![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpexgALT | Structured version Visualization version GIF version |
Description: Alternate proof of xpexg 7734 requiring Replacement (ax-rep 5278) but not Power Set (ax-pow 5356). (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
xpexgALT | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunid 5056 | . . . 4 ⊢ ∪ 𝑦 ∈ 𝐵 {𝑦} = 𝐵 | |
2 | 1 | xpeq2i 5696 | . . 3 ⊢ (𝐴 × ∪ 𝑦 ∈ 𝐵 {𝑦}) = (𝐴 × 𝐵) |
3 | xpiundi 5739 | . . 3 ⊢ (𝐴 × ∪ 𝑦 ∈ 𝐵 {𝑦}) = ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) | |
4 | 2, 3 | eqtr3i 2756 | . 2 ⊢ (𝐴 × 𝐵) = ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) |
5 | id 22 | . . 3 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ 𝑊) | |
6 | fconstmpt 5731 | . . . . 5 ⊢ (𝐴 × {𝑦}) = (𝑥 ∈ 𝐴 ↦ 𝑦) | |
7 | mptexg 7218 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝑦) ∈ V) | |
8 | 6, 7 | eqeltrid 2831 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × {𝑦}) ∈ V) |
9 | 8 | ralrimivw 3144 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∀𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) |
10 | iunexg 7949 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ ∀𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) → ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) | |
11 | 5, 9, 10 | syl2anr 596 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) |
12 | 4, 11 | eqeltrid 2831 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 ∀wral 3055 Vcvv 3468 {csn 4623 ∪ ciun 4990 ↦ cmpt 5224 × cxp 5667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |