MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5antlr Structured version   Visualization version   GIF version

Theorem ad5antlr 733
Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.)
Hypothesis
Ref Expression
ad2ant.1 (𝜑𝜓)
Assertion
Ref Expression
ad5antlr ((((((𝜒𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓)

Proof of Theorem ad5antlr
StepHypRef Expression
1 ad2ant.1 . . 3 (𝜑𝜓)
21adantl 480 . 2 ((𝜒𝜑) → 𝜓)
32ad4antr 730 1 ((((((𝜒𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395
This theorem is referenced by:  simp-5r  784  fimaproj  8138  restmetu  24509  foresf1o  32357  2ndresdju  32492  nn0xmulclb  32598  isdrng4  33044  fracfld  33055  elrspunidl  33206  elrspunsn  33207  rhmpreimaprmidl  33229  fedgmul  33399  locfinreflem  33511  pstmxmet  33568  satfdmlem  35048  mblfinlem3  37202  itg2gt0cn  37218  dffltz  42123  pell1234qrmulcl  42340  suplesup  44784  limclner  45102  bgoldbtbnd  47212  gricushgr  47295
  Copyright terms: Public domain W3C validator