![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad5antlr | Structured version Visualization version GIF version |
Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad5antlr | ⊢ ((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
3 | 2 | ad4antr 731 | 1 ⊢ ((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: simp-5r 785 fimaproj 8176 restmetu 24604 foresf1o 32532 2ndresdju 32667 nn0xmulclb 32778 chnso 32986 isdrng4 33264 fracfld 33275 elrspunidl 33421 elrspunsn 33422 rhmpreimaprmidl 33444 1arithidom 33530 fedgmul 33644 locfinreflem 33786 pstmxmet 33843 satfdmlem 35336 mblfinlem3 37619 itg2gt0cn 37635 dffltz 42589 pell1234qrmulcl 42811 suplesup 45254 limclner 45572 bgoldbtbnd 47683 gricushgr 47770 |
Copyright terms: Public domain | W3C validator |