MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpexgALT Structured version   Visualization version   GIF version

Theorem xpexgALT 7833
Description: Alternate proof of xpexg 7609 requiring Replacement (ax-rep 5210) but not Power Set (ax-pow 5289). (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
xpexgALT ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ∈ V)

Proof of Theorem xpexgALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunid 4991 . . . 4 𝑦𝐵 {𝑦} = 𝐵
21xpeq2i 5617 . . 3 (𝐴 × 𝑦𝐵 {𝑦}) = (𝐴 × 𝐵)
3 xpiundi 5658 . . 3 (𝐴 × 𝑦𝐵 {𝑦}) = 𝑦𝐵 (𝐴 × {𝑦})
42, 3eqtr3i 2769 . 2 (𝐴 × 𝐵) = 𝑦𝐵 (𝐴 × {𝑦})
5 id 22 . . 3 (𝐵𝑊𝐵𝑊)
6 fconstmpt 5650 . . . . 5 (𝐴 × {𝑦}) = (𝑥𝐴𝑦)
7 mptexg 7106 . . . . 5 (𝐴𝑉 → (𝑥𝐴𝑦) ∈ V)
86, 7eqeltrid 2844 . . . 4 (𝐴𝑉 → (𝐴 × {𝑦}) ∈ V)
98ralrimivw 3105 . . 3 (𝐴𝑉 → ∀𝑦𝐵 (𝐴 × {𝑦}) ∈ V)
10 iunexg 7815 . . 3 ((𝐵𝑊 ∧ ∀𝑦𝐵 (𝐴 × {𝑦}) ∈ V) → 𝑦𝐵 (𝐴 × {𝑦}) ∈ V)
115, 9, 10syl2anr 597 . 2 ((𝐴𝑉𝐵𝑊) → 𝑦𝐵 (𝐴 × {𝑦}) ∈ V)
124, 11eqeltrid 2844 1 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2107  wral 3065  Vcvv 3433  {csn 4562   ciun 4925  cmpt 5158   × cxp 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pr 5353  ax-un 7597
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator