MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac2a Structured version   Visualization version   GIF version

Theorem dfac2a 10024
Description: Our Axiom of Choice (in the form of ac3 10356) implies the Axiom of Choice (first form) of [Enderton] p. 49. The proof uses neither AC nor the Axiom of Regularity. See dfac2b 10025 for the converse (which does use the Axiom of Regularity). (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dfac2a (∀𝑥𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) → CHOICE)
Distinct variable group:   𝑥,𝑧,𝑦,𝑤,𝑣

Proof of Theorem dfac2a
Dummy variables 𝑓 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotauni 7312 . . . . . . . . 9 (∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣) → (𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) = {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)})
2 riotacl 7323 . . . . . . . . 9 (∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣) → (𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) ∈ 𝑧)
31, 2eqeltrrd 2829 . . . . . . . 8 (∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣) → {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)} ∈ 𝑧)
4 elequ2 2124 . . . . . . . . . . . . 13 (𝑢 = 𝑧 → (𝑤𝑢𝑤𝑧))
5 elequ1 2116 . . . . . . . . . . . . . . 15 (𝑢 = 𝑧 → (𝑢𝑣𝑧𝑣))
65anbi1d 631 . . . . . . . . . . . . . 14 (𝑢 = 𝑧 → ((𝑢𝑣𝑤𝑣) ↔ (𝑧𝑣𝑤𝑣)))
76rexbidv 3153 . . . . . . . . . . . . 13 (𝑢 = 𝑧 → (∃𝑣𝑦 (𝑢𝑣𝑤𝑣) ↔ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)))
84, 7anbi12d 632 . . . . . . . . . . . 12 (𝑢 = 𝑧 → ((𝑤𝑢 ∧ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)) ↔ (𝑤𝑧 ∧ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣))))
98rabbidva2 3396 . . . . . . . . . . 11 (𝑢 = 𝑧 → {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} = {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)})
109unieqd 4871 . . . . . . . . . 10 (𝑢 = 𝑧 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} = {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)})
11 eqid 2729 . . . . . . . . . 10 (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}) = (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})
12 vex 3440 . . . . . . . . . . . 12 𝑧 ∈ V
1312rabex 5278 . . . . . . . . . . 11 {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)} ∈ V
1413uniex 7677 . . . . . . . . . 10 {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)} ∈ V
1510, 11, 14fvmpt 6930 . . . . . . . . 9 (𝑧𝑥 → ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) = {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)})
1615eleq1d 2813 . . . . . . . 8 (𝑧𝑥 → (((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧 {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)} ∈ 𝑧))
173, 16imbitrrid 246 . . . . . . 7 (𝑧𝑥 → (∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣) → ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧))
1817imim2d 57 . . . . . 6 (𝑧𝑥 → ((𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) → (𝑧 ≠ ∅ → ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧)))
1918ralimia 3063 . . . . 5 (∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) → ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧))
20 ssrab2 4031 . . . . . . . . . . 11 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} ⊆ 𝑢
21 elssuni 4888 . . . . . . . . . . 11 (𝑢𝑥𝑢 𝑥)
2220, 21sstrid 3947 . . . . . . . . . 10 (𝑢𝑥 → {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} ⊆ 𝑥)
2322unissd 4868 . . . . . . . . 9 (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} ⊆ 𝑥)
24 vex 3440 . . . . . . . . . . . 12 𝑥 ∈ V
2524uniex 7677 . . . . . . . . . . 11 𝑥 ∈ V
2625uniex 7677 . . . . . . . . . 10 𝑥 ∈ V
2726elpw2 5273 . . . . . . . . 9 ( {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} ∈ 𝒫 𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} ⊆ 𝑥)
2823, 27sylibr 234 . . . . . . . 8 (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} ∈ 𝒫 𝑥)
2911, 28fmpti 7046 . . . . . . 7 (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}):𝑥⟶𝒫 𝑥
3026pwex 5319 . . . . . . 7 𝒫 𝑥 ∈ V
31 fex2 7869 . . . . . . 7 (((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}):𝑥⟶𝒫 𝑥𝑥 ∈ V ∧ 𝒫 𝑥 ∈ V) → (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}) ∈ V)
3229, 24, 30, 31mp3an 1463 . . . . . 6 (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}) ∈ V
33 fveq1 6821 . . . . . . . . 9 (𝑓 = (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}) → (𝑓𝑧) = ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧))
3433eleq1d 2813 . . . . . . . 8 (𝑓 = (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}) → ((𝑓𝑧) ∈ 𝑧 ↔ ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧))
3534imbi2d 340 . . . . . . 7 (𝑓 = (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧)))
3635ralbidv 3152 . . . . . 6 (𝑓 = (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}) → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧)))
3732, 36spcev 3561 . . . . 5 (∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
3819, 37syl 17 . . . 4 (∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
3938exlimiv 1930 . . 3 (∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
4039alimi 1811 . 2 (∀𝑥𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) → ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
41 dfac3 10015 . 2 (CHOICE ↔ ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
4240, 41sylibr 234 1 (∀𝑥𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) → CHOICE)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  ∃!wreu 3341  {crab 3394  Vcvv 3436  wss 3903  c0 4284  𝒫 cpw 4551   cuni 4858  cmpt 5173  wf 6478  cfv 6482  crio 7305  CHOICEwac 10009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-riota 7306  df-ac 10010
This theorem is referenced by:  dfac2  10026  axac2  10360
  Copyright terms: Public domain W3C validator