Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmpreimaprmidl Structured version   Visualization version   GIF version

Theorem rhmpreimaprmidl 33416
Description: The preimage of a prime ideal by a ring homomorphism is a prime ideal. (Contributed by Thierry Arnoux, 29-Jun-2024.)
Hypothesis
Ref Expression
rhmpreimaprmidl.p 𝑃 = (PrmIdeal‘𝑅)
Assertion
Ref Expression
rhmpreimaprmidl (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ∈ 𝑃)

Proof of Theorem rhmpreimaprmidl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmrcl1 20394 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
21ad2antlr 727 . . 3 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝑅 ∈ Ring)
3 rhmrcl2 20395 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
4 prmidlidl 33409 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝐽 ∈ (LIdeal‘𝑆))
53, 4sylan 580 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝐽 ∈ (LIdeal‘𝑆))
6 eqid 2731 . . . . . 6 (LIdeal‘𝑅) = (LIdeal‘𝑅)
76rhmpreimaidl 21214 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹𝐽) ∈ (LIdeal‘𝑅))
85, 7syldan 591 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ∈ (LIdeal‘𝑅))
98adantll 714 . . 3 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ∈ (LIdeal‘𝑅))
103adantr 480 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝑆 ∈ Ring)
11 eqid 2731 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
12 eqid 2731 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
1311, 12prmidlnr 33404 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝐽 ≠ (Base‘𝑆))
143, 13sylan 580 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝐽 ≠ (Base‘𝑆))
15 eqid 2731 . . . . . . . 8 (1r𝑆) = (1r𝑆)
1611, 15pridln1 33408 . . . . . . 7 ((𝑆 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑆) ∧ 𝐽 ≠ (Base‘𝑆)) → ¬ (1r𝑆) ∈ 𝐽)
1710, 5, 14, 16syl3anc 1373 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → ¬ (1r𝑆) ∈ 𝐽)
18 eqid 2731 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
1918, 15rhm1 20406 . . . . . . . 8 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r𝑅)) = (1r𝑆))
2019ad2antrr 726 . . . . . . 7 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (𝐹‘(1r𝑅)) = (1r𝑆))
21 eqid 2731 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
2221, 11rhmf 20402 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
2322ffnd 6652 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 Fn (Base‘𝑅))
2423ad2antrr 726 . . . . . . . . 9 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → 𝐹 Fn (Base‘𝑅))
2521, 18ringidcl 20183 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
261, 25syl 17 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 RingHom 𝑆) → (1r𝑅) ∈ (Base‘𝑅))
2726ad2antrr 726 . . . . . . . . . 10 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (1r𝑅) ∈ (Base‘𝑅))
28 simpr 484 . . . . . . . . . 10 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (𝐹𝐽) = (Base‘𝑅))
2927, 28eleqtrrd 2834 . . . . . . . . 9 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (1r𝑅) ∈ (𝐹𝐽))
30 elpreima 6991 . . . . . . . . . 10 (𝐹 Fn (Base‘𝑅) → ((1r𝑅) ∈ (𝐹𝐽) ↔ ((1r𝑅) ∈ (Base‘𝑅) ∧ (𝐹‘(1r𝑅)) ∈ 𝐽)))
3130biimpa 476 . . . . . . . . 9 ((𝐹 Fn (Base‘𝑅) ∧ (1r𝑅) ∈ (𝐹𝐽)) → ((1r𝑅) ∈ (Base‘𝑅) ∧ (𝐹‘(1r𝑅)) ∈ 𝐽))
3224, 29, 31syl2anc 584 . . . . . . . 8 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → ((1r𝑅) ∈ (Base‘𝑅) ∧ (𝐹‘(1r𝑅)) ∈ 𝐽))
3332simprd 495 . . . . . . 7 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (𝐹‘(1r𝑅)) ∈ 𝐽)
3420, 33eqeltrrd 2832 . . . . . 6 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (1r𝑆) ∈ 𝐽)
3517, 34mtand 815 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → ¬ (𝐹𝐽) = (Base‘𝑅))
3635neqned 2935 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ≠ (Base‘𝑅))
3736adantll 714 . . 3 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ≠ (Base‘𝑅))
38 simp-5l 784 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝑆 ∈ CRing)
39 simp-4r 783 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝐽 ∈ (PrmIdeal‘𝑆))
40 simp-5r 785 . . . . . . . . . 10 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
4140, 22syl 17 . . . . . . . . 9 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
42 simpllr 775 . . . . . . . . 9 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝑎 ∈ (Base‘𝑅))
4341, 42ffvelcdmd 7018 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝐹𝑎) ∈ (Base‘𝑆))
44 simplr 768 . . . . . . . . 9 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝑏 ∈ (Base‘𝑅))
4541, 44ffvelcdmd 7018 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝐹𝑏) ∈ (Base‘𝑆))
46 eqid 2731 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
4721, 46, 12rhmmul 20403 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝐹‘(𝑎(.r𝑅)𝑏)) = ((𝐹𝑎)(.r𝑆)(𝐹𝑏)))
4840, 42, 44, 47syl3anc 1373 . . . . . . . . 9 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝐹‘(𝑎(.r𝑅)𝑏)) = ((𝐹𝑎)(.r𝑆)(𝐹𝑏)))
4923ad5antlr 735 . . . . . . . . . 10 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝐹 Fn (Base‘𝑅))
50 simpr 484 . . . . . . . . . 10 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽))
51 elpreima 6991 . . . . . . . . . . 11 (𝐹 Fn (Base‘𝑅) → ((𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽) ↔ ((𝑎(.r𝑅)𝑏) ∈ (Base‘𝑅) ∧ (𝐹‘(𝑎(.r𝑅)𝑏)) ∈ 𝐽)))
5251simplbda 499 . . . . . . . . . 10 ((𝐹 Fn (Base‘𝑅) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝐹‘(𝑎(.r𝑅)𝑏)) ∈ 𝐽)
5349, 50, 52syl2anc 584 . . . . . . . . 9 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝐹‘(𝑎(.r𝑅)𝑏)) ∈ 𝐽)
5448, 53eqeltrrd 2832 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → ((𝐹𝑎)(.r𝑆)(𝐹𝑏)) ∈ 𝐽)
5511, 12prmidlc 33413 . . . . . . . 8 (((𝑆 ∈ CRing ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ ((𝐹𝑎) ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ (Base‘𝑆) ∧ ((𝐹𝑎)(.r𝑆)(𝐹𝑏)) ∈ 𝐽)) → ((𝐹𝑎) ∈ 𝐽 ∨ (𝐹𝑏) ∈ 𝐽))
5638, 39, 43, 45, 54, 55syl23anc 1379 . . . . . . 7 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → ((𝐹𝑎) ∈ 𝐽 ∨ (𝐹𝑏) ∈ 𝐽))
5749adantr 480 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑎) ∈ 𝐽) → 𝐹 Fn (Base‘𝑅))
5842adantr 480 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑎) ∈ 𝐽) → 𝑎 ∈ (Base‘𝑅))
59 simpr 484 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑎) ∈ 𝐽) → (𝐹𝑎) ∈ 𝐽)
6057, 58, 59elpreimad 6992 . . . . . . . . 9 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑎) ∈ 𝐽) → 𝑎 ∈ (𝐹𝐽))
6160ex 412 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → ((𝐹𝑎) ∈ 𝐽𝑎 ∈ (𝐹𝐽)))
6249adantr 480 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑏) ∈ 𝐽) → 𝐹 Fn (Base‘𝑅))
63 simpllr 775 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑏) ∈ 𝐽) → 𝑏 ∈ (Base‘𝑅))
64 simpr 484 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑏) ∈ 𝐽) → (𝐹𝑏) ∈ 𝐽)
6562, 63, 64elpreimad 6992 . . . . . . . . 9 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑏) ∈ 𝐽) → 𝑏 ∈ (𝐹𝐽))
6665ex 412 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → ((𝐹𝑏) ∈ 𝐽𝑏 ∈ (𝐹𝐽)))
6761, 66orim12d 966 . . . . . . 7 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (((𝐹𝑎) ∈ 𝐽 ∨ (𝐹𝑏) ∈ 𝐽) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽))))
6856, 67mpd 15 . . . . . 6 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽)))
6968ex 412 . . . . 5 (((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) → ((𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽))))
7069anasss 466 . . . 4 ((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → ((𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽))))
7170ralrimivva 3175 . . 3 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)((𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽))))
7221, 46prmidl2 33406 . . 3 (((𝑅 ∈ Ring ∧ (𝐹𝐽) ∈ (LIdeal‘𝑅)) ∧ ((𝐹𝐽) ≠ (Base‘𝑅) ∧ ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)((𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽))))) → (𝐹𝐽) ∈ (PrmIdeal‘𝑅))
732, 9, 37, 71, 72syl22anc 838 . 2 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ∈ (PrmIdeal‘𝑅))
74 rhmpreimaprmidl.p . 2 𝑃 = (PrmIdeal‘𝑅)
7573, 74eleqtrrdi 2842 1 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wral 3047  ccnv 5613  cima 5617   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17120  .rcmulr 17162  1rcur 20099  Ringcrg 20151  CRingccrg 20152   RingHom crh 20387  LIdealclidl 21143  PrmIdealcprmidl 33400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-ghm 19125  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-rhm 20390  df-subrg 20485  df-lmod 20795  df-lss 20865  df-lsp 20905  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-rsp 21146  df-prmidl 33401
This theorem is referenced by:  ply1annprmidl  33720  rhmpreimacnlem  33897  rhmpreimacn  33898
  Copyright terms: Public domain W3C validator