Step | Hyp | Ref
| Expression |
1 | | rhmrcl1 19878 |
. . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) |
2 | 1 | ad2antlr 723 |
. . 3
⊢ (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝑅 ∈ Ring) |
3 | | rhmrcl2 19879 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) |
4 | | prmidlidl 31521 |
. . . . . 6
⊢ ((𝑆 ∈ Ring ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝐽 ∈ (LIdeal‘𝑆)) |
5 | 3, 4 | sylan 579 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝐽 ∈ (LIdeal‘𝑆)) |
6 | | eqid 2738 |
. . . . . 6
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
7 | 6 | rhmpreimaidl 31505 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (◡𝐹 “ 𝐽) ∈ (LIdeal‘𝑅)) |
8 | 5, 7 | syldan 590 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (◡𝐹 “ 𝐽) ∈ (LIdeal‘𝑅)) |
9 | 8 | adantll 710 |
. . 3
⊢ (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (◡𝐹 “ 𝐽) ∈ (LIdeal‘𝑅)) |
10 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝑆 ∈ Ring) |
11 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑆) =
(Base‘𝑆) |
12 | | eqid 2738 |
. . . . . . . . 9
⊢
(.r‘𝑆) = (.r‘𝑆) |
13 | 11, 12 | prmidlnr 31516 |
. . . . . . . 8
⊢ ((𝑆 ∈ Ring ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝐽 ≠ (Base‘𝑆)) |
14 | 3, 13 | sylan 579 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝐽 ≠ (Base‘𝑆)) |
15 | | eqid 2738 |
. . . . . . . 8
⊢
(1r‘𝑆) = (1r‘𝑆) |
16 | 11, 15 | pridln1 31520 |
. . . . . . 7
⊢ ((𝑆 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑆) ∧ 𝐽 ≠ (Base‘𝑆)) → ¬ (1r‘𝑆) ∈ 𝐽) |
17 | 10, 5, 14, 16 | syl3anc 1369 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → ¬ (1r‘𝑆) ∈ 𝐽) |
18 | | eqid 2738 |
. . . . . . . . 9
⊢
(1r‘𝑅) = (1r‘𝑅) |
19 | 18, 15 | rhm1 19889 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) |
20 | 19 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (◡𝐹 “ 𝐽) = (Base‘𝑅)) → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) |
21 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Base‘𝑅) =
(Base‘𝑅) |
22 | 21, 11 | rhmf 19885 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
23 | 22 | ffnd 6585 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 Fn (Base‘𝑅)) |
24 | 23 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (◡𝐹 “ 𝐽) = (Base‘𝑅)) → 𝐹 Fn (Base‘𝑅)) |
25 | 21, 18 | ringidcl 19722 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
26 | 1, 25 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (1r‘𝑅) ∈ (Base‘𝑅)) |
27 | 26 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (◡𝐹 “ 𝐽) = (Base‘𝑅)) → (1r‘𝑅) ∈ (Base‘𝑅)) |
28 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (◡𝐹 “ 𝐽) = (Base‘𝑅)) → (◡𝐹 “ 𝐽) = (Base‘𝑅)) |
29 | 27, 28 | eleqtrrd 2842 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (◡𝐹 “ 𝐽) = (Base‘𝑅)) → (1r‘𝑅) ∈ (◡𝐹 “ 𝐽)) |
30 | | elpreima 6917 |
. . . . . . . . . 10
⊢ (𝐹 Fn (Base‘𝑅) →
((1r‘𝑅)
∈ (◡𝐹 “ 𝐽) ↔ ((1r‘𝑅) ∈ (Base‘𝑅) ∧ (𝐹‘(1r‘𝑅)) ∈ 𝐽))) |
31 | 30 | biimpa 476 |
. . . . . . . . 9
⊢ ((𝐹 Fn (Base‘𝑅) ∧
(1r‘𝑅)
∈ (◡𝐹 “ 𝐽)) → ((1r‘𝑅) ∈ (Base‘𝑅) ∧ (𝐹‘(1r‘𝑅)) ∈ 𝐽)) |
32 | 24, 29, 31 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (◡𝐹 “ 𝐽) = (Base‘𝑅)) → ((1r‘𝑅) ∈ (Base‘𝑅) ∧ (𝐹‘(1r‘𝑅)) ∈ 𝐽)) |
33 | 32 | simprd 495 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (◡𝐹 “ 𝐽) = (Base‘𝑅)) → (𝐹‘(1r‘𝑅)) ∈ 𝐽) |
34 | 20, 33 | eqeltrrd 2840 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (◡𝐹 “ 𝐽) = (Base‘𝑅)) → (1r‘𝑆) ∈ 𝐽) |
35 | 17, 34 | mtand 812 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → ¬ (◡𝐹 “ 𝐽) = (Base‘𝑅)) |
36 | 35 | neqned 2949 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (◡𝐹 “ 𝐽) ≠ (Base‘𝑅)) |
37 | 36 | adantll 710 |
. . 3
⊢ (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (◡𝐹 “ 𝐽) ≠ (Base‘𝑅)) |
38 | | simp-5l 781 |
. . . . . . . 8
⊢
((((((𝑆 ∈ CRing
∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) → 𝑆 ∈ CRing) |
39 | | simp-4r 780 |
. . . . . . . 8
⊢
((((((𝑆 ∈ CRing
∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) → 𝐽 ∈ (PrmIdeal‘𝑆)) |
40 | | simp-5r 782 |
. . . . . . . . . 10
⊢
((((((𝑆 ∈ CRing
∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
41 | 40, 22 | syl 17 |
. . . . . . . . 9
⊢
((((((𝑆 ∈ CRing
∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
42 | | simpllr 772 |
. . . . . . . . 9
⊢
((((((𝑆 ∈ CRing
∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) → 𝑎 ∈ (Base‘𝑅)) |
43 | 41, 42 | ffvelrnd 6944 |
. . . . . . . 8
⊢
((((((𝑆 ∈ CRing
∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) → (𝐹‘𝑎) ∈ (Base‘𝑆)) |
44 | | simplr 765 |
. . . . . . . . 9
⊢
((((((𝑆 ∈ CRing
∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) → 𝑏 ∈ (Base‘𝑅)) |
45 | 41, 44 | ffvelrnd 6944 |
. . . . . . . 8
⊢
((((((𝑆 ∈ CRing
∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) → (𝐹‘𝑏) ∈ (Base‘𝑆)) |
46 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(.r‘𝑅) = (.r‘𝑅) |
47 | 21, 46, 12 | rhmmul 19886 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝐹‘(𝑎(.r‘𝑅)𝑏)) = ((𝐹‘𝑎)(.r‘𝑆)(𝐹‘𝑏))) |
48 | 40, 42, 44, 47 | syl3anc 1369 |
. . . . . . . . 9
⊢
((((((𝑆 ∈ CRing
∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) → (𝐹‘(𝑎(.r‘𝑅)𝑏)) = ((𝐹‘𝑎)(.r‘𝑆)(𝐹‘𝑏))) |
49 | 23 | ad5antlr 731 |
. . . . . . . . . 10
⊢
((((((𝑆 ∈ CRing
∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) → 𝐹 Fn (Base‘𝑅)) |
50 | | simpr 484 |
. . . . . . . . . 10
⊢
((((((𝑆 ∈ CRing
∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) → (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) |
51 | | elpreima 6917 |
. . . . . . . . . . 11
⊢ (𝐹 Fn (Base‘𝑅) → ((𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽) ↔ ((𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝑅) ∧ (𝐹‘(𝑎(.r‘𝑅)𝑏)) ∈ 𝐽))) |
52 | 51 | simplbda 499 |
. . . . . . . . . 10
⊢ ((𝐹 Fn (Base‘𝑅) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) → (𝐹‘(𝑎(.r‘𝑅)𝑏)) ∈ 𝐽) |
53 | 49, 50, 52 | syl2anc 583 |
. . . . . . . . 9
⊢
((((((𝑆 ∈ CRing
∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) → (𝐹‘(𝑎(.r‘𝑅)𝑏)) ∈ 𝐽) |
54 | 48, 53 | eqeltrrd 2840 |
. . . . . . . 8
⊢
((((((𝑆 ∈ CRing
∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) → ((𝐹‘𝑎)(.r‘𝑆)(𝐹‘𝑏)) ∈ 𝐽) |
55 | 11, 12 | prmidlc 31526 |
. . . . . . . 8
⊢ (((𝑆 ∈ CRing ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ ((𝐹‘𝑎) ∈ (Base‘𝑆) ∧ (𝐹‘𝑏) ∈ (Base‘𝑆) ∧ ((𝐹‘𝑎)(.r‘𝑆)(𝐹‘𝑏)) ∈ 𝐽)) → ((𝐹‘𝑎) ∈ 𝐽 ∨ (𝐹‘𝑏) ∈ 𝐽)) |
56 | 38, 39, 43, 45, 54, 55 | syl23anc 1375 |
. . . . . . 7
⊢
((((((𝑆 ∈ CRing
∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) → ((𝐹‘𝑎) ∈ 𝐽 ∨ (𝐹‘𝑏) ∈ 𝐽)) |
57 | 49 | adantr 480 |
. . . . . . . . . 10
⊢
(((((((𝑆 ∈
CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) ∧ (𝐹‘𝑎) ∈ 𝐽) → 𝐹 Fn (Base‘𝑅)) |
58 | 42 | adantr 480 |
. . . . . . . . . 10
⊢
(((((((𝑆 ∈
CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) ∧ (𝐹‘𝑎) ∈ 𝐽) → 𝑎 ∈ (Base‘𝑅)) |
59 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((((𝑆 ∈
CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) ∧ (𝐹‘𝑎) ∈ 𝐽) → (𝐹‘𝑎) ∈ 𝐽) |
60 | 57, 58, 59 | elpreimad 6918 |
. . . . . . . . 9
⊢
(((((((𝑆 ∈
CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) ∧ (𝐹‘𝑎) ∈ 𝐽) → 𝑎 ∈ (◡𝐹 “ 𝐽)) |
61 | 60 | ex 412 |
. . . . . . . 8
⊢
((((((𝑆 ∈ CRing
∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) → ((𝐹‘𝑎) ∈ 𝐽 → 𝑎 ∈ (◡𝐹 “ 𝐽))) |
62 | 49 | adantr 480 |
. . . . . . . . . 10
⊢
(((((((𝑆 ∈
CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) ∧ (𝐹‘𝑏) ∈ 𝐽) → 𝐹 Fn (Base‘𝑅)) |
63 | | simpllr 772 |
. . . . . . . . . 10
⊢
(((((((𝑆 ∈
CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) ∧ (𝐹‘𝑏) ∈ 𝐽) → 𝑏 ∈ (Base‘𝑅)) |
64 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((((𝑆 ∈
CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) ∧ (𝐹‘𝑏) ∈ 𝐽) → (𝐹‘𝑏) ∈ 𝐽) |
65 | 62, 63, 64 | elpreimad 6918 |
. . . . . . . . 9
⊢
(((((((𝑆 ∈
CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) ∧ (𝐹‘𝑏) ∈ 𝐽) → 𝑏 ∈ (◡𝐹 “ 𝐽)) |
66 | 65 | ex 412 |
. . . . . . . 8
⊢
((((((𝑆 ∈ CRing
∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) → ((𝐹‘𝑏) ∈ 𝐽 → 𝑏 ∈ (◡𝐹 “ 𝐽))) |
67 | 61, 66 | orim12d 961 |
. . . . . . 7
⊢
((((((𝑆 ∈ CRing
∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) → (((𝐹‘𝑎) ∈ 𝐽 ∨ (𝐹‘𝑏) ∈ 𝐽) → (𝑎 ∈ (◡𝐹 “ 𝐽) ∨ 𝑏 ∈ (◡𝐹 “ 𝐽)))) |
68 | 56, 67 | mpd 15 |
. . . . . 6
⊢
((((((𝑆 ∈ CRing
∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽)) → (𝑎 ∈ (◡𝐹 “ 𝐽) ∨ 𝑏 ∈ (◡𝐹 “ 𝐽))) |
69 | 68 | ex 412 |
. . . . 5
⊢
(((((𝑆 ∈ CRing
∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) → ((𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽) → (𝑎 ∈ (◡𝐹 “ 𝐽) ∨ 𝑏 ∈ (◡𝐹 “ 𝐽)))) |
70 | 69 | anasss 466 |
. . . 4
⊢ ((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → ((𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽) → (𝑎 ∈ (◡𝐹 “ 𝐽) ∨ 𝑏 ∈ (◡𝐹 “ 𝐽)))) |
71 | 70 | ralrimivva 3114 |
. . 3
⊢ (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)((𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽) → (𝑎 ∈ (◡𝐹 “ 𝐽) ∨ 𝑏 ∈ (◡𝐹 “ 𝐽)))) |
72 | 21, 46 | prmidl2 31518 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ (◡𝐹 “ 𝐽) ∈ (LIdeal‘𝑅)) ∧ ((◡𝐹 “ 𝐽) ≠ (Base‘𝑅) ∧ ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)((𝑎(.r‘𝑅)𝑏) ∈ (◡𝐹 “ 𝐽) → (𝑎 ∈ (◡𝐹 “ 𝐽) ∨ 𝑏 ∈ (◡𝐹 “ 𝐽))))) → (◡𝐹 “ 𝐽) ∈ (PrmIdeal‘𝑅)) |
73 | 2, 9, 37, 71, 72 | syl22anc 835 |
. 2
⊢ (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (◡𝐹 “ 𝐽) ∈ (PrmIdeal‘𝑅)) |
74 | | rhmpreimaprmidl.p |
. 2
⊢ 𝑃 = (PrmIdeal‘𝑅) |
75 | 73, 74 | eleqtrrdi 2850 |
1
⊢ (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (◡𝐹 “ 𝐽) ∈ 𝑃) |