![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpexgALT | Structured version Visualization version GIF version |
Description: Alternate proof of xpexg 7685 requiring Replacement (ax-rep 5243) but not Power Set (ax-pow 5321). (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
xpexgALT | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunid 5021 | . . . 4 ⊢ ∪ 𝑦 ∈ 𝐵 {𝑦} = 𝐵 | |
2 | 1 | xpeq2i 5661 | . . 3 ⊢ (𝐴 × ∪ 𝑦 ∈ 𝐵 {𝑦}) = (𝐴 × 𝐵) |
3 | xpiundi 5703 | . . 3 ⊢ (𝐴 × ∪ 𝑦 ∈ 𝐵 {𝑦}) = ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) | |
4 | 2, 3 | eqtr3i 2767 | . 2 ⊢ (𝐴 × 𝐵) = ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) |
5 | id 22 | . . 3 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ 𝑊) | |
6 | fconstmpt 5695 | . . . . 5 ⊢ (𝐴 × {𝑦}) = (𝑥 ∈ 𝐴 ↦ 𝑦) | |
7 | mptexg 7172 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝑦) ∈ V) | |
8 | 6, 7 | eqeltrid 2842 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × {𝑦}) ∈ V) |
9 | 8 | ralrimivw 3148 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∀𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) |
10 | iunexg 7897 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ ∀𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) → ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) | |
11 | 5, 9, 10 | syl2anr 598 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) |
12 | 4, 11 | eqeltrid 2842 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ∀wral 3065 Vcvv 3446 {csn 4587 ∪ ciun 4955 ↦ cmpt 5189 × cxp 5632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |