Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmpreimaprmidl Structured version   Visualization version   GIF version

Theorem rhmpreimaprmidl 31133
Description: The preimage of a prime ideal by a ring homomorphism is a prime ideal. (Contributed by Thierry Arnoux, 29-Jun-2024.)
Hypothesis
Ref Expression
rhmpreimaprmidl.p 𝑃 = (PrmIdeal‘𝑅)
Assertion
Ref Expression
rhmpreimaprmidl (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ∈ 𝑃)

Proof of Theorem rhmpreimaprmidl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmrcl1 19527 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
21ad2antlr 727 . . 3 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝑅 ∈ Ring)
3 rhmrcl2 19528 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
4 prmidlidl 31125 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝐽 ∈ (LIdeal‘𝑆))
53, 4sylan 584 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝐽 ∈ (LIdeal‘𝑆))
6 eqid 2759 . . . . . 6 (LIdeal‘𝑅) = (LIdeal‘𝑅)
76rhmpreimaidl 31109 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹𝐽) ∈ (LIdeal‘𝑅))
85, 7syldan 595 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ∈ (LIdeal‘𝑅))
98adantll 714 . . 3 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ∈ (LIdeal‘𝑅))
103adantr 485 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝑆 ∈ Ring)
11 eqid 2759 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
12 eqid 2759 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
1311, 12prmidlnr 31120 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝐽 ≠ (Base‘𝑆))
143, 13sylan 584 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝐽 ≠ (Base‘𝑆))
15 eqid 2759 . . . . . . . 8 (1r𝑆) = (1r𝑆)
1611, 15pridln1 31124 . . . . . . 7 ((𝑆 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑆) ∧ 𝐽 ≠ (Base‘𝑆)) → ¬ (1r𝑆) ∈ 𝐽)
1710, 5, 14, 16syl3anc 1369 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → ¬ (1r𝑆) ∈ 𝐽)
18 eqid 2759 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
1918, 15rhm1 19538 . . . . . . . 8 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r𝑅)) = (1r𝑆))
2019ad2antrr 726 . . . . . . 7 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (𝐹‘(1r𝑅)) = (1r𝑆))
21 eqid 2759 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
2221, 11rhmf 19534 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
2322ffnd 6492 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 Fn (Base‘𝑅))
2423ad2antrr 726 . . . . . . . . 9 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → 𝐹 Fn (Base‘𝑅))
2521, 18ringidcl 19374 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
261, 25syl 17 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 RingHom 𝑆) → (1r𝑅) ∈ (Base‘𝑅))
2726ad2antrr 726 . . . . . . . . . 10 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (1r𝑅) ∈ (Base‘𝑅))
28 simpr 489 . . . . . . . . . 10 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (𝐹𝐽) = (Base‘𝑅))
2927, 28eleqtrrd 2854 . . . . . . . . 9 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (1r𝑅) ∈ (𝐹𝐽))
30 elpreima 6812 . . . . . . . . . 10 (𝐹 Fn (Base‘𝑅) → ((1r𝑅) ∈ (𝐹𝐽) ↔ ((1r𝑅) ∈ (Base‘𝑅) ∧ (𝐹‘(1r𝑅)) ∈ 𝐽)))
3130biimpa 481 . . . . . . . . 9 ((𝐹 Fn (Base‘𝑅) ∧ (1r𝑅) ∈ (𝐹𝐽)) → ((1r𝑅) ∈ (Base‘𝑅) ∧ (𝐹‘(1r𝑅)) ∈ 𝐽))
3224, 29, 31syl2anc 588 . . . . . . . 8 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → ((1r𝑅) ∈ (Base‘𝑅) ∧ (𝐹‘(1r𝑅)) ∈ 𝐽))
3332simprd 500 . . . . . . 7 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (𝐹‘(1r𝑅)) ∈ 𝐽)
3420, 33eqeltrrd 2852 . . . . . 6 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (1r𝑆) ∈ 𝐽)
3517, 34mtand 816 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → ¬ (𝐹𝐽) = (Base‘𝑅))
3635neqned 2956 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ≠ (Base‘𝑅))
3736adantll 714 . . 3 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ≠ (Base‘𝑅))
38 simp-5l 785 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝑆 ∈ CRing)
39 simp-4r 784 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝐽 ∈ (PrmIdeal‘𝑆))
40 simp-5r 786 . . . . . . . . . 10 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
4140, 22syl 17 . . . . . . . . 9 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
42 simpllr 776 . . . . . . . . 9 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝑎 ∈ (Base‘𝑅))
4341, 42ffvelrnd 6836 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝐹𝑎) ∈ (Base‘𝑆))
44 simplr 769 . . . . . . . . 9 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝑏 ∈ (Base‘𝑅))
4541, 44ffvelrnd 6836 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝐹𝑏) ∈ (Base‘𝑆))
46 eqid 2759 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
4721, 46, 12rhmmul 19535 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝐹‘(𝑎(.r𝑅)𝑏)) = ((𝐹𝑎)(.r𝑆)(𝐹𝑏)))
4840, 42, 44, 47syl3anc 1369 . . . . . . . . 9 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝐹‘(𝑎(.r𝑅)𝑏)) = ((𝐹𝑎)(.r𝑆)(𝐹𝑏)))
4923ad5antlr 735 . . . . . . . . . 10 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝐹 Fn (Base‘𝑅))
50 simpr 489 . . . . . . . . . 10 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽))
51 elpreima 6812 . . . . . . . . . . 11 (𝐹 Fn (Base‘𝑅) → ((𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽) ↔ ((𝑎(.r𝑅)𝑏) ∈ (Base‘𝑅) ∧ (𝐹‘(𝑎(.r𝑅)𝑏)) ∈ 𝐽)))
5251simplbda 504 . . . . . . . . . 10 ((𝐹 Fn (Base‘𝑅) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝐹‘(𝑎(.r𝑅)𝑏)) ∈ 𝐽)
5349, 50, 52syl2anc 588 . . . . . . . . 9 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝐹‘(𝑎(.r𝑅)𝑏)) ∈ 𝐽)
5448, 53eqeltrrd 2852 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → ((𝐹𝑎)(.r𝑆)(𝐹𝑏)) ∈ 𝐽)
5511, 12prmidlc 31130 . . . . . . . 8 (((𝑆 ∈ CRing ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ ((𝐹𝑎) ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ (Base‘𝑆) ∧ ((𝐹𝑎)(.r𝑆)(𝐹𝑏)) ∈ 𝐽)) → ((𝐹𝑎) ∈ 𝐽 ∨ (𝐹𝑏) ∈ 𝐽))
5638, 39, 43, 45, 54, 55syl23anc 1375 . . . . . . 7 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → ((𝐹𝑎) ∈ 𝐽 ∨ (𝐹𝑏) ∈ 𝐽))
5749adantr 485 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑎) ∈ 𝐽) → 𝐹 Fn (Base‘𝑅))
5842adantr 485 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑎) ∈ 𝐽) → 𝑎 ∈ (Base‘𝑅))
59 simpr 489 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑎) ∈ 𝐽) → (𝐹𝑎) ∈ 𝐽)
6057, 58, 59elpreimad 6813 . . . . . . . . 9 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑎) ∈ 𝐽) → 𝑎 ∈ (𝐹𝐽))
6160ex 417 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → ((𝐹𝑎) ∈ 𝐽𝑎 ∈ (𝐹𝐽)))
6249adantr 485 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑏) ∈ 𝐽) → 𝐹 Fn (Base‘𝑅))
63 simpllr 776 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑏) ∈ 𝐽) → 𝑏 ∈ (Base‘𝑅))
64 simpr 489 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑏) ∈ 𝐽) → (𝐹𝑏) ∈ 𝐽)
6562, 63, 64elpreimad 6813 . . . . . . . . 9 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑏) ∈ 𝐽) → 𝑏 ∈ (𝐹𝐽))
6665ex 417 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → ((𝐹𝑏) ∈ 𝐽𝑏 ∈ (𝐹𝐽)))
6761, 66orim12d 963 . . . . . . 7 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (((𝐹𝑎) ∈ 𝐽 ∨ (𝐹𝑏) ∈ 𝐽) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽))))
6856, 67mpd 15 . . . . . 6 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽)))
6968ex 417 . . . . 5 (((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) → ((𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽))))
7069anasss 471 . . . 4 ((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → ((𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽))))
7170ralrimivva 3118 . . 3 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)((𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽))))
7221, 46prmidl2 31122 . . 3 (((𝑅 ∈ Ring ∧ (𝐹𝐽) ∈ (LIdeal‘𝑅)) ∧ ((𝐹𝐽) ≠ (Base‘𝑅) ∧ ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)((𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽))))) → (𝐹𝐽) ∈ (PrmIdeal‘𝑅))
732, 9, 37, 71, 72syl22anc 838 . 2 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ∈ (PrmIdeal‘𝑅))
74 rhmpreimaprmidl.p . 2 𝑃 = (PrmIdeal‘𝑅)
7573, 74eleqtrrdi 2862 1 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 400  wo 845   = wceq 1539  wcel 2112  wne 2949  wral 3068  ccnv 5516  cima 5520   Fn wfn 6323  wf 6324  cfv 6328  (class class class)co 7143  Basecbs 16526  .rcmulr 16609  1rcur 19304  Ringcrg 19350  CRingccrg 19351   RingHom crh 19520  LIdealclidl 19995  PrmIdealcprmidl 31116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-map 8411  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-2 11722  df-3 11723  df-4 11724  df-5 11725  df-6 11726  df-7 11727  df-8 11728  df-ndx 16529  df-slot 16530  df-base 16532  df-sets 16533  df-ress 16534  df-plusg 16621  df-mulr 16622  df-sca 16624  df-vsca 16625  df-ip 16626  df-0g 16758  df-mgm 17903  df-sgrp 17952  df-mnd 17963  df-mhm 18007  df-grp 18157  df-minusg 18158  df-sbg 18159  df-subg 18328  df-ghm 18408  df-cmn 18960  df-mgp 19293  df-ur 19305  df-ring 19352  df-cring 19353  df-rnghom 19523  df-subrg 19586  df-lmod 19689  df-lss 19757  df-lsp 19797  df-sra 19997  df-rgmod 19998  df-lidl 19999  df-rsp 20000  df-prmidl 31117
This theorem is referenced by:  rhmpreimacnlem  31340  rhmpreimacn  31341
  Copyright terms: Public domain W3C validator