Step | Hyp | Ref
| Expression |
1 | | rhmrcl1 20368 |
. . . 4
β’ (πΉ β (π
RingHom π) β π
β Ring) |
2 | 1 | ad2antlr 724 |
. . 3
β’ (((π β CRing β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β π
β Ring) |
3 | | rhmrcl2 20369 |
. . . . . 6
β’ (πΉ β (π
RingHom π) β π β Ring) |
4 | | prmidlidl 32837 |
. . . . . 6
β’ ((π β Ring β§ π½ β (PrmIdealβπ)) β π½ β (LIdealβπ)) |
5 | 3, 4 | sylan 579 |
. . . . 5
β’ ((πΉ β (π
RingHom π) β§ π½ β (PrmIdealβπ)) β π½ β (LIdealβπ)) |
6 | | eqid 2731 |
. . . . . 6
β’
(LIdealβπ
) =
(LIdealβπ
) |
7 | 6 | rhmpreimaidl 32812 |
. . . . 5
β’ ((πΉ β (π
RingHom π) β§ π½ β (LIdealβπ)) β (β‘πΉ β π½) β (LIdealβπ
)) |
8 | 5, 7 | syldan 590 |
. . . 4
β’ ((πΉ β (π
RingHom π) β§ π½ β (PrmIdealβπ)) β (β‘πΉ β π½) β (LIdealβπ
)) |
9 | 8 | adantll 711 |
. . 3
β’ (((π β CRing β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β (β‘πΉ β π½) β (LIdealβπ
)) |
10 | 3 | adantr 480 |
. . . . . . 7
β’ ((πΉ β (π
RingHom π) β§ π½ β (PrmIdealβπ)) β π β Ring) |
11 | | eqid 2731 |
. . . . . . . . 9
β’
(Baseβπ) =
(Baseβπ) |
12 | | eqid 2731 |
. . . . . . . . 9
β’
(.rβπ) = (.rβπ) |
13 | 11, 12 | prmidlnr 32832 |
. . . . . . . 8
β’ ((π β Ring β§ π½ β (PrmIdealβπ)) β π½ β (Baseβπ)) |
14 | 3, 13 | sylan 579 |
. . . . . . 7
β’ ((πΉ β (π
RingHom π) β§ π½ β (PrmIdealβπ)) β π½ β (Baseβπ)) |
15 | | eqid 2731 |
. . . . . . . 8
β’
(1rβπ) = (1rβπ) |
16 | 11, 15 | pridln1 32836 |
. . . . . . 7
β’ ((π β Ring β§ π½ β (LIdealβπ) β§ π½ β (Baseβπ)) β Β¬ (1rβπ) β π½) |
17 | 10, 5, 14, 16 | syl3anc 1370 |
. . . . . 6
β’ ((πΉ β (π
RingHom π) β§ π½ β (PrmIdealβπ)) β Β¬ (1rβπ) β π½) |
18 | | eqid 2731 |
. . . . . . . . 9
β’
(1rβπ
) = (1rβπ
) |
19 | 18, 15 | rhm1 20381 |
. . . . . . . 8
β’ (πΉ β (π
RingHom π) β (πΉβ(1rβπ
)) = (1rβπ)) |
20 | 19 | ad2antrr 723 |
. . . . . . 7
β’ (((πΉ β (π
RingHom π) β§ π½ β (PrmIdealβπ)) β§ (β‘πΉ β π½) = (Baseβπ
)) β (πΉβ(1rβπ
)) = (1rβπ)) |
21 | | eqid 2731 |
. . . . . . . . . . . 12
β’
(Baseβπ
) =
(Baseβπ
) |
22 | 21, 11 | rhmf 20377 |
. . . . . . . . . . 11
β’ (πΉ β (π
RingHom π) β πΉ:(Baseβπ
)βΆ(Baseβπ)) |
23 | 22 | ffnd 6718 |
. . . . . . . . . 10
β’ (πΉ β (π
RingHom π) β πΉ Fn (Baseβπ
)) |
24 | 23 | ad2antrr 723 |
. . . . . . . . 9
β’ (((πΉ β (π
RingHom π) β§ π½ β (PrmIdealβπ)) β§ (β‘πΉ β π½) = (Baseβπ
)) β πΉ Fn (Baseβπ
)) |
25 | 21, 18 | ringidcl 20155 |
. . . . . . . . . . . 12
β’ (π
β Ring β
(1rβπ
)
β (Baseβπ
)) |
26 | 1, 25 | syl 17 |
. . . . . . . . . . 11
β’ (πΉ β (π
RingHom π) β (1rβπ
) β (Baseβπ
)) |
27 | 26 | ad2antrr 723 |
. . . . . . . . . 10
β’ (((πΉ β (π
RingHom π) β§ π½ β (PrmIdealβπ)) β§ (β‘πΉ β π½) = (Baseβπ
)) β (1rβπ
) β (Baseβπ
)) |
28 | | simpr 484 |
. . . . . . . . . 10
β’ (((πΉ β (π
RingHom π) β§ π½ β (PrmIdealβπ)) β§ (β‘πΉ β π½) = (Baseβπ
)) β (β‘πΉ β π½) = (Baseβπ
)) |
29 | 27, 28 | eleqtrrd 2835 |
. . . . . . . . 9
β’ (((πΉ β (π
RingHom π) β§ π½ β (PrmIdealβπ)) β§ (β‘πΉ β π½) = (Baseβπ
)) β (1rβπ
) β (β‘πΉ β π½)) |
30 | | elpreima 7059 |
. . . . . . . . . 10
β’ (πΉ Fn (Baseβπ
) β
((1rβπ
)
β (β‘πΉ β π½) β ((1rβπ
) β (Baseβπ
) β§ (πΉβ(1rβπ
)) β π½))) |
31 | 30 | biimpa 476 |
. . . . . . . . 9
β’ ((πΉ Fn (Baseβπ
) β§
(1rβπ
)
β (β‘πΉ β π½)) β ((1rβπ
) β (Baseβπ
) β§ (πΉβ(1rβπ
)) β π½)) |
32 | 24, 29, 31 | syl2anc 583 |
. . . . . . . 8
β’ (((πΉ β (π
RingHom π) β§ π½ β (PrmIdealβπ)) β§ (β‘πΉ β π½) = (Baseβπ
)) β ((1rβπ
) β (Baseβπ
) β§ (πΉβ(1rβπ
)) β π½)) |
33 | 32 | simprd 495 |
. . . . . . 7
β’ (((πΉ β (π
RingHom π) β§ π½ β (PrmIdealβπ)) β§ (β‘πΉ β π½) = (Baseβπ
)) β (πΉβ(1rβπ
)) β π½) |
34 | 20, 33 | eqeltrrd 2833 |
. . . . . 6
β’ (((πΉ β (π
RingHom π) β§ π½ β (PrmIdealβπ)) β§ (β‘πΉ β π½) = (Baseβπ
)) β (1rβπ) β π½) |
35 | 17, 34 | mtand 813 |
. . . . 5
β’ ((πΉ β (π
RingHom π) β§ π½ β (PrmIdealβπ)) β Β¬ (β‘πΉ β π½) = (Baseβπ
)) |
36 | 35 | neqned 2946 |
. . . 4
β’ ((πΉ β (π
RingHom π) β§ π½ β (PrmIdealβπ)) β (β‘πΉ β π½) β (Baseβπ
)) |
37 | 36 | adantll 711 |
. . 3
β’ (((π β CRing β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β (β‘πΉ β π½) β (Baseβπ
)) |
38 | | simp-5l 782 |
. . . . . . . 8
β’
((((((π β CRing
β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β π β CRing) |
39 | | simp-4r 781 |
. . . . . . . 8
β’
((((((π β CRing
β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β π½ β (PrmIdealβπ)) |
40 | | simp-5r 783 |
. . . . . . . . . 10
β’
((((((π β CRing
β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β πΉ β (π
RingHom π)) |
41 | 40, 22 | syl 17 |
. . . . . . . . 9
β’
((((((π β CRing
β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β πΉ:(Baseβπ
)βΆ(Baseβπ)) |
42 | | simpllr 773 |
. . . . . . . . 9
β’
((((((π β CRing
β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β π β (Baseβπ
)) |
43 | 41, 42 | ffvelcdmd 7087 |
. . . . . . . 8
β’
((((((π β CRing
β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β (πΉβπ) β (Baseβπ)) |
44 | | simplr 766 |
. . . . . . . . 9
β’
((((((π β CRing
β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β π β (Baseβπ
)) |
45 | 41, 44 | ffvelcdmd 7087 |
. . . . . . . 8
β’
((((((π β CRing
β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β (πΉβπ) β (Baseβπ)) |
46 | | eqid 2731 |
. . . . . . . . . . 11
β’
(.rβπ
) = (.rβπ
) |
47 | 21, 46, 12 | rhmmul 20378 |
. . . . . . . . . 10
β’ ((πΉ β (π
RingHom π) β§ π β (Baseβπ
) β§ π β (Baseβπ
)) β (πΉβ(π(.rβπ
)π)) = ((πΉβπ)(.rβπ)(πΉβπ))) |
48 | 40, 42, 44, 47 | syl3anc 1370 |
. . . . . . . . 9
β’
((((((π β CRing
β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β (πΉβ(π(.rβπ
)π)) = ((πΉβπ)(.rβπ)(πΉβπ))) |
49 | 23 | ad5antlr 732 |
. . . . . . . . . 10
β’
((((((π β CRing
β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β πΉ Fn (Baseβπ
)) |
50 | | simpr 484 |
. . . . . . . . . 10
β’
((((((π β CRing
β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β (π(.rβπ
)π) β (β‘πΉ β π½)) |
51 | | elpreima 7059 |
. . . . . . . . . . 11
β’ (πΉ Fn (Baseβπ
) β ((π(.rβπ
)π) β (β‘πΉ β π½) β ((π(.rβπ
)π) β (Baseβπ
) β§ (πΉβ(π(.rβπ
)π)) β π½))) |
52 | 51 | simplbda 499 |
. . . . . . . . . 10
β’ ((πΉ Fn (Baseβπ
) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β (πΉβ(π(.rβπ
)π)) β π½) |
53 | 49, 50, 52 | syl2anc 583 |
. . . . . . . . 9
β’
((((((π β CRing
β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β (πΉβ(π(.rβπ
)π)) β π½) |
54 | 48, 53 | eqeltrrd 2833 |
. . . . . . . 8
β’
((((((π β CRing
β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β ((πΉβπ)(.rβπ)(πΉβπ)) β π½) |
55 | 11, 12 | prmidlc 32842 |
. . . . . . . 8
β’ (((π β CRing β§ π½ β (PrmIdealβπ)) β§ ((πΉβπ) β (Baseβπ) β§ (πΉβπ) β (Baseβπ) β§ ((πΉβπ)(.rβπ)(πΉβπ)) β π½)) β ((πΉβπ) β π½ β¨ (πΉβπ) β π½)) |
56 | 38, 39, 43, 45, 54, 55 | syl23anc 1376 |
. . . . . . 7
β’
((((((π β CRing
β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β ((πΉβπ) β π½ β¨ (πΉβπ) β π½)) |
57 | 49 | adantr 480 |
. . . . . . . . . 10
β’
(((((((π β
CRing β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β§ (πΉβπ) β π½) β πΉ Fn (Baseβπ
)) |
58 | 42 | adantr 480 |
. . . . . . . . . 10
β’
(((((((π β
CRing β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β§ (πΉβπ) β π½) β π β (Baseβπ
)) |
59 | | simpr 484 |
. . . . . . . . . 10
β’
(((((((π β
CRing β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β§ (πΉβπ) β π½) β (πΉβπ) β π½) |
60 | 57, 58, 59 | elpreimad 7060 |
. . . . . . . . 9
β’
(((((((π β
CRing β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β§ (πΉβπ) β π½) β π β (β‘πΉ β π½)) |
61 | 60 | ex 412 |
. . . . . . . 8
β’
((((((π β CRing
β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β ((πΉβπ) β π½ β π β (β‘πΉ β π½))) |
62 | 49 | adantr 480 |
. . . . . . . . . 10
β’
(((((((π β
CRing β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β§ (πΉβπ) β π½) β πΉ Fn (Baseβπ
)) |
63 | | simpllr 773 |
. . . . . . . . . 10
β’
(((((((π β
CRing β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β§ (πΉβπ) β π½) β π β (Baseβπ
)) |
64 | | simpr 484 |
. . . . . . . . . 10
β’
(((((((π β
CRing β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β§ (πΉβπ) β π½) β (πΉβπ) β π½) |
65 | 62, 63, 64 | elpreimad 7060 |
. . . . . . . . 9
β’
(((((((π β
CRing β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β§ (πΉβπ) β π½) β π β (β‘πΉ β π½)) |
66 | 65 | ex 412 |
. . . . . . . 8
β’
((((((π β CRing
β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β ((πΉβπ) β π½ β π β (β‘πΉ β π½))) |
67 | 61, 66 | orim12d 962 |
. . . . . . 7
β’
((((((π β CRing
β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β (((πΉβπ) β π½ β¨ (πΉβπ) β π½) β (π β (β‘πΉ β π½) β¨ π β (β‘πΉ β π½)))) |
68 | 56, 67 | mpd 15 |
. . . . . 6
β’
((((((π β CRing
β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β§ (π(.rβπ
)π) β (β‘πΉ β π½)) β (π β (β‘πΉ β π½) β¨ π β (β‘πΉ β π½))) |
69 | 68 | ex 412 |
. . . . 5
β’
(((((π β CRing
β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ π β (Baseβπ
)) β§ π β (Baseβπ
)) β ((π(.rβπ
)π) β (β‘πΉ β π½) β (π β (β‘πΉ β π½) β¨ π β (β‘πΉ β π½)))) |
70 | 69 | anasss 466 |
. . . 4
β’ ((((π β CRing β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β ((π(.rβπ
)π) β (β‘πΉ β π½) β (π β (β‘πΉ β π½) β¨ π β (β‘πΉ β π½)))) |
71 | 70 | ralrimivva 3199 |
. . 3
β’ (((π β CRing β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β βπ β (Baseβπ
)βπ β (Baseβπ
)((π(.rβπ
)π) β (β‘πΉ β π½) β (π β (β‘πΉ β π½) β¨ π β (β‘πΉ β π½)))) |
72 | 21, 46 | prmidl2 32834 |
. . 3
β’ (((π
β Ring β§ (β‘πΉ β π½) β (LIdealβπ
)) β§ ((β‘πΉ β π½) β (Baseβπ
) β§ βπ β (Baseβπ
)βπ β (Baseβπ
)((π(.rβπ
)π) β (β‘πΉ β π½) β (π β (β‘πΉ β π½) β¨ π β (β‘πΉ β π½))))) β (β‘πΉ β π½) β (PrmIdealβπ
)) |
73 | 2, 9, 37, 71, 72 | syl22anc 836 |
. 2
β’ (((π β CRing β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β (β‘πΉ β π½) β (PrmIdealβπ
)) |
74 | | rhmpreimaprmidl.p |
. 2
β’ π = (PrmIdealβπ
) |
75 | 73, 74 | eleqtrrdi 2843 |
1
β’ (((π β CRing β§ πΉ β (π
RingHom π)) β§ π½ β (PrmIdealβπ)) β (β‘πΉ β π½) β π) |