| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad5antlr | Structured version Visualization version GIF version | ||
| Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad5antlr | ⊢ ((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
| 3 | 2 | ad4antr 732 | 1 ⊢ ((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: simp-5r 785 fimaproj 8161 restmetu 24584 foresf1o 32524 2ndresdju 32660 nn0xmulclb 32776 chnso 33005 gsumwrd2dccatlem 33070 isdrng4 33299 fracfld 33311 elrspunidl 33457 elrspunsn 33458 rhmpreimaprmidl 33480 1arithidom 33566 fedgmul 33683 locfinreflem 33840 pstmxmet 33897 satfdmlem 35374 mblfinlem3 37667 itg2gt0cn 37683 dffltz 42649 pell1234qrmulcl 42871 suplesup 45355 limclner 45671 bgoldbtbnd 47801 gricushgr 47891 |
| Copyright terms: Public domain | W3C validator |