MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac2 Structured version   Visualization version   GIF version

Theorem dfac2 9267
Description: Axiom of Choice (first form) of [Enderton] p. 49 corresponds to our Axiom of Choice (in the form of ac3 9599). The proof does not make use of AC, but the Axiom of Regularity is used (by applying dfac2b 9266). (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by AV, 16-Jun-2022.)
Assertion
Ref Expression
dfac2 (CHOICE ↔ ∀𝑥𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)))
Distinct variable group:   𝑥,𝑧,𝑦,𝑤,𝑣

Proof of Theorem dfac2
StepHypRef Expression
1 dfac2b 9266 . 2 (CHOICE → ∀𝑥𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)))
2 dfac2a 9265 . 2 (∀𝑥𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) → CHOICE)
31, 2impbii 201 1 (CHOICE ↔ ∀𝑥𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wal 1656  wex 1880  wne 2999  wral 3117  wrex 3118  ∃!wreu 3119  c0 4144  CHOICEwac 9251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-reg 8766
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-eprel 5255  df-fr 5301  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-fv 6131  df-riota 6866  df-ac 9252
This theorem is referenced by:  dfac7  9269
  Copyright terms: Public domain W3C validator