| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad5antlr | Structured version Visualization version GIF version | ||
| Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad5antlr | ⊢ ((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
| 3 | 2 | ad4antr 732 | 1 ⊢ ((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: simp-5r 785 fimaproj 8065 chnso 18527 restmetu 24483 foresf1o 32479 2ndresdju 32626 nn0xmulclb 32749 gsumwrd2dccatlem 33041 isdrng4 33256 fracfld 33269 elrspunidl 33388 elrspunsn 33389 rhmpreimaprmidl 33411 1arithidom 33497 mplvrpmga 33570 fedgmul 33639 locfinreflem 33848 pstmxmet 33905 satfdmlem 35400 mblfinlem3 37698 itg2gt0cn 37714 dffltz 42666 pell1234qrmulcl 42887 suplesup 45377 limclner 45688 bgoldbtbnd 47839 gricushgr 47947 |
| Copyright terms: Public domain | W3C validator |