![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad5antlr | Structured version Visualization version GIF version |
Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad5antlr | ⊢ ((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantl 483 | . 2 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
3 | 2 | ad4antr 731 | 1 ⊢ ((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: simp-5r 785 fimaproj 8121 restmetu 24079 foresf1o 31742 2ndresdju 31874 nn0xmulclb 31984 isdrng4 32395 elrspunidl 32546 elrspunsn 32547 rhmpreimaprmidl 32570 fedgmul 32716 locfinreflem 32820 pstmxmet 32877 satfdmlem 34359 mblfinlem3 36527 itg2gt0cn 36543 dffltz 41376 pell1234qrmulcl 41593 suplesup 44049 limclner 44367 bgoldbtbnd 46477 isomushgr 46494 |
Copyright terms: Public domain | W3C validator |