| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abrexex2 | Structured version Visualization version GIF version | ||
| Description: Existence of an existentially restricted class abstraction. 𝜑 normally has free-variable parameters 𝑥 and 𝑦. See also abrexex 7966. (Contributed by NM, 12-Sep-2004.) |
| Ref | Expression |
|---|---|
| abrexex2.1 | ⊢ 𝐴 ∈ V |
| abrexex2.2 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
| Ref | Expression |
|---|---|
| abrexex2 | ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abrexex2.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | abrexex2.2 | . . 3 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
| 3 | 2 | rgenw 3056 | . 2 ⊢ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ V |
| 4 | abrexex2g 7968 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ V) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V) | |
| 5 | 1, 3, 4 | mp2an 692 | 1 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {cab 2714 ∀wral 3052 ∃wrex 3061 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-v 3466 df-ss 3948 df-uni 4889 df-iun 4974 |
| This theorem is referenced by: abexssex 7974 abexex 7975 oprabrexex2 7982 ab2rexex 7983 ab2rexex2 7984 |
| Copyright terms: Public domain | W3C validator |