MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpexgALT Structured version   Visualization version   GIF version

Theorem xpexgALT 7664
Description: Alternate proof of xpexg 7453 requiring Replacement (ax-rep 5154) but not Power Set (ax-pow 5231). (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
xpexgALT ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ∈ V)

Proof of Theorem xpexgALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunid 4947 . . . 4 𝑦𝐵 {𝑦} = 𝐵
21xpeq2i 5546 . . 3 (𝐴 × 𝑦𝐵 {𝑦}) = (𝐴 × 𝐵)
3 xpiundi 5586 . . 3 (𝐴 × 𝑦𝐵 {𝑦}) = 𝑦𝐵 (𝐴 × {𝑦})
42, 3eqtr3i 2823 . 2 (𝐴 × 𝐵) = 𝑦𝐵 (𝐴 × {𝑦})
5 id 22 . . 3 (𝐵𝑊𝐵𝑊)
6 fconstmpt 5578 . . . . 5 (𝐴 × {𝑦}) = (𝑥𝐴𝑦)
7 mptexg 6961 . . . . 5 (𝐴𝑉 → (𝑥𝐴𝑦) ∈ V)
86, 7eqeltrid 2894 . . . 4 (𝐴𝑉 → (𝐴 × {𝑦}) ∈ V)
98ralrimivw 3150 . . 3 (𝐴𝑉 → ∀𝑦𝐵 (𝐴 × {𝑦}) ∈ V)
10 iunexg 7646 . . 3 ((𝐵𝑊 ∧ ∀𝑦𝐵 (𝐴 × {𝑦}) ∈ V) → 𝑦𝐵 (𝐴 × {𝑦}) ∈ V)
115, 9, 10syl2anr 599 . 2 ((𝐴𝑉𝐵𝑊) → 𝑦𝐵 (𝐴 × {𝑦}) ∈ V)
124, 11eqeltrid 2894 1 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2111  wral 3106  Vcvv 3441  {csn 4525   ciun 4881  cmpt 5110   × cxp 5517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator