| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abrexex2 | Structured version Visualization version GIF version | ||
| Description: Existence of an existentially restricted class abstraction. 𝜑 normally has free-variable parameters 𝑥 and 𝑦. See also abrexex 7889. (Contributed by NM, 12-Sep-2004.) |
| Ref | Expression |
|---|---|
| abrexex2.1 | ⊢ 𝐴 ∈ V |
| abrexex2.2 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
| Ref | Expression |
|---|---|
| abrexex2 | ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abrexex2.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | abrexex2.2 | . . 3 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
| 3 | 2 | rgenw 3051 | . 2 ⊢ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ V |
| 4 | abrexex2g 7891 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ V) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V) | |
| 5 | 1, 3, 4 | mp2an 692 | 1 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 {cab 2709 ∀wral 3047 ∃wrex 3056 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-v 3438 df-ss 3914 df-uni 4855 df-iun 4938 |
| This theorem is referenced by: abexssex 7897 abexex 7898 oprabrexex2 7905 ab2rexex 7906 ab2rexex2 7907 |
| Copyright terms: Public domain | W3C validator |