| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad5antlr | Structured version Visualization version GIF version | ||
| Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad5antlr | ⊢ ((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
| 3 | 2 | ad4antr 732 | 1 ⊢ ((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: simp-5r 785 fimaproj 8071 chnso 18532 restmetu 24486 foresf1o 32486 2ndresdju 32633 nn0xmulclb 32758 gsumwrd2dccatlem 33053 isdrng4 33268 fracfld 33281 elrspunidl 33400 elrspunsn 33401 rhmpreimaprmidl 33423 1arithidom 33509 mplvrpmga 33593 fedgmul 33665 locfinreflem 33874 pstmxmet 33931 satfdmlem 35433 mblfinlem3 37719 itg2gt0cn 37735 dffltz 42752 pell1234qrmulcl 42972 suplesup 45462 limclner 45773 bgoldbtbnd 47933 gricushgr 48041 |
| Copyright terms: Public domain | W3C validator |