MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5antlr Structured version   Visualization version   GIF version

Theorem ad5antlr 734
Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.)
Hypothesis
Ref Expression
ad2ant.1 (𝜑𝜓)
Assertion
Ref Expression
ad5antlr ((((((𝜒𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓)

Proof of Theorem ad5antlr
StepHypRef Expression
1 ad2ant.1 . . 3 (𝜑𝜓)
21adantl 481 . 2 ((𝜒𝜑) → 𝜓)
32ad4antr 731 1 ((((((𝜒𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  simp-5r  785  fimaproj  8176  restmetu  24604  foresf1o  32532  2ndresdju  32667  nn0xmulclb  32778  chnso  32986  isdrng4  33264  fracfld  33275  elrspunidl  33421  elrspunsn  33422  rhmpreimaprmidl  33444  1arithidom  33530  fedgmul  33644  locfinreflem  33786  pstmxmet  33843  satfdmlem  35336  mblfinlem3  37619  itg2gt0cn  37635  dffltz  42589  pell1234qrmulcl  42811  suplesup  45254  limclner  45572  bgoldbtbnd  47683  gricushgr  47770
  Copyright terms: Public domain W3C validator