MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac2a Structured version   Visualization version   GIF version

Theorem dfac2a 9541
Description: Our Axiom of Choice (in the form of ac3 9870) implies the Axiom of Choice (first form) of [Enderton] p. 49. The proof uses neither AC nor the Axiom of Regularity. See dfac2b 9542 for the converse (which does use the Axiom of Regularity). (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dfac2a (∀𝑥𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) → CHOICE)
Distinct variable group:   𝑥,𝑧,𝑦,𝑤,𝑣

Proof of Theorem dfac2a
Dummy variables 𝑓 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotauni 7106 . . . . . . . . 9 (∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣) → (𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) = {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)})
2 riotacl 7117 . . . . . . . . 9 (∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣) → (𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) ∈ 𝑧)
31, 2eqeltrrd 2914 . . . . . . . 8 (∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣) → {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)} ∈ 𝑧)
4 elequ2 2129 . . . . . . . . . . . . 13 (𝑢 = 𝑧 → (𝑤𝑢𝑤𝑧))
5 elequ1 2121 . . . . . . . . . . . . . . 15 (𝑢 = 𝑧 → (𝑢𝑣𝑧𝑣))
65anbi1d 631 . . . . . . . . . . . . . 14 (𝑢 = 𝑧 → ((𝑢𝑣𝑤𝑣) ↔ (𝑧𝑣𝑤𝑣)))
76rexbidv 3297 . . . . . . . . . . . . 13 (𝑢 = 𝑧 → (∃𝑣𝑦 (𝑢𝑣𝑤𝑣) ↔ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)))
84, 7anbi12d 632 . . . . . . . . . . . 12 (𝑢 = 𝑧 → ((𝑤𝑢 ∧ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)) ↔ (𝑤𝑧 ∧ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣))))
98rabbidva2 3468 . . . . . . . . . . 11 (𝑢 = 𝑧 → {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} = {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)})
109unieqd 4838 . . . . . . . . . 10 (𝑢 = 𝑧 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} = {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)})
11 eqid 2821 . . . . . . . . . 10 (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}) = (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})
12 vex 3489 . . . . . . . . . . . 12 𝑧 ∈ V
1312rabex 5221 . . . . . . . . . . 11 {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)} ∈ V
1413uniex 7453 . . . . . . . . . 10 {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)} ∈ V
1510, 11, 14fvmpt 6754 . . . . . . . . 9 (𝑧𝑥 → ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) = {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)})
1615eleq1d 2897 . . . . . . . 8 (𝑧𝑥 → (((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧 {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)} ∈ 𝑧))
173, 16syl5ibr 248 . . . . . . 7 (𝑧𝑥 → (∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣) → ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧))
1817imim2d 57 . . . . . 6 (𝑧𝑥 → ((𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) → (𝑧 ≠ ∅ → ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧)))
1918ralimia 3158 . . . . 5 (∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) → ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧))
20 ssrab2 4044 . . . . . . . . . . 11 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} ⊆ 𝑢
21 elssuni 4854 . . . . . . . . . . 11 (𝑢𝑥𝑢 𝑥)
2220, 21sstrid 3966 . . . . . . . . . 10 (𝑢𝑥 → {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} ⊆ 𝑥)
2322unissd 4834 . . . . . . . . 9 (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} ⊆ 𝑥)
24 vex 3489 . . . . . . . . . . . 12 𝑥 ∈ V
2524uniex 7453 . . . . . . . . . . 11 𝑥 ∈ V
2625uniex 7453 . . . . . . . . . 10 𝑥 ∈ V
2726elpw2 5234 . . . . . . . . 9 ( {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} ∈ 𝒫 𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} ⊆ 𝑥)
2823, 27sylibr 236 . . . . . . . 8 (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} ∈ 𝒫 𝑥)
2911, 28fmpti 6862 . . . . . . 7 (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}):𝑥⟶𝒫 𝑥
3026pwex 5267 . . . . . . 7 𝒫 𝑥 ∈ V
31 fex2 7624 . . . . . . 7 (((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}):𝑥⟶𝒫 𝑥𝑥 ∈ V ∧ 𝒫 𝑥 ∈ V) → (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}) ∈ V)
3229, 24, 30, 31mp3an 1457 . . . . . 6 (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}) ∈ V
33 fveq1 6655 . . . . . . . . 9 (𝑓 = (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}) → (𝑓𝑧) = ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧))
3433eleq1d 2897 . . . . . . . 8 (𝑓 = (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}) → ((𝑓𝑧) ∈ 𝑧 ↔ ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧))
3534imbi2d 343 . . . . . . 7 (𝑓 = (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧)))
3635ralbidv 3197 . . . . . 6 (𝑓 = (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}) → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧)))
3732, 36spcev 3599 . . . . 5 (∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
3819, 37syl 17 . . . 4 (∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
3938exlimiv 1931 . . 3 (∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
4039alimi 1812 . 2 (∀𝑥𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) → ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
41 dfac3 9533 . 2 (CHOICE ↔ ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
4240, 41sylibr 236 1 (∀𝑥𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) → CHOICE)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wal 1535   = wceq 1537  wex 1780  wcel 2114  wne 3016  wral 3138  wrex 3139  ∃!wreu 3140  {crab 3142  Vcvv 3486  wss 3924  c0 4279  𝒫 cpw 4525   cuni 4824  cmpt 5132  wf 6337  cfv 6341  crio 7099  CHOICEwac 9527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-op 4560  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5446  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-fv 6349  df-riota 7100  df-ac 9528
This theorem is referenced by:  dfac2  9543  axac2  9874
  Copyright terms: Public domain W3C validator