![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad5antlr | Structured version Visualization version GIF version |
Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad5antlr | ⊢ ((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
3 | 2 | ad4antr 732 | 1 ⊢ ((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: simp-5r 786 fimaproj 8159 restmetu 24599 foresf1o 32532 2ndresdju 32666 nn0xmulclb 32782 chnso 32988 gsumwrd2dccatlem 33052 isdrng4 33279 fracfld 33290 elrspunidl 33436 elrspunsn 33437 rhmpreimaprmidl 33459 1arithidom 33545 fedgmul 33659 locfinreflem 33801 pstmxmet 33858 satfdmlem 35353 mblfinlem3 37646 itg2gt0cn 37662 dffltz 42621 pell1234qrmulcl 42843 suplesup 45289 limclner 45607 bgoldbtbnd 47734 gricushgr 47824 |
Copyright terms: Public domain | W3C validator |