| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad5antlr | Structured version Visualization version GIF version | ||
| Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad5antlr | ⊢ ((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
| 3 | 2 | ad4antr 732 | 1 ⊢ ((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: simp-5r 785 fimaproj 8075 restmetu 24474 foresf1o 32466 2ndresdju 32606 nn0xmulclb 32727 chnso 32969 gsumwrd2dccatlem 33032 isdrng4 33244 fracfld 33257 elrspunidl 33375 elrspunsn 33376 rhmpreimaprmidl 33398 1arithidom 33484 fedgmul 33603 locfinreflem 33806 pstmxmet 33863 satfdmlem 35340 mblfinlem3 37638 itg2gt0cn 37654 dffltz 42607 pell1234qrmulcl 42828 suplesup 45319 limclner 45633 bgoldbtbnd 47794 gricushgr 47902 |
| Copyright terms: Public domain | W3C validator |