![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abrexex2 | Structured version Visualization version GIF version |
Description: Existence of an existentially restricted class abstraction. 𝜑 normally has free-variable parameters 𝑥 and 𝑦. See also abrexex 8003. (Contributed by NM, 12-Sep-2004.) |
Ref | Expression |
---|---|
abrexex2.1 | ⊢ 𝐴 ∈ V |
abrexex2.2 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
Ref | Expression |
---|---|
abrexex2 | ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abrexex2.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | abrexex2.2 | . . 3 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
3 | 2 | rgenw 3071 | . 2 ⊢ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ V |
4 | abrexex2g 8005 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ V) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V) | |
5 | 1, 3, 4 | mp2an 691 | 1 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 {cab 2717 ∀wral 3067 ∃wrex 3076 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-v 3490 df-ss 3993 df-uni 4932 df-iun 5017 |
This theorem is referenced by: abexssex 8011 abexex 8012 oprabrexex2 8019 ab2rexex 8020 ab2rexex2 8021 |
Copyright terms: Public domain | W3C validator |