Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abrexex2 | Structured version Visualization version GIF version |
Description: Existence of an existentially restricted class abstraction. 𝜑 normally has free-variable parameters 𝑥 and 𝑦. See also abrexex 7805. (Contributed by NM, 12-Sep-2004.) |
Ref | Expression |
---|---|
abrexex2.1 | ⊢ 𝐴 ∈ V |
abrexex2.2 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
Ref | Expression |
---|---|
abrexex2 | ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abrexex2.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | abrexex2.2 | . . 3 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
3 | 2 | rgenw 3076 | . 2 ⊢ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ V |
4 | abrexex2g 7807 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ V) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V) | |
5 | 1, 3, 4 | mp2an 689 | 1 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 Vcvv 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 df-iun 4926 |
This theorem is referenced by: abexssex 7813 abexex 7814 oprabrexex2 7821 ab2rexex 7822 ab2rexex2 7823 |
Copyright terms: Public domain | W3C validator |