MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexex2 Structured version   Visualization version   GIF version

Theorem abrexex2 7973
Description: Existence of an existentially restricted class abstraction. 𝜑 normally has free-variable parameters 𝑥 and 𝑦. See also abrexex 7966. (Contributed by NM, 12-Sep-2004.)
Hypotheses
Ref Expression
abrexex2.1 𝐴 ∈ V
abrexex2.2 {𝑦𝜑} ∈ V
Assertion
Ref Expression
abrexex2 {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem abrexex2
StepHypRef Expression
1 abrexex2.1 . 2 𝐴 ∈ V
2 abrexex2.2 . . 3 {𝑦𝜑} ∈ V
32rgenw 3056 . 2 𝑥𝐴 {𝑦𝜑} ∈ V
4 abrexex2g 7968 . 2 ((𝐴 ∈ V ∧ ∀𝑥𝐴 {𝑦𝜑} ∈ V) → {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V)
51, 3, 4mp2an 692 1 {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  {cab 2714  wral 3052  wrex 3061  Vcvv 3464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-v 3466  df-ss 3948  df-uni 4889  df-iun 4974
This theorem is referenced by:  abexssex  7974  abexex  7975  oprabrexex2  7982  ab2rexex  7983  ab2rexex2  7984
  Copyright terms: Public domain W3C validator