MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5antlr Structured version   Visualization version   GIF version

Theorem ad5antlr 732
Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.)
Hypothesis
Ref Expression
ad2ant.1 (𝜑𝜓)
Assertion
Ref Expression
ad5antlr ((((((𝜒𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓)

Proof of Theorem ad5antlr
StepHypRef Expression
1 ad2ant.1 . . 3 (𝜑𝜓)
21adantl 482 . 2 ((𝜒𝜑) → 𝜓)
32ad4antr 729 1 ((((((𝜒𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  simp-5r  783  fimaproj  7976  restmetu  23726  foresf1o  30850  2ndresdju  30986  nn0xmulclb  31094  elrspunidl  31606  rhmpreimaprmidl  31627  fedgmul  31712  locfinreflem  31790  pstmxmet  31847  satfdmlem  33330  mblfinlem3  35816  itg2gt0cn  35832  dffltz  40471  pell1234qrmulcl  40677  suplesup  42878  limclner  43192  bgoldbtbnd  45261  isomushgr  45278
  Copyright terms: Public domain W3C validator