Step | Hyp | Ref
| Expression |
1 | | riotauni 7218 |
. . . . . . . . 9
⊢
(∃!𝑤 ∈
𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → (℩𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) = ∪ {𝑤 ∈ 𝑧 ∣ ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)}) |
2 | | riotacl 7230 |
. . . . . . . . 9
⊢
(∃!𝑤 ∈
𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → (℩𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) ∈ 𝑧) |
3 | 1, 2 | eqeltrrd 2840 |
. . . . . . . 8
⊢
(∃!𝑤 ∈
𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → ∪ {𝑤 ∈ 𝑧 ∣ ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)} ∈ 𝑧) |
4 | | elequ2 2123 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑧 → (𝑤 ∈ 𝑢 ↔ 𝑤 ∈ 𝑧)) |
5 | | elequ1 2115 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑧 → (𝑢 ∈ 𝑣 ↔ 𝑧 ∈ 𝑣)) |
6 | 5 | anbi1d 629 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑧 → ((𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
7 | 6 | rexbidv 3225 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑧 → (∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
8 | 4, 7 | anbi12d 630 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑧 → ((𝑤 ∈ 𝑢 ∧ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) ↔ (𝑤 ∈ 𝑧 ∧ ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)))) |
9 | 8 | rabbidva2 3400 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑧 → {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)} = {𝑤 ∈ 𝑧 ∣ ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)}) |
10 | 9 | unieqd 4850 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑧 → ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)} = ∪ {𝑤 ∈ 𝑧 ∣ ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)}) |
11 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑢 ∈ 𝑥 ↦ ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)}) = (𝑢 ∈ 𝑥 ↦ ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)}) |
12 | | vex 3426 |
. . . . . . . . . . . 12
⊢ 𝑧 ∈ V |
13 | 12 | rabex 5251 |
. . . . . . . . . . 11
⊢ {𝑤 ∈ 𝑧 ∣ ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)} ∈ V |
14 | 13 | uniex 7572 |
. . . . . . . . . 10
⊢ ∪ {𝑤
∈ 𝑧 ∣
∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)} ∈ V |
15 | 10, 11, 14 | fvmpt 6857 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑥 → ((𝑢 ∈ 𝑥 ↦ ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)})‘𝑧) = ∪ {𝑤 ∈ 𝑧 ∣ ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)}) |
16 | 15 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑥 → (((𝑢 ∈ 𝑥 ↦ ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)})‘𝑧) ∈ 𝑧 ↔ ∪ {𝑤 ∈ 𝑧 ∣ ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)} ∈ 𝑧)) |
17 | 3, 16 | syl5ibr 245 |
. . . . . . 7
⊢ (𝑧 ∈ 𝑥 → (∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → ((𝑢 ∈ 𝑥 ↦ ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)})‘𝑧) ∈ 𝑧)) |
18 | 17 | imim2d 57 |
. . . . . 6
⊢ (𝑧 ∈ 𝑥 → ((𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) → (𝑧 ≠ ∅ → ((𝑢 ∈ 𝑥 ↦ ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)})‘𝑧) ∈ 𝑧))) |
19 | 18 | ralimia 3084 |
. . . . 5
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) → ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ((𝑢 ∈ 𝑥 ↦ ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)})‘𝑧) ∈ 𝑧)) |
20 | | ssrab2 4009 |
. . . . . . . . . . 11
⊢ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)} ⊆ 𝑢 |
21 | | elssuni 4868 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ 𝑥 → 𝑢 ⊆ ∪ 𝑥) |
22 | 20, 21 | sstrid 3928 |
. . . . . . . . . 10
⊢ (𝑢 ∈ 𝑥 → {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)} ⊆ ∪ 𝑥) |
23 | 22 | unissd 4846 |
. . . . . . . . 9
⊢ (𝑢 ∈ 𝑥 → ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)} ⊆ ∪ ∪ 𝑥) |
24 | | vex 3426 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
25 | 24 | uniex 7572 |
. . . . . . . . . . 11
⊢ ∪ 𝑥
∈ V |
26 | 25 | uniex 7572 |
. . . . . . . . . 10
⊢ ∪ ∪ 𝑥 ∈ V |
27 | 26 | elpw2 5264 |
. . . . . . . . 9
⊢ (∪ {𝑤
∈ 𝑢 ∣
∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)} ∈ 𝒫 ∪ ∪ 𝑥 ↔ ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)} ⊆ ∪ ∪ 𝑥) |
28 | 23, 27 | sylibr 233 |
. . . . . . . 8
⊢ (𝑢 ∈ 𝑥 → ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)} ∈ 𝒫 ∪ ∪ 𝑥) |
29 | 11, 28 | fmpti 6968 |
. . . . . . 7
⊢ (𝑢 ∈ 𝑥 ↦ ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)}):𝑥⟶𝒫 ∪ ∪ 𝑥 |
30 | 26 | pwex 5298 |
. . . . . . 7
⊢ 𝒫
∪ ∪ 𝑥 ∈ V |
31 | | fex2 7754 |
. . . . . . 7
⊢ (((𝑢 ∈ 𝑥 ↦ ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)}):𝑥⟶𝒫 ∪ ∪ 𝑥 ∧ 𝑥 ∈ V ∧ 𝒫 ∪ ∪ 𝑥 ∈ V) → (𝑢 ∈ 𝑥 ↦ ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)}) ∈ V) |
32 | 29, 24, 30, 31 | mp3an 1459 |
. . . . . 6
⊢ (𝑢 ∈ 𝑥 ↦ ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)}) ∈ V |
33 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑓 = (𝑢 ∈ 𝑥 ↦ ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)}) → (𝑓‘𝑧) = ((𝑢 ∈ 𝑥 ↦ ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)})‘𝑧)) |
34 | 33 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑓 = (𝑢 ∈ 𝑥 ↦ ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)}) → ((𝑓‘𝑧) ∈ 𝑧 ↔ ((𝑢 ∈ 𝑥 ↦ ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)})‘𝑧) ∈ 𝑧)) |
35 | 34 | imbi2d 340 |
. . . . . . 7
⊢ (𝑓 = (𝑢 ∈ 𝑥 ↦ ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)}) → ((𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → ((𝑢 ∈ 𝑥 ↦ ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)})‘𝑧) ∈ 𝑧))) |
36 | 35 | ralbidv 3120 |
. . . . . 6
⊢ (𝑓 = (𝑢 ∈ 𝑥 ↦ ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)}) → (∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ((𝑢 ∈ 𝑥 ↦ ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)})‘𝑧) ∈ 𝑧))) |
37 | 32, 36 | spcev 3535 |
. . . . 5
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → ((𝑢 ∈ 𝑥 ↦ ∪ {𝑤 ∈ 𝑢 ∣ ∃𝑣 ∈ 𝑦 (𝑢 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)})‘𝑧) ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
38 | 19, 37 | syl 17 |
. . . 4
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
39 | 38 | exlimiv 1934 |
. . 3
⊢
(∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
40 | 39 | alimi 1815 |
. 2
⊢
(∀𝑥∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) → ∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
41 | | dfac3 9808 |
. 2
⊢
(CHOICE ↔ ∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
42 | 40, 41 | sylibr 233 |
1
⊢
(∀𝑥∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) →
CHOICE) |