| Step | Hyp | Ref
| Expression |
| 1 | | opex 5468 |
. . . . 5
⊢
〈(𝐹‘(1st ‘𝑧)), (𝐺‘(2nd ‘𝑧))〉 ∈
V |
| 2 | | fvproj.h |
. . . . . 6
⊢ 𝐻 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) |
| 3 | | vex 3483 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 4 | | vex 3483 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
| 5 | 3, 4 | op1std 8025 |
. . . . . . . . 9
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (1st ‘𝑧) = 𝑥) |
| 6 | 5 | fveq2d 6909 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘(1st ‘𝑧)) = (𝐹‘𝑥)) |
| 7 | 3, 4 | op2ndd 8026 |
. . . . . . . . 9
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (2nd ‘𝑧) = 𝑦) |
| 8 | 7 | fveq2d 6909 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐺‘(2nd ‘𝑧)) = (𝐺‘𝑦)) |
| 9 | 6, 8 | opeq12d 4880 |
. . . . . . 7
⊢ (𝑧 = 〈𝑥, 𝑦〉 → 〈(𝐹‘(1st ‘𝑧)), (𝐺‘(2nd ‘𝑧))〉 = 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) |
| 10 | 9 | mpompt 7548 |
. . . . . 6
⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 〈(𝐹‘(1st ‘𝑧)), (𝐺‘(2nd ‘𝑧))〉) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) |
| 11 | 2, 10 | eqtr4i 2767 |
. . . . 5
⊢ 𝐻 = (𝑧 ∈ (𝐴 × 𝐵) ↦ 〈(𝐹‘(1st ‘𝑧)), (𝐺‘(2nd ‘𝑧))〉) |
| 12 | 1, 11 | fnmpti 6710 |
. . . 4
⊢ 𝐻 Fn (𝐴 × 𝐵) |
| 13 | | fimaproj.x |
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ 𝐴) |
| 14 | | fimaproj.y |
. . . . 5
⊢ (𝜑 → 𝑌 ⊆ 𝐵) |
| 15 | | xpss12 5699 |
. . . . 5
⊢ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵) → (𝑋 × 𝑌) ⊆ (𝐴 × 𝐵)) |
| 16 | 13, 14, 15 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝑋 × 𝑌) ⊆ (𝐴 × 𝐵)) |
| 17 | | fvelimab 6980 |
. . . 4
⊢ ((𝐻 Fn (𝐴 × 𝐵) ∧ (𝑋 × 𝑌) ⊆ (𝐴 × 𝐵)) → (𝑐 ∈ (𝐻 “ (𝑋 × 𝑌)) ↔ ∃𝑧 ∈ (𝑋 × 𝑌)(𝐻‘𝑧) = 𝑐)) |
| 18 | 12, 16, 17 | sylancr 587 |
. . 3
⊢ (𝜑 → (𝑐 ∈ (𝐻 “ (𝑋 × 𝑌)) ↔ ∃𝑧 ∈ (𝑋 × 𝑌)(𝐻‘𝑧) = 𝑐)) |
| 19 | | simp-4r 783 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → 𝑎 ∈ 𝑋) |
| 20 | | simplr 768 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → 𝑏 ∈ 𝑌) |
| 21 | | opelxpi 5721 |
. . . . . . . 8
⊢ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑌) → 〈𝑎, 𝑏〉 ∈ (𝑋 × 𝑌)) |
| 22 | 19, 20, 21 | syl2anc 584 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → 〈𝑎, 𝑏〉 ∈ (𝑋 × 𝑌)) |
| 23 | | simpllr 775 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → (𝐹‘𝑎) = (1st ‘𝑐)) |
| 24 | | simpr 484 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → (𝐺‘𝑏) = (2nd ‘𝑐)) |
| 25 | 23, 24 | opeq12d 4880 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → 〈(𝐹‘𝑎), (𝐺‘𝑏)〉 = 〈(1st ‘𝑐), (2nd ‘𝑐)〉) |
| 26 | 13 | ad5antr 734 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → 𝑋 ⊆ 𝐴) |
| 27 | 26, 19 | sseldd 3983 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → 𝑎 ∈ 𝐴) |
| 28 | 14 | ad5antr 734 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → 𝑌 ⊆ 𝐵) |
| 29 | 28, 20 | sseldd 3983 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → 𝑏 ∈ 𝐵) |
| 30 | 2, 27, 29 | fvproj 8160 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → (𝐻‘〈𝑎, 𝑏〉) = 〈(𝐹‘𝑎), (𝐺‘𝑏)〉) |
| 31 | | 1st2nd2 8054 |
. . . . . . . . 9
⊢ (𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌)) → 𝑐 = 〈(1st ‘𝑐), (2nd ‘𝑐)〉) |
| 32 | 31 | ad5antlr 735 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → 𝑐 = 〈(1st ‘𝑐), (2nd ‘𝑐)〉) |
| 33 | 25, 30, 32 | 3eqtr4d 2786 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → (𝐻‘〈𝑎, 𝑏〉) = 𝑐) |
| 34 | | fveqeq2 6914 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑎, 𝑏〉 → ((𝐻‘𝑧) = 𝑐 ↔ (𝐻‘〈𝑎, 𝑏〉) = 𝑐)) |
| 35 | 34 | rspcev 3621 |
. . . . . . 7
⊢
((〈𝑎, 𝑏〉 ∈ (𝑋 × 𝑌) ∧ (𝐻‘〈𝑎, 𝑏〉) = 𝑐) → ∃𝑧 ∈ (𝑋 × 𝑌)(𝐻‘𝑧) = 𝑐) |
| 36 | 22, 33, 35 | syl2anc 584 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → ∃𝑧 ∈ (𝑋 × 𝑌)(𝐻‘𝑧) = 𝑐) |
| 37 | | fimaproj.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 Fn 𝐵) |
| 38 | 37 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) → 𝐺 Fn 𝐵) |
| 39 | | fnfun 6667 |
. . . . . . . 8
⊢ (𝐺 Fn 𝐵 → Fun 𝐺) |
| 40 | 38, 39 | syl 17 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) → Fun 𝐺) |
| 41 | | xp2nd 8048 |
. . . . . . . 8
⊢ (𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌)) → (2nd ‘𝑐) ∈ (𝐺 “ 𝑌)) |
| 42 | 41 | ad3antlr 731 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) → (2nd ‘𝑐) ∈ (𝐺 “ 𝑌)) |
| 43 | | fvelima 6973 |
. . . . . . 7
⊢ ((Fun
𝐺 ∧ (2nd
‘𝑐) ∈ (𝐺 “ 𝑌)) → ∃𝑏 ∈ 𝑌 (𝐺‘𝑏) = (2nd ‘𝑐)) |
| 44 | 40, 42, 43 | syl2anc 584 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) → ∃𝑏 ∈ 𝑌 (𝐺‘𝑏) = (2nd ‘𝑐)) |
| 45 | 36, 44 | r19.29a 3161 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) → ∃𝑧 ∈ (𝑋 × 𝑌)(𝐻‘𝑧) = 𝑐) |
| 46 | | fimaproj.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 47 | 46 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) → 𝐹 Fn 𝐴) |
| 48 | | fnfun 6667 |
. . . . . . 7
⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
| 49 | 47, 48 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) → Fun 𝐹) |
| 50 | | xp1st 8047 |
. . . . . . 7
⊢ (𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌)) → (1st ‘𝑐) ∈ (𝐹 “ 𝑋)) |
| 51 | 50 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) → (1st ‘𝑐) ∈ (𝐹 “ 𝑋)) |
| 52 | | fvelima 6973 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ (1st
‘𝑐) ∈ (𝐹 “ 𝑋)) → ∃𝑎 ∈ 𝑋 (𝐹‘𝑎) = (1st ‘𝑐)) |
| 53 | 49, 51, 52 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) → ∃𝑎 ∈ 𝑋 (𝐹‘𝑎) = (1st ‘𝑐)) |
| 54 | 45, 53 | r19.29a 3161 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) → ∃𝑧 ∈ (𝑋 × 𝑌)(𝐻‘𝑧) = 𝑐) |
| 55 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → (𝐻‘𝑧) = 𝑐) |
| 56 | 16 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → (𝑋 × 𝑌) ⊆ (𝐴 × 𝐵)) |
| 57 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → 𝑧 ∈ (𝑋 × 𝑌)) |
| 58 | 56, 57 | sseldd 3983 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → 𝑧 ∈ (𝐴 × 𝐵)) |
| 59 | 11 | fvmpt2 7026 |
. . . . . . . 8
⊢ ((𝑧 ∈ (𝐴 × 𝐵) ∧ 〈(𝐹‘(1st ‘𝑧)), (𝐺‘(2nd ‘𝑧))〉 ∈ V) → (𝐻‘𝑧) = 〈(𝐹‘(1st ‘𝑧)), (𝐺‘(2nd ‘𝑧))〉) |
| 60 | 58, 1, 59 | sylancl 586 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → (𝐻‘𝑧) = 〈(𝐹‘(1st ‘𝑧)), (𝐺‘(2nd ‘𝑧))〉) |
| 61 | 46 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → 𝐹 Fn 𝐴) |
| 62 | 13 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → 𝑋 ⊆ 𝐴) |
| 63 | | xp1st 8047 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝑋 × 𝑌) → (1st ‘𝑧) ∈ 𝑋) |
| 64 | 57, 63 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → (1st ‘𝑧) ∈ 𝑋) |
| 65 | | fnfvima 7254 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴 ∧ (1st ‘𝑧) ∈ 𝑋) → (𝐹‘(1st ‘𝑧)) ∈ (𝐹 “ 𝑋)) |
| 66 | 61, 62, 64, 65 | syl3anc 1372 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → (𝐹‘(1st ‘𝑧)) ∈ (𝐹 “ 𝑋)) |
| 67 | 37 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → 𝐺 Fn 𝐵) |
| 68 | 14 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → 𝑌 ⊆ 𝐵) |
| 69 | | xp2nd 8048 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝑋 × 𝑌) → (2nd ‘𝑧) ∈ 𝑌) |
| 70 | 57, 69 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → (2nd ‘𝑧) ∈ 𝑌) |
| 71 | | fnfvima 7254 |
. . . . . . . . 9
⊢ ((𝐺 Fn 𝐵 ∧ 𝑌 ⊆ 𝐵 ∧ (2nd ‘𝑧) ∈ 𝑌) → (𝐺‘(2nd ‘𝑧)) ∈ (𝐺 “ 𝑌)) |
| 72 | 67, 68, 70, 71 | syl3anc 1372 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → (𝐺‘(2nd ‘𝑧)) ∈ (𝐺 “ 𝑌)) |
| 73 | | opelxpi 5721 |
. . . . . . . 8
⊢ (((𝐹‘(1st
‘𝑧)) ∈ (𝐹 “ 𝑋) ∧ (𝐺‘(2nd ‘𝑧)) ∈ (𝐺 “ 𝑌)) → 〈(𝐹‘(1st ‘𝑧)), (𝐺‘(2nd ‘𝑧))〉 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) |
| 74 | 66, 72, 73 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → 〈(𝐹‘(1st ‘𝑧)), (𝐺‘(2nd ‘𝑧))〉 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) |
| 75 | 60, 74 | eqeltrd 2840 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → (𝐻‘𝑧) ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) |
| 76 | 55, 75 | eqeltrrd 2841 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) |
| 77 | 76 | r19.29an 3157 |
. . . 4
⊢ ((𝜑 ∧ ∃𝑧 ∈ (𝑋 × 𝑌)(𝐻‘𝑧) = 𝑐) → 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) |
| 78 | 54, 77 | impbida 800 |
. . 3
⊢ (𝜑 → (𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌)) ↔ ∃𝑧 ∈ (𝑋 × 𝑌)(𝐻‘𝑧) = 𝑐)) |
| 79 | 18, 78 | bitr4d 282 |
. 2
⊢ (𝜑 → (𝑐 ∈ (𝐻 “ (𝑋 × 𝑌)) ↔ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌)))) |
| 80 | 79 | eqrdv 2734 |
1
⊢ (𝜑 → (𝐻 “ (𝑋 × 𝑌)) = ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) |