HomeHome Metamath Proof Explorer
Theorem List (p. 80 of 454)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28701)
  Hilbert Space Explorer  Hilbert Space Explorer
(28702-30224)
  Users' Mathboxes  Users' Mathboxes
(30225-45333)
 

Theorem List for Metamath Proof Explorer - 7901-8000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremtposf1o2 7901 Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015.)
(Rel 𝐴 → (𝐹:𝐴1-1-onto𝐵 → tpos 𝐹:𝐴1-1-onto𝐵))
 
Theoremtposfo 7902 The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.)
(𝐹:(𝐴 × 𝐵)–onto𝐶 → tpos 𝐹:(𝐵 × 𝐴)–onto𝐶)
 
Theoremtposf 7903 The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.)
(𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:(𝐵 × 𝐴)⟶𝐶)
 
Theoremtposfn 7904 Functionality of a transposition. (Contributed by Mario Carneiro, 4-Oct-2015.)
(𝐹 Fn (𝐴 × 𝐵) → tpos 𝐹 Fn (𝐵 × 𝐴))
 
Theoremtpos0 7905 Transposition of the empty set. (Contributed by NM, 10-Sep-2015.)
tpos ∅ = ∅
 
Theoremtposco 7906 Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.)
tpos (𝐹𝐺) = (𝐹 ∘ tpos 𝐺)
 
Theoremtpossym 7907* Two ways to say a function is symmetric. (Contributed by Mario Carneiro, 4-Oct-2015.)
(𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)))
 
Theoremtposeqi 7908 Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
𝐹 = 𝐺       tpos 𝐹 = tpos 𝐺
 
Theoremtposex 7909 A transposition is a set. (Contributed by Mario Carneiro, 10-Sep-2015.)
𝐹 ∈ V       tpos 𝐹 ∈ V
 
Theoremnftpos 7910 Hypothesis builder for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
𝑥𝐹       𝑥tpos 𝐹
 
Theoremtposoprab 7911* Transposition of a class of ordered triples. (Contributed by Mario Carneiro, 10-Sep-2015.)
𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}       tpos 𝐹 = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∣ 𝜑}
 
Theoremtposmpo 7912* Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       tpos 𝐹 = (𝑦𝐵, 𝑥𝐴𝐶)
 
Theoremtposconst 7913 The transposition of a constant operation using the relation representation. (Contributed by SO, 11-Jul-2018.)
tpos ((𝐴 × 𝐵) × {𝐶}) = ((𝐵 × 𝐴) × {𝐶})
 
2.4.12  Curry and uncurry
 
Syntaxccur 7914 Extend class notation to include the currying function.
class curry 𝐴
 
Syntaxcunc 7915 Extend class notation to include the uncurrying function.
class uncurry 𝐴
 
Definitiondf-cur 7916* Define the currying of 𝐹, which splits a function of two arguments into a function of the first argument, producing a function over the second argument. (Contributed by Mario Carneiro, 7-Jan-2017.)
curry 𝐹 = (𝑥 ∈ dom dom 𝐹 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧})
 
Definitiondf-unc 7917* Define the uncurrying of 𝐹, which takes a function producing functions, and transforms it into a two-argument function. (Contributed by Mario Carneiro, 7-Jan-2017.)
uncurry 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧}
 
Theoremmpocurryd 7918* The currying of an operation given in maps-to notation, splitting the operation (function of two arguments) into a function of the first argument, producing a function over the second argument. (Contributed by AV, 27-Oct-2019.)
𝐹 = (𝑥𝑋, 𝑦𝑌𝐶)    &   (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐶𝑉)    &   (𝜑𝑌 ≠ ∅)       (𝜑 → curry 𝐹 = (𝑥𝑋 ↦ (𝑦𝑌𝐶)))
 
Theoremmpocurryvald 7919* The value of a curried operation given in maps-to notation is a function over the second argument of the original operation. (Contributed by AV, 27-Oct-2019.)
𝐹 = (𝑥𝑋, 𝑦𝑌𝐶)    &   (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐶𝑉)    &   (𝜑𝑌 ≠ ∅)    &   (𝜑𝑌𝑊)    &   (𝜑𝐴𝑋)       (𝜑 → (curry 𝐹𝐴) = (𝑦𝑌𝐴 / 𝑥𝐶))
 
Theoremfvmpocurryd 7920* The value of the value of a curried operation given in maps-to notation is the operation value of the original operation. (Contributed by AV, 27-Oct-2019.)
𝐹 = (𝑥𝑋, 𝑦𝑌𝐶)    &   (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐶𝑉)    &   (𝜑𝑌𝑊)    &   (𝜑𝐴𝑋)    &   (𝜑𝐵𝑌)       (𝜑 → ((curry 𝐹𝐴)‘𝐵) = (𝐴𝐹𝐵))
 
2.4.13  Undefined values
 
Syntaxcund 7921 Extend class notation with undefined value function.
class Undef
 
Definitiondf-undef 7922 Define the undefined value function, whose value at set 𝑠 is guaranteed not to be a member of 𝑠 (see pwuninel 7924). (Contributed by NM, 15-Sep-2011.)
Undef = (𝑠 ∈ V ↦ 𝒫 𝑠)
 
Theorempwuninel2 7923 Direct proof of pwuninel 7924 avoiding functions and thus several ZF axioms. (Contributed by Stefan O'Rear, 22-Feb-2015.)
( 𝐴𝑉 → ¬ 𝒫 𝐴𝐴)
 
Theorempwuninel 7924 The power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. See also pwuninel2 7923. (Contributed by NM, 27-Jun-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
¬ 𝒫 𝐴𝐴
 
Theoremundefval 7925 Value of the undefined value function. Normally we will not reference the explicit value but will use undefnel 7927 instead. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 24-Dec-2016.)
(𝑆𝑉 → (Undef‘𝑆) = 𝒫 𝑆)
 
Theoremundefnel2 7926 The undefined value generated from a set is not a member of the set. (Contributed by NM, 15-Sep-2011.)
(𝑆𝑉 → ¬ (Undef‘𝑆) ∈ 𝑆)
 
Theoremundefnel 7927 The undefined value generated from a set is not a member of the set. (Contributed by NM, 15-Sep-2011.)
(𝑆𝑉 → (Undef‘𝑆) ∉ 𝑆)
 
Theoremundefne0 7928 The undefined value generated from a set is not empty. (Contributed by NM, 3-Sep-2018.)
(𝑆𝑉 → (Undef‘𝑆) ≠ ∅)
 
2.4.14  Well-founded recursion
 
Syntaxcwrecs 7929 Declare syntax for the well-founded recursive function generator.
class wrecs(𝑅, 𝐴, 𝐹)
 
Definitiondf-wrecs 7930* Here we define the well-founded recursive function generator. This function takes the usual expressions from recursion theorems and forms a unified definition. Specifically, given a function 𝐹, a relationship 𝑅, and a base set 𝐴, this definition generates a function 𝐺 = wrecs(𝑅, 𝐴, 𝐹) that has property that, at any point 𝑥𝐴, (𝐺𝑥) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑥))). See wfr1 7956, wfr2 7957, and wfr3 7958. (Contributed by Scott Fenton, 7-Jun-2018.) (New usage is discouraged.)
wrecs(𝑅, 𝐴, 𝐹) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
 
Theoremwrecseq123 7931 General equality theorem for the well-founded recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.)
((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐵, 𝐺))
 
Theoremnfwrecs 7932 Bound-variable hypothesis builder for the well-founded recursive function generator. (Contributed by Scott Fenton, 9-Jun-2018.)
𝑥𝑅    &   𝑥𝐴    &   𝑥𝐹       𝑥wrecs(𝑅, 𝐴, 𝐹)
 
Theoremwrecseq1 7933 Equality theorem for the well-founded recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.)
(𝑅 = 𝑆 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐴, 𝐹))
 
Theoremwrecseq2 7934 Equality theorem for the well-founded recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.)
(𝐴 = 𝐵 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐵, 𝐹))
 
Theoremwrecseq3 7935 Equality theorem for the well-founded recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.)
(𝐹 = 𝐺 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐴, 𝐺))
 
Theoremwfr3g 7936* Functions defined by well-founded recursion are identical up to relation, domain, and characteristic function. (Contributed by Scott Fenton, 11-Feb-2011.)
(((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 = 𝐺)
 
Theoremwfrlem1 7937* Lemma for well-founded recursion. The final item we are interested in is the union of acceptable functions 𝐵. This lemma just changes bound variables for later use. (Contributed by Scott Fenton, 21-Apr-2011.)
𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}       𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))}
 
Theoremwfrlem2 7938* Lemma for well-founded recursion. An acceptable function is a function. (Contributed by Scott Fenton, 21-Apr-2011.)
𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}       (𝑔𝐵 → Fun 𝑔)
 
Theoremwfrlem3 7939* Lemma for well-founded recursion. An acceptable function's domain is a subset of 𝐴. (Contributed by Scott Fenton, 21-Apr-2011.)
𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}       (𝑔𝐵 → dom 𝑔𝐴)
 
Theoremwfrlem3a 7940* Lemma for well-founded recursion. Show membership in the class of acceptable functions. (Contributed by Scott Fenton, 31-Jul-2020.)
𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}    &   𝐺 ∈ V       (𝐺𝐵 ↔ ∃𝑧(𝐺 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤)))))
 
Theoremwfrlem4 7941* Lemma for well-founded recursion. Properties of the restriction of an acceptable function to the domain of another one. (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by AV, 18-Jul-2022.)
𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}       ((𝑔𝐵𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝐹‘((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
 
Theoremwfrlem5 7942* Lemma for well-founded recursion. The values of two acceptable functions agree within their domains. (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
𝑅 We 𝐴    &   𝑅 Se 𝐴    &   𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}       ((𝑔𝐵𝐵) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
 
Theoremwfrrel 7943 The well-founded recursion generator generates a relationship. (Contributed by Scott Fenton, 8-Jun-2018.)
𝐹 = wrecs(𝑅, 𝐴, 𝐺)       Rel 𝐹
 
Theoremwfrdmss 7944 The domain of the well-founded recursion generator is a subclass of 𝐴. (Contributed by Scott Fenton, 21-Apr-2011.)
𝐹 = wrecs(𝑅, 𝐴, 𝐺)       dom 𝐹𝐴
 
Theoremwfrlem8 7945 Lemma for well-founded recursion. Compute the prececessor class for an 𝑅 minimal element of (𝐴 ∖ dom 𝐹). (Contributed by Scott Fenton, 21-Apr-2011.)
𝐹 = wrecs(𝑅, 𝐴, 𝐺)       (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑋) = ∅ ↔ Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, dom 𝐹, 𝑋))
 
Theoremwfrdmcl 7946 Given 𝐹 = wrecs(𝑅, 𝐴, 𝑋) ∧ 𝑋 ∈ dom 𝐹, then its predecessor class is a subset of dom 𝐹. (Contributed by Scott Fenton, 21-Apr-2011.)
𝐹 = wrecs(𝑅, 𝐴, 𝐺)       (𝑋 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐹)
 
Theoremwfrlem10 7947* Lemma for well-founded recursion. When 𝑧 is an 𝑅 minimal element of (𝐴 ∖ dom 𝐹), then its predecessor class is equal to dom 𝐹. (Contributed by Scott Fenton, 21-Apr-2011.)
𝑅 We 𝐴    &   𝐹 = wrecs(𝑅, 𝐴, 𝐺)       ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) = dom 𝐹)
 
Theoremwfrfun 7948 The well-founded function generator generates a function. (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
𝑅 We 𝐴    &   𝑅 Se 𝐴    &   𝐹 = wrecs(𝑅, 𝐴, 𝐺)       Fun 𝐹
 
Theoremwfrlem12 7949* Lemma for well-founded recursion. Here, we compute the value of the recursive definition generator. (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
𝑅 We 𝐴    &   𝑅 Se 𝐴    &   𝐹 = wrecs(𝑅, 𝐴, 𝐺)       (𝑦 ∈ dom 𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
 
Theoremwfrlem13 7950* Lemma for well-founded recursion. From here through wfrlem16 7953, we aim to prove that dom 𝐹 = 𝐴. We do this by supposing that there is an element 𝑧 of 𝐴 that is not in dom 𝐹. We then define 𝐶 by extending dom 𝐹 with the appropriate value at 𝑧. We then show that 𝑧 cannot be an 𝑅 minimal element of (𝐴 ∖ dom 𝐹), meaning that (𝐴 ∖ dom 𝐹) must be empty, so dom 𝐹 = 𝐴. Here, we show that 𝐶 is a function extending the domain of 𝐹 by one. (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
𝑅 We 𝐴    &   𝑅 Se 𝐴    &   𝐹 = wrecs(𝑅, 𝐴, 𝐺)    &   𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})       (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧}))
 
Theoremwfrlem14 7951* Lemma for well-founded recursion. Compute the value of 𝐶. (Contributed by Scott Fenton, 21-Apr-2011.)
𝑅 We 𝐴    &   𝑅 Se 𝐴    &   𝐹 = wrecs(𝑅, 𝐴, 𝐺)    &   𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})       (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
 
Theoremwfrlem15 7952* Lemma for well-founded recursion. When 𝑧 is 𝑅 minimal, 𝐶 is an acceptable function. This step is where the Axiom of Replacement becomes required. (Contributed by Scott Fenton, 21-Apr-2011.)
𝑅 We 𝐴    &   𝑅 Se 𝐴    &   𝐹 = wrecs(𝑅, 𝐴, 𝐺)    &   𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})       ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
 
Theoremwfrlem16 7953* Lemma for well-founded recursion. If 𝑧 is 𝑅 minimal in (𝐴 ∖ dom 𝐹), then 𝐶 is acceptable and thus a subset of 𝐹, but dom 𝐶 is bigger than dom 𝐹. Thus, 𝑧 cannot be minimal, so (𝐴 ∖ dom 𝐹) must be empty, and (due to wfrdmss 7944), dom 𝐹 = 𝐴. (Contributed by Scott Fenton, 21-Apr-2011.)
𝑅 We 𝐴    &   𝑅 Se 𝐴    &   𝐹 = wrecs(𝑅, 𝐴, 𝐺)    &   𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})       dom 𝐹 = 𝐴
 
Theoremwfrlem17 7954 Without using ax-rep 5154, show that all restrictions of wrecs are sets. (Contributed by Scott Fenton, 31-Jul-2020.)
𝑅 We 𝐴    &   𝑅 Se 𝐴    &   𝐹 = wrecs(𝑅, 𝐴, 𝐺)       (𝑋 ∈ dom 𝐹 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V)
 
Theoremwfr2a 7955 A weak version of wfr2 7957 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Scott Fenton, 30-Jul-2020.)
𝑅 We 𝐴    &   𝑅 Se 𝐴    &   𝐹 = wrecs(𝑅, 𝐴, 𝐺)       (𝑋 ∈ dom 𝐹 → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
 
Theoremwfr1 7956 The Principle of Well-Founded Recursion, part 1 of 3. We start with an arbitrary function 𝐺. Then, using a base class 𝐴 and a well-ordering 𝑅 of 𝐴, we define a function 𝐹. This function is said to be defined by "well-founded recursion." The purpose of these three theorems is to demonstrate the properties of 𝐹. We begin by showing that 𝐹 is a function over 𝐴. (Contributed by Scott Fenton, 22-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
𝑅 We 𝐴    &   𝑅 Se 𝐴    &   𝐹 = wrecs(𝑅, 𝐴, 𝐺)       𝐹 Fn 𝐴
 
Theoremwfr2 7957 The Principle of Well-Founded Recursion, part 2 of 3. Next, we show that the value of 𝐹 at any 𝑋𝐴 is 𝐺 recursively applied to all "previous" values of 𝐹. (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
𝑅 We 𝐴    &   𝑅 Se 𝐴    &   𝐹 = wrecs(𝑅, 𝐴, 𝐺)       (𝑋𝐴 → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
 
Theoremwfr3 7958* The principle of Well-Founded Recursion, part 3 of 3. Finally, we show that 𝐹 is unique. We do this by showing that any function 𝐻 with the same properties we proved of 𝐹 in wfr1 7956 and wfr2 7957 is identical to 𝐹. (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
𝑅 We 𝐴    &   𝑅 Se 𝐴    &   𝐹 = wrecs(𝑅, 𝐴, 𝐺)       ((𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧)))) → 𝐹 = 𝐻)
 
2.4.15  Functions on ordinals; strictly monotone ordinal functions
 
Theoremiunon 7959* The indexed union of a set of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 5-Dec-2016.)
((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ On) → 𝑥𝐴 𝐵 ∈ On)
 
Theoremiinon 7960* The nonempty indexed intersection of a class of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝑥𝐴 𝐵 ∈ On)
 
Theoremonfununi 7961* A property of functions on ordinal numbers. Generalization of Theorem Schema 8E of [Enderton] p. 218. (Contributed by Eric Schmidt, 26-May-2009.)
(Lim 𝑦 → (𝐹𝑦) = 𝑥𝑦 (𝐹𝑥))    &   ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦))       ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐹 𝑆) = 𝑥𝑆 (𝐹𝑥))
 
Theoremonovuni 7962* A variant of onfununi 7961 for operations. (Contributed by Eric Schmidt, 26-May-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
(Lim 𝑦 → (𝐴𝐹𝑦) = 𝑥𝑦 (𝐴𝐹𝑥))    &   ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦))       ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐴𝐹 𝑆) = 𝑥𝑆 (𝐴𝐹𝑥))
 
Theoremonoviun 7963* A variant of onovuni 7962 with indexed unions. (Contributed by Eric Schmidt, 26-May-2009.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
(Lim 𝑦 → (𝐴𝐹𝑦) = 𝑥𝑦 (𝐴𝐹𝑥))    &   ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦))       ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹 𝑧𝐾 𝐿) = 𝑧𝐾 (𝐴𝐹𝐿))
 
Theoremonnseq 7964* There are no length ω decreasing sequences in the ordinals. See also noinfep 9107 for a stronger version assuming Regularity. (Contributed by Mario Carneiro, 19-May-2015.)
((𝐹‘∅) ∈ On → ∃𝑥 ∈ ω ¬ (𝐹‘suc 𝑥) ∈ (𝐹𝑥))
 
Syntaxwsmo 7965 Introduce the strictly monotone ordinal function. A strictly monotone function is one that is constantly increasing across the ordinals.
wff Smo 𝐴
 
Definitiondf-smo 7966* Definition of a strictly monotone ordinal function. Definition 7.46 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 15-Nov-2011.)
(Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
 
Theoremdfsmo2 7967* Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 4-Mar-2013.)
(Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
 
Theoremissmo 7968* Conditions for which 𝐴 is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.) Avoid ax-13 2379. (Revised by Gino Giotto, 19-May-2023.)
𝐴:𝐵⟶On    &   Ord 𝐵    &   ((𝑥𝐵𝑦𝐵) → (𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))    &   dom 𝐴 = 𝐵       Smo 𝐴
 
Theoremissmo2 7969* Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.)
(𝐹:𝐴𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)) → Smo 𝐹))
 
Theoremsmoeq 7970 Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.)
(𝐴 = 𝐵 → (Smo 𝐴 ↔ Smo 𝐵))
 
Theoremsmodm 7971 The domain of a strictly monotone function is an ordinal. (Contributed by Andrew Salmon, 16-Nov-2011.)
(Smo 𝐴 → Ord dom 𝐴)
 
Theoremsmores 7972 A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
((Smo 𝐴𝐵 ∈ dom 𝐴) → Smo (𝐴𝐵))
 
Theoremsmores3 7973 A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.)
((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → Smo (𝐴𝐶))
 
Theoremsmores2 7974 A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013.)
((Smo 𝐹 ∧ Ord 𝐴) → Smo (𝐹𝐴))
 
Theoremsmodm2 7975 The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013.)
((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)
 
Theoremsmofvon2 7976 The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.)
(Smo 𝐹 → (𝐹𝐵) ∈ On)
 
Theoremiordsmo 7977 The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.)
Ord 𝐴       Smo ( I ↾ 𝐴)
 
Theoremsmo0 7978 The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011.)
Smo ∅
 
Theoremsmofvon 7979 If 𝐵 is a strictly monotone ordinal function, and 𝐴 is in the domain of 𝐵, then the value of the function at 𝐴 is an ordinal. (Contributed by Andrew Salmon, 20-Nov-2011.)
((Smo 𝐵𝐴 ∈ dom 𝐵) → (𝐵𝐴) ∈ On)
 
Theoremsmoel 7980 If 𝑥 is less than 𝑦 then a strictly monotone function's value will be strictly less at 𝑥 than at 𝑦. (Contributed by Andrew Salmon, 22-Nov-2011.)
((Smo 𝐵𝐴 ∈ dom 𝐵𝐶𝐴) → (𝐵𝐶) ∈ (𝐵𝐴))
 
Theoremsmoiun 7981* The value of a strictly monotone ordinal function contains its indexed union. (Contributed by Andrew Salmon, 22-Nov-2011.)
((Smo 𝐵𝐴 ∈ dom 𝐵) → 𝑥𝐴 (𝐵𝑥) ⊆ (𝐵𝐴))
 
Theoremsmoiso 7982 If 𝐹 is an isomorphism from an ordinal 𝐴 onto 𝐵, which is a subset of the ordinals, then 𝐹 is a strictly monotonic function. Exercise 3 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 24-Nov-2011.)
((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → Smo 𝐹)
 
Theoremsmoel2 7983 A strictly monotone ordinal function preserves the membership relation. (Contributed by Mario Carneiro, 12-Mar-2013.)
(((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐵𝐴𝐶𝐵)) → (𝐹𝐶) ∈ (𝐹𝐵))
 
Theoremsmo11 7984 A strictly monotone ordinal function is one-to-one. (Contributed by Mario Carneiro, 28-Feb-2013.)
((𝐹:𝐴𝐵 ∧ Smo 𝐹) → 𝐹:𝐴1-1𝐵)
 
Theoremsmoord 7985 A strictly monotone ordinal function preserves strict ordering. (Contributed by Mario Carneiro, 4-Mar-2013.)
(((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))
 
Theoremsmoword 7986 A strictly monotone ordinal function preserves weak ordering. (Contributed by Mario Carneiro, 4-Mar-2013.)
(((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ⊆ (𝐹𝐷)))
 
Theoremsmogt 7987 A strictly monotone ordinal function is greater than or equal to its argument. Exercise 1 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 23-Nov-2011.) (Revised by Mario Carneiro, 28-Feb-2013.)
((𝐹 Fn 𝐴 ∧ Smo 𝐹𝐶𝐴) → 𝐶 ⊆ (𝐹𝐶))
 
Theoremsmorndom 7988 The range of a strictly monotone ordinal function dominates the domain. (Contributed by Mario Carneiro, 13-Mar-2013.)
((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → 𝐴𝐵)
 
Theoremsmoiso2 7989 The strictly monotone ordinal functions are also isomorphisms of subclasses of On equipped with the membership relation. (Contributed by Mario Carneiro, 20-Mar-2013.)
((Ord 𝐴𝐵 ⊆ On) → ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) ↔ 𝐹 Isom E , E (𝐴, 𝐵)))
 
2.4.16  "Strong" transfinite recursion
 
Syntaxcrecs 7990 Notation for a function defined by strong transfinite recursion.
class recs(𝐹)
 
Definitiondf-recs 7991 Define a function recs(𝐹) on On, the class of ordinal numbers, by transfinite recursion given a rule 𝐹 which sets the next value given all values so far. See df-rdg 8029 for more details on why this definition is desirable. Unlike df-rdg 8029 which restricts the update rule to use only the previous value, this version allows the update rule to use all previous values, which is why it is described as "strong", although it is actually more primitive. See recsfnon 8022 and recsval 8023 for the primary contract of this definition. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Scott Fenton, 3-Aug-2020.)
recs(𝐹) = wrecs( E , On, 𝐹)
 
Theoremdfrecs3 7992* The old definition of transfinite recursion. This version is preferred for development, as it demonstrates the properties of transfinite recursion without relying on well-founded recursion. (Contributed by Scott Fenton, 3-Aug-2020.)
recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
 
Theoremrecseq 7993 Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
(𝐹 = 𝐺 → recs(𝐹) = recs(𝐺))
 
Theoremnfrecs 7994 Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
𝑥𝐹       𝑥recs(𝐹)
 
Theoremtfrlem1 7995* A technical lemma for transfinite recursion. Compare Lemma 1 of [TakeutiZaring] p. 47. (Contributed by NM, 23-Mar-1995.) (Revised by Mario Carneiro, 24-May-2019.)
(𝜑𝐴 ∈ On)    &   (𝜑 → (Fun 𝐹𝐴 ⊆ dom 𝐹))    &   (𝜑 → (Fun 𝐺𝐴 ⊆ dom 𝐺))    &   (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐵‘(𝐹𝑥)))    &   (𝜑 → ∀𝑥𝐴 (𝐺𝑥) = (𝐵‘(𝐺𝑥)))       (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
 
Theoremtfrlem3a 7996* Lemma for transfinite recursion. Let 𝐴 be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by NM, 9-Apr-1995.)
𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}    &   𝐺 ∈ V       (𝐺𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤))))
 
Theoremtfrlem3 7997* Lemma for transfinite recursion. Let 𝐴 be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by NM, 9-Apr-1995.)
𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}       𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤)))}
 
Theoremtfrlem4 7998* Lemma for transfinite recursion. 𝐴 is the class of all "acceptable" functions, and 𝐹 is their union. First we show that an acceptable function is in fact a function. (Contributed by NM, 9-Apr-1995.)
𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}       (𝑔𝐴 → Fun 𝑔)
 
Theoremtfrlem5 7999* Lemma for transfinite recursion. The values of two acceptable functions are the same within their domains. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 24-May-2019.)
𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}       ((𝑔𝐴𝐴) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
 
Theoremrecsfval 8000* Lemma for transfinite recursion. The definition recs is the union of all acceptable functions. (Contributed by Mario Carneiro, 9-May-2015.)
𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}       recs(𝐹) = 𝐴
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45333
  Copyright terms: Public domain < Previous  Next >