![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpexgALT | Structured version Visualization version GIF version |
Description: Alternate proof of xpexg 7736 requiring Replacement (ax-rep 5285) but not Power Set (ax-pow 5363). (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
xpexgALT | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunid 5063 | . . . 4 ⊢ ∪ 𝑦 ∈ 𝐵 {𝑦} = 𝐵 | |
2 | 1 | xpeq2i 5703 | . . 3 ⊢ (𝐴 × ∪ 𝑦 ∈ 𝐵 {𝑦}) = (𝐴 × 𝐵) |
3 | xpiundi 5746 | . . 3 ⊢ (𝐴 × ∪ 𝑦 ∈ 𝐵 {𝑦}) = ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) | |
4 | 2, 3 | eqtr3i 2762 | . 2 ⊢ (𝐴 × 𝐵) = ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) |
5 | id 22 | . . 3 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ 𝑊) | |
6 | fconstmpt 5738 | . . . . 5 ⊢ (𝐴 × {𝑦}) = (𝑥 ∈ 𝐴 ↦ 𝑦) | |
7 | mptexg 7222 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝑦) ∈ V) | |
8 | 6, 7 | eqeltrid 2837 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × {𝑦}) ∈ V) |
9 | 8 | ralrimivw 3150 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∀𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) |
10 | iunexg 7949 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ ∀𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) → ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) | |
11 | 5, 9, 10 | syl2anr 597 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) |
12 | 4, 11 | eqeltrid 2837 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3061 Vcvv 3474 {csn 4628 ∪ ciun 4997 ↦ cmpt 5231 × cxp 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |