) | ||
| Theorem | el2xptp0 7978 | A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.) |
| ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st ‘𝐴)) = 𝑋 ∧ (2nd ‘(1st ‘𝐴)) = 𝑌 ∧ (2nd ‘𝐴) = 𝑍)) ↔ 𝐴 = 〈𝑋, 𝑌, 𝑍〉)) | ||
| Theorem | el2xpss 7979* | Version of elrel 5745 for triple Cartesian products. (Contributed by Scott Fenton, 1-Feb-2025.) |
| ⊢ ((𝐴 ∈ 𝑅 ∧ 𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷)) → ∃𝑥∃𝑦∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉) | ||
| Theorem | 2nd1st 7980 | Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.) |
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ ◡{𝐴} = 〈(2nd ‘𝐴), (1st ‘𝐴)〉) | ||
| Theorem | 1st2nd 7981 | Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.) |
| ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | ||
| Theorem | 1stdm 7982 | The first ordered pair component of a member of a relation belongs to the domain of the relation. (Contributed by NM, 17-Sep-2006.) |
| ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (1st ‘𝐴) ∈ dom 𝑅) | ||
| Theorem | 2ndrn 7983 | The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.) |
| ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) | ||
| Theorem | 1st2ndbr 7984 | Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.) |
| ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) | ||
| Theorem | releldm2 7985* | Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013.) |
| ⊢ (Rel 𝐴 → (𝐵 ∈ dom 𝐴 ↔ ∃𝑥 ∈ 𝐴 (1st ‘𝑥) = 𝐵)) | ||
| Theorem | reldm 7986* | An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.) |
| ⊢ (Rel 𝐴 → dom 𝐴 = ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))) | ||
| Theorem | releldmdifi 7987* | One way of expressing membership in the difference of domains of two nested relations. (Contributed by AV, 26-Oct-2023.) |
| ⊢ ((Rel 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) → ∃𝑥 ∈ (𝐴 ∖ 𝐵)(1st ‘𝑥) = 𝐶)) | ||
| Theorem | funfv1st2nd 7988 | The function value for the first component of an ordered pair is the second component of the ordered pair. (Contributed by AV, 17-Oct-2023.) |
| ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝐹) → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋)) | ||
| Theorem | funelss 7989 | If the first component of an element of a function is in the domain of a subset of the function, the element is a member of this subset. (Contributed by AV, 27-Oct-2023.) |
| ⊢ ((Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑋 ∈ 𝐴) → ((1st ‘𝑋) ∈ dom 𝐵 → 𝑋 ∈ 𝐵)) | ||
| Theorem | funeldmdif 7990* | Two ways of expressing membership in the difference of domains of two nested functions. (Contributed by AV, 27-Oct-2023.) |
| ⊢ ((Fun 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) ↔ ∃𝑥 ∈ (𝐴 ∖ 𝐵)(1st ‘𝑥) = 𝐶)) | ||
| Theorem | sbcopeq1a 7991 | Equality theorem for substitution of a class for an ordered pair (analogue of sbceq1a 3755 that avoids the existential quantifiers of copsexg 5438). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ([(1st ‘𝐴) / 𝑥][(2nd ‘𝐴) / 𝑦]𝜑 ↔ 𝜑)) | ||
| Theorem | csbopeq1a 7992 | Equality theorem for substitution of a class 𝐴 for an ordered pair 〈𝑥, 𝑦〉 in 𝐵 (analogue of csbeq1a 3867). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = 𝐵) | ||
| Theorem | sbcoteq1a 7993 | Equality theorem for substitution of a class for an ordered triple. (Contributed by Scott Fenton, 22-Aug-2024.) |
| ⊢ (𝐴 = 〈𝑥, 𝑦, 𝑧〉 → ([(1st ‘(1st ‘𝐴)) / 𝑥][(2nd ‘(1st ‘𝐴)) / 𝑦][(2nd ‘𝐴) / 𝑧]𝜑 ↔ 𝜑)) | ||
| Theorem | dfopab2 7994* | A way to define an ordered-pair class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∈ (V × V) ∣ [(1st ‘𝑧) / 𝑥][(2nd ‘𝑧) / 𝑦]𝜑} | ||
| Theorem | dfoprab3s 7995* | A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)} | ||
| Theorem | dfoprab3 7996* | Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.) |
| ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} | ||
| Theorem | dfoprab4 7997* | Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} | ||
| Theorem | dfoprab4f 7998* | Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 20-Dec-2008.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} | ||
| Theorem | opabex2 7999* | Condition for an operation to be a set. (Contributed by Thierry Arnoux, 25-Jun-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ∈ V) | ||
| Theorem | opabn1stprc 8000* | An ordered-pair class abstraction which does not depend on the first abstraction variable is a proper class. There must be, however, at least one set which satisfies the restricting wff. (Contributed by AV, 27-Dec-2020.) |
| ⊢ (∃𝑦𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜑} ∉ V) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |