Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad5antlr | Structured version Visualization version GIF version |
Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad5antlr | ⊢ ((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantl 482 | . 2 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
3 | 2 | ad4antr 729 | 1 ⊢ ((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: simp-5r 783 fimaproj 7976 restmetu 23726 foresf1o 30850 2ndresdju 30986 nn0xmulclb 31094 elrspunidl 31606 rhmpreimaprmidl 31627 fedgmul 31712 locfinreflem 31790 pstmxmet 31847 satfdmlem 33330 mblfinlem3 35816 itg2gt0cn 35832 dffltz 40471 pell1234qrmulcl 40677 suplesup 42878 limclner 43192 bgoldbtbnd 45261 isomushgr 45278 |
Copyright terms: Public domain | W3C validator |