Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmpreimaprmidl Structured version   Visualization version   GIF version

Theorem rhmpreimaprmidl 31313
Description: The preimage of a prime ideal by a ring homomorphism is a prime ideal. (Contributed by Thierry Arnoux, 29-Jun-2024.)
Hypothesis
Ref Expression
rhmpreimaprmidl.p 𝑃 = (PrmIdeal‘𝑅)
Assertion
Ref Expression
rhmpreimaprmidl (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ∈ 𝑃)

Proof of Theorem rhmpreimaprmidl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmrcl1 19711 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
21ad2antlr 727 . . 3 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝑅 ∈ Ring)
3 rhmrcl2 19712 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
4 prmidlidl 31305 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝐽 ∈ (LIdeal‘𝑆))
53, 4sylan 583 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝐽 ∈ (LIdeal‘𝑆))
6 eqid 2734 . . . . . 6 (LIdeal‘𝑅) = (LIdeal‘𝑅)
76rhmpreimaidl 31289 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹𝐽) ∈ (LIdeal‘𝑅))
85, 7syldan 594 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ∈ (LIdeal‘𝑅))
98adantll 714 . . 3 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ∈ (LIdeal‘𝑅))
103adantr 484 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝑆 ∈ Ring)
11 eqid 2734 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
12 eqid 2734 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
1311, 12prmidlnr 31300 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝐽 ≠ (Base‘𝑆))
143, 13sylan 583 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝐽 ≠ (Base‘𝑆))
15 eqid 2734 . . . . . . . 8 (1r𝑆) = (1r𝑆)
1611, 15pridln1 31304 . . . . . . 7 ((𝑆 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑆) ∧ 𝐽 ≠ (Base‘𝑆)) → ¬ (1r𝑆) ∈ 𝐽)
1710, 5, 14, 16syl3anc 1373 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → ¬ (1r𝑆) ∈ 𝐽)
18 eqid 2734 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
1918, 15rhm1 19722 . . . . . . . 8 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r𝑅)) = (1r𝑆))
2019ad2antrr 726 . . . . . . 7 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (𝐹‘(1r𝑅)) = (1r𝑆))
21 eqid 2734 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
2221, 11rhmf 19718 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
2322ffnd 6535 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 Fn (Base‘𝑅))
2423ad2antrr 726 . . . . . . . . 9 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → 𝐹 Fn (Base‘𝑅))
2521, 18ringidcl 19558 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
261, 25syl 17 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 RingHom 𝑆) → (1r𝑅) ∈ (Base‘𝑅))
2726ad2antrr 726 . . . . . . . . . 10 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (1r𝑅) ∈ (Base‘𝑅))
28 simpr 488 . . . . . . . . . 10 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (𝐹𝐽) = (Base‘𝑅))
2927, 28eleqtrrd 2837 . . . . . . . . 9 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (1r𝑅) ∈ (𝐹𝐽))
30 elpreima 6867 . . . . . . . . . 10 (𝐹 Fn (Base‘𝑅) → ((1r𝑅) ∈ (𝐹𝐽) ↔ ((1r𝑅) ∈ (Base‘𝑅) ∧ (𝐹‘(1r𝑅)) ∈ 𝐽)))
3130biimpa 480 . . . . . . . . 9 ((𝐹 Fn (Base‘𝑅) ∧ (1r𝑅) ∈ (𝐹𝐽)) → ((1r𝑅) ∈ (Base‘𝑅) ∧ (𝐹‘(1r𝑅)) ∈ 𝐽))
3224, 29, 31syl2anc 587 . . . . . . . 8 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → ((1r𝑅) ∈ (Base‘𝑅) ∧ (𝐹‘(1r𝑅)) ∈ 𝐽))
3332simprd 499 . . . . . . 7 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (𝐹‘(1r𝑅)) ∈ 𝐽)
3420, 33eqeltrrd 2835 . . . . . 6 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (1r𝑆) ∈ 𝐽)
3517, 34mtand 816 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → ¬ (𝐹𝐽) = (Base‘𝑅))
3635neqned 2942 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ≠ (Base‘𝑅))
3736adantll 714 . . 3 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ≠ (Base‘𝑅))
38 simp-5l 785 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝑆 ∈ CRing)
39 simp-4r 784 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝐽 ∈ (PrmIdeal‘𝑆))
40 simp-5r 786 . . . . . . . . . 10 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
4140, 22syl 17 . . . . . . . . 9 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
42 simpllr 776 . . . . . . . . 9 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝑎 ∈ (Base‘𝑅))
4341, 42ffvelrnd 6894 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝐹𝑎) ∈ (Base‘𝑆))
44 simplr 769 . . . . . . . . 9 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝑏 ∈ (Base‘𝑅))
4541, 44ffvelrnd 6894 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝐹𝑏) ∈ (Base‘𝑆))
46 eqid 2734 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
4721, 46, 12rhmmul 19719 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝐹‘(𝑎(.r𝑅)𝑏)) = ((𝐹𝑎)(.r𝑆)(𝐹𝑏)))
4840, 42, 44, 47syl3anc 1373 . . . . . . . . 9 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝐹‘(𝑎(.r𝑅)𝑏)) = ((𝐹𝑎)(.r𝑆)(𝐹𝑏)))
4923ad5antlr 735 . . . . . . . . . 10 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝐹 Fn (Base‘𝑅))
50 simpr 488 . . . . . . . . . 10 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽))
51 elpreima 6867 . . . . . . . . . . 11 (𝐹 Fn (Base‘𝑅) → ((𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽) ↔ ((𝑎(.r𝑅)𝑏) ∈ (Base‘𝑅) ∧ (𝐹‘(𝑎(.r𝑅)𝑏)) ∈ 𝐽)))
5251simplbda 503 . . . . . . . . . 10 ((𝐹 Fn (Base‘𝑅) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝐹‘(𝑎(.r𝑅)𝑏)) ∈ 𝐽)
5349, 50, 52syl2anc 587 . . . . . . . . 9 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝐹‘(𝑎(.r𝑅)𝑏)) ∈ 𝐽)
5448, 53eqeltrrd 2835 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → ((𝐹𝑎)(.r𝑆)(𝐹𝑏)) ∈ 𝐽)
5511, 12prmidlc 31310 . . . . . . . 8 (((𝑆 ∈ CRing ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ ((𝐹𝑎) ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ (Base‘𝑆) ∧ ((𝐹𝑎)(.r𝑆)(𝐹𝑏)) ∈ 𝐽)) → ((𝐹𝑎) ∈ 𝐽 ∨ (𝐹𝑏) ∈ 𝐽))
5638, 39, 43, 45, 54, 55syl23anc 1379 . . . . . . 7 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → ((𝐹𝑎) ∈ 𝐽 ∨ (𝐹𝑏) ∈ 𝐽))
5749adantr 484 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑎) ∈ 𝐽) → 𝐹 Fn (Base‘𝑅))
5842adantr 484 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑎) ∈ 𝐽) → 𝑎 ∈ (Base‘𝑅))
59 simpr 488 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑎) ∈ 𝐽) → (𝐹𝑎) ∈ 𝐽)
6057, 58, 59elpreimad 6868 . . . . . . . . 9 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑎) ∈ 𝐽) → 𝑎 ∈ (𝐹𝐽))
6160ex 416 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → ((𝐹𝑎) ∈ 𝐽𝑎 ∈ (𝐹𝐽)))
6249adantr 484 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑏) ∈ 𝐽) → 𝐹 Fn (Base‘𝑅))
63 simpllr 776 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑏) ∈ 𝐽) → 𝑏 ∈ (Base‘𝑅))
64 simpr 488 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑏) ∈ 𝐽) → (𝐹𝑏) ∈ 𝐽)
6562, 63, 64elpreimad 6868 . . . . . . . . 9 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑏) ∈ 𝐽) → 𝑏 ∈ (𝐹𝐽))
6665ex 416 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → ((𝐹𝑏) ∈ 𝐽𝑏 ∈ (𝐹𝐽)))
6761, 66orim12d 965 . . . . . . 7 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (((𝐹𝑎) ∈ 𝐽 ∨ (𝐹𝑏) ∈ 𝐽) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽))))
6856, 67mpd 15 . . . . . 6 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽)))
6968ex 416 . . . . 5 (((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) → ((𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽))))
7069anasss 470 . . . 4 ((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → ((𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽))))
7170ralrimivva 3105 . . 3 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)((𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽))))
7221, 46prmidl2 31302 . . 3 (((𝑅 ∈ Ring ∧ (𝐹𝐽) ∈ (LIdeal‘𝑅)) ∧ ((𝐹𝐽) ≠ (Base‘𝑅) ∧ ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)((𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽))))) → (𝐹𝐽) ∈ (PrmIdeal‘𝑅))
732, 9, 37, 71, 72syl22anc 839 . 2 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ∈ (PrmIdeal‘𝑅))
74 rhmpreimaprmidl.p . 2 𝑃 = (PrmIdeal‘𝑅)
7573, 74eleqtrrdi 2845 1 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 847   = wceq 1543  wcel 2110  wne 2935  wral 3054  ccnv 5539  cima 5543   Fn wfn 6364  wf 6365  cfv 6369  (class class class)co 7202  Basecbs 16684  .rcmulr 16768  1rcur 19488  Ringcrg 19534  CRingccrg 19535   RingHom crh 19704  LIdealclidl 20179  PrmIdealcprmidl 31296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-sca 16783  df-vsca 16784  df-ip 16785  df-0g 16918  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-mhm 18190  df-grp 18340  df-minusg 18341  df-sbg 18342  df-subg 18512  df-ghm 18592  df-cmn 19144  df-mgp 19477  df-ur 19489  df-ring 19536  df-cring 19537  df-rnghom 19707  df-subrg 19770  df-lmod 19873  df-lss 19941  df-lsp 19981  df-sra 20181  df-rgmod 20182  df-lidl 20183  df-rsp 20184  df-prmidl 31297
This theorem is referenced by:  rhmpreimacnlem  31520  rhmpreimacn  31521
  Copyright terms: Public domain W3C validator