Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmpreimaprmidl Structured version   Visualization version   GIF version

Theorem rhmpreimaprmidl 33466
Description: The preimage of a prime ideal by a ring homomorphism is a prime ideal. (Contributed by Thierry Arnoux, 29-Jun-2024.)
Hypothesis
Ref Expression
rhmpreimaprmidl.p 𝑃 = (PrmIdeal‘𝑅)
Assertion
Ref Expression
rhmpreimaprmidl (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ∈ 𝑃)

Proof of Theorem rhmpreimaprmidl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmrcl1 20436 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
21ad2antlr 727 . . 3 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝑅 ∈ Ring)
3 rhmrcl2 20437 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
4 prmidlidl 33459 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝐽 ∈ (LIdeal‘𝑆))
53, 4sylan 580 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝐽 ∈ (LIdeal‘𝑆))
6 eqid 2735 . . . . . 6 (LIdeal‘𝑅) = (LIdeal‘𝑅)
76rhmpreimaidl 21238 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹𝐽) ∈ (LIdeal‘𝑅))
85, 7syldan 591 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ∈ (LIdeal‘𝑅))
98adantll 714 . . 3 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ∈ (LIdeal‘𝑅))
103adantr 480 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝑆 ∈ Ring)
11 eqid 2735 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
12 eqid 2735 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
1311, 12prmidlnr 33454 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝐽 ≠ (Base‘𝑆))
143, 13sylan 580 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → 𝐽 ≠ (Base‘𝑆))
15 eqid 2735 . . . . . . . 8 (1r𝑆) = (1r𝑆)
1611, 15pridln1 33458 . . . . . . 7 ((𝑆 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑆) ∧ 𝐽 ≠ (Base‘𝑆)) → ¬ (1r𝑆) ∈ 𝐽)
1710, 5, 14, 16syl3anc 1373 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → ¬ (1r𝑆) ∈ 𝐽)
18 eqid 2735 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
1918, 15rhm1 20449 . . . . . . . 8 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r𝑅)) = (1r𝑆))
2019ad2antrr 726 . . . . . . 7 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (𝐹‘(1r𝑅)) = (1r𝑆))
21 eqid 2735 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
2221, 11rhmf 20445 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
2322ffnd 6707 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 Fn (Base‘𝑅))
2423ad2antrr 726 . . . . . . . . 9 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → 𝐹 Fn (Base‘𝑅))
2521, 18ringidcl 20225 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
261, 25syl 17 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 RingHom 𝑆) → (1r𝑅) ∈ (Base‘𝑅))
2726ad2antrr 726 . . . . . . . . . 10 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (1r𝑅) ∈ (Base‘𝑅))
28 simpr 484 . . . . . . . . . 10 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (𝐹𝐽) = (Base‘𝑅))
2927, 28eleqtrrd 2837 . . . . . . . . 9 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (1r𝑅) ∈ (𝐹𝐽))
30 elpreima 7048 . . . . . . . . . 10 (𝐹 Fn (Base‘𝑅) → ((1r𝑅) ∈ (𝐹𝐽) ↔ ((1r𝑅) ∈ (Base‘𝑅) ∧ (𝐹‘(1r𝑅)) ∈ 𝐽)))
3130biimpa 476 . . . . . . . . 9 ((𝐹 Fn (Base‘𝑅) ∧ (1r𝑅) ∈ (𝐹𝐽)) → ((1r𝑅) ∈ (Base‘𝑅) ∧ (𝐹‘(1r𝑅)) ∈ 𝐽))
3224, 29, 31syl2anc 584 . . . . . . . 8 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → ((1r𝑅) ∈ (Base‘𝑅) ∧ (𝐹‘(1r𝑅)) ∈ 𝐽))
3332simprd 495 . . . . . . 7 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (𝐹‘(1r𝑅)) ∈ 𝐽)
3420, 33eqeltrrd 2835 . . . . . 6 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝐹𝐽) = (Base‘𝑅)) → (1r𝑆) ∈ 𝐽)
3517, 34mtand 815 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → ¬ (𝐹𝐽) = (Base‘𝑅))
3635neqned 2939 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ≠ (Base‘𝑅))
3736adantll 714 . . 3 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ≠ (Base‘𝑅))
38 simp-5l 784 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝑆 ∈ CRing)
39 simp-4r 783 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝐽 ∈ (PrmIdeal‘𝑆))
40 simp-5r 785 . . . . . . . . . 10 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
4140, 22syl 17 . . . . . . . . 9 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
42 simpllr 775 . . . . . . . . 9 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝑎 ∈ (Base‘𝑅))
4341, 42ffvelcdmd 7075 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝐹𝑎) ∈ (Base‘𝑆))
44 simplr 768 . . . . . . . . 9 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝑏 ∈ (Base‘𝑅))
4541, 44ffvelcdmd 7075 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝐹𝑏) ∈ (Base‘𝑆))
46 eqid 2735 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
4721, 46, 12rhmmul 20446 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝐹‘(𝑎(.r𝑅)𝑏)) = ((𝐹𝑎)(.r𝑆)(𝐹𝑏)))
4840, 42, 44, 47syl3anc 1373 . . . . . . . . 9 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝐹‘(𝑎(.r𝑅)𝑏)) = ((𝐹𝑎)(.r𝑆)(𝐹𝑏)))
4923ad5antlr 735 . . . . . . . . . 10 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → 𝐹 Fn (Base‘𝑅))
50 simpr 484 . . . . . . . . . 10 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽))
51 elpreima 7048 . . . . . . . . . . 11 (𝐹 Fn (Base‘𝑅) → ((𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽) ↔ ((𝑎(.r𝑅)𝑏) ∈ (Base‘𝑅) ∧ (𝐹‘(𝑎(.r𝑅)𝑏)) ∈ 𝐽)))
5251simplbda 499 . . . . . . . . . 10 ((𝐹 Fn (Base‘𝑅) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝐹‘(𝑎(.r𝑅)𝑏)) ∈ 𝐽)
5349, 50, 52syl2anc 584 . . . . . . . . 9 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝐹‘(𝑎(.r𝑅)𝑏)) ∈ 𝐽)
5448, 53eqeltrrd 2835 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → ((𝐹𝑎)(.r𝑆)(𝐹𝑏)) ∈ 𝐽)
5511, 12prmidlc 33463 . . . . . . . 8 (((𝑆 ∈ CRing ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ ((𝐹𝑎) ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ (Base‘𝑆) ∧ ((𝐹𝑎)(.r𝑆)(𝐹𝑏)) ∈ 𝐽)) → ((𝐹𝑎) ∈ 𝐽 ∨ (𝐹𝑏) ∈ 𝐽))
5638, 39, 43, 45, 54, 55syl23anc 1379 . . . . . . 7 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → ((𝐹𝑎) ∈ 𝐽 ∨ (𝐹𝑏) ∈ 𝐽))
5749adantr 480 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑎) ∈ 𝐽) → 𝐹 Fn (Base‘𝑅))
5842adantr 480 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑎) ∈ 𝐽) → 𝑎 ∈ (Base‘𝑅))
59 simpr 484 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑎) ∈ 𝐽) → (𝐹𝑎) ∈ 𝐽)
6057, 58, 59elpreimad 7049 . . . . . . . . 9 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑎) ∈ 𝐽) → 𝑎 ∈ (𝐹𝐽))
6160ex 412 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → ((𝐹𝑎) ∈ 𝐽𝑎 ∈ (𝐹𝐽)))
6249adantr 480 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑏) ∈ 𝐽) → 𝐹 Fn (Base‘𝑅))
63 simpllr 775 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑏) ∈ 𝐽) → 𝑏 ∈ (Base‘𝑅))
64 simpr 484 . . . . . . . . . 10 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑏) ∈ 𝐽) → (𝐹𝑏) ∈ 𝐽)
6562, 63, 64elpreimad 7049 . . . . . . . . 9 (((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) ∧ (𝐹𝑏) ∈ 𝐽) → 𝑏 ∈ (𝐹𝐽))
6665ex 412 . . . . . . . 8 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → ((𝐹𝑏) ∈ 𝐽𝑏 ∈ (𝐹𝐽)))
6761, 66orim12d 966 . . . . . . 7 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (((𝐹𝑎) ∈ 𝐽 ∨ (𝐹𝑏) ∈ 𝐽) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽))))
6856, 67mpd 15 . . . . . 6 ((((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) ∧ (𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽)) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽)))
6968ex 412 . . . . 5 (((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) → ((𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽))))
7069anasss 466 . . . 4 ((((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → ((𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽))))
7170ralrimivva 3187 . . 3 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)((𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽))))
7221, 46prmidl2 33456 . . 3 (((𝑅 ∈ Ring ∧ (𝐹𝐽) ∈ (LIdeal‘𝑅)) ∧ ((𝐹𝐽) ≠ (Base‘𝑅) ∧ ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)((𝑎(.r𝑅)𝑏) ∈ (𝐹𝐽) → (𝑎 ∈ (𝐹𝐽) ∨ 𝑏 ∈ (𝐹𝐽))))) → (𝐹𝐽) ∈ (PrmIdeal‘𝑅))
732, 9, 37, 71, 72syl22anc 838 . 2 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ∈ (PrmIdeal‘𝑅))
74 rhmpreimaprmidl.p . 2 𝑃 = (PrmIdeal‘𝑅)
7573, 74eleqtrrdi 2845 1 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (𝐹𝐽) ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  wral 3051  ccnv 5653  cima 5657   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  Basecbs 17228  .rcmulr 17272  1rcur 20141  Ringcrg 20193  CRingccrg 20194   RingHom crh 20429  LIdealclidl 21167  PrmIdealcprmidl 33450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-ghm 19196  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-rhm 20432  df-subrg 20530  df-lmod 20819  df-lss 20889  df-lsp 20929  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-rsp 21170  df-prmidl 33451
This theorem is referenced by:  ply1annprmidl  33741  rhmpreimacnlem  33915  rhmpreimacn  33916
  Copyright terms: Public domain W3C validator