| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad5antlr | Structured version Visualization version GIF version | ||
| Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad5antlr | ⊢ ((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
| 3 | 2 | ad4antr 732 | 1 ⊢ ((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: simp-5r 785 fimaproj 8114 restmetu 24458 foresf1o 32433 2ndresdju 32573 nn0xmulclb 32694 chnso 32940 gsumwrd2dccatlem 33006 isdrng4 33245 fracfld 33258 elrspunidl 33399 elrspunsn 33400 rhmpreimaprmidl 33422 1arithidom 33508 fedgmul 33627 locfinreflem 33830 pstmxmet 33887 satfdmlem 35355 mblfinlem3 37653 itg2gt0cn 37669 dffltz 42622 pell1234qrmulcl 42843 suplesup 45335 limclner 45649 bgoldbtbnd 47810 gricushgr 47917 |
| Copyright terms: Public domain | W3C validator |