MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexex2 Structured version   Visualization version   GIF version

Theorem abrexex2 7803
Description: Existence of an existentially restricted class abstraction. 𝜑 normally has free-variable parameters 𝑥 and 𝑦. See also abrexex 7796. (Contributed by NM, 12-Sep-2004.)
Hypotheses
Ref Expression
abrexex2.1 𝐴 ∈ V
abrexex2.2 {𝑦𝜑} ∈ V
Assertion
Ref Expression
abrexex2 {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem abrexex2
StepHypRef Expression
1 abrexex2.1 . 2 𝐴 ∈ V
2 abrexex2.2 . . 3 {𝑦𝜑} ∈ V
32rgenw 3076 . 2 𝑥𝐴 {𝑦𝜑} ∈ V
4 abrexex2g 7798 . 2 ((𝐴 ∈ V ∧ ∀𝑥𝐴 {𝑦𝜑} ∈ V) → {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V)
51, 3, 4mp2an 689 1 {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  {cab 2715  wral 3064  wrex 3065  Vcvv 3431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5210  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5486  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-f1 6433  df-fo 6434  df-f1o 6435  df-fv 6436
This theorem is referenced by:  abexssex  7804  abexex  7805  oprabrexex2  7812  ab2rexex  7813  ab2rexex2  7814
  Copyright terms: Public domain W3C validator