Step | Hyp | Ref
| Expression |
1 | | opex 5373 |
. . . . 5
⊢
〈(𝐹‘(1st ‘𝑧)), (𝐺‘(2nd ‘𝑧))〉 ∈
V |
2 | | fvproj.h |
. . . . . 6
⊢ 𝐻 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) |
3 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
4 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
5 | 3, 4 | op1std 7814 |
. . . . . . . . 9
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (1st ‘𝑧) = 𝑥) |
6 | 5 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘(1st ‘𝑧)) = (𝐹‘𝑥)) |
7 | 3, 4 | op2ndd 7815 |
. . . . . . . . 9
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (2nd ‘𝑧) = 𝑦) |
8 | 7 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐺‘(2nd ‘𝑧)) = (𝐺‘𝑦)) |
9 | 6, 8 | opeq12d 4809 |
. . . . . . 7
⊢ (𝑧 = 〈𝑥, 𝑦〉 → 〈(𝐹‘(1st ‘𝑧)), (𝐺‘(2nd ‘𝑧))〉 = 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) |
10 | 9 | mpompt 7366 |
. . . . . 6
⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 〈(𝐹‘(1st ‘𝑧)), (𝐺‘(2nd ‘𝑧))〉) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) |
11 | 2, 10 | eqtr4i 2769 |
. . . . 5
⊢ 𝐻 = (𝑧 ∈ (𝐴 × 𝐵) ↦ 〈(𝐹‘(1st ‘𝑧)), (𝐺‘(2nd ‘𝑧))〉) |
12 | 1, 11 | fnmpti 6560 |
. . . 4
⊢ 𝐻 Fn (𝐴 × 𝐵) |
13 | | fimaproj.x |
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ 𝐴) |
14 | | fimaproj.y |
. . . . 5
⊢ (𝜑 → 𝑌 ⊆ 𝐵) |
15 | | xpss12 5595 |
. . . . 5
⊢ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵) → (𝑋 × 𝑌) ⊆ (𝐴 × 𝐵)) |
16 | 13, 14, 15 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (𝑋 × 𝑌) ⊆ (𝐴 × 𝐵)) |
17 | | fvelimab 6823 |
. . . 4
⊢ ((𝐻 Fn (𝐴 × 𝐵) ∧ (𝑋 × 𝑌) ⊆ (𝐴 × 𝐵)) → (𝑐 ∈ (𝐻 “ (𝑋 × 𝑌)) ↔ ∃𝑧 ∈ (𝑋 × 𝑌)(𝐻‘𝑧) = 𝑐)) |
18 | 12, 16, 17 | sylancr 586 |
. . 3
⊢ (𝜑 → (𝑐 ∈ (𝐻 “ (𝑋 × 𝑌)) ↔ ∃𝑧 ∈ (𝑋 × 𝑌)(𝐻‘𝑧) = 𝑐)) |
19 | | simp-4r 780 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → 𝑎 ∈ 𝑋) |
20 | | simplr 765 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → 𝑏 ∈ 𝑌) |
21 | | opelxpi 5617 |
. . . . . . . 8
⊢ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑌) → 〈𝑎, 𝑏〉 ∈ (𝑋 × 𝑌)) |
22 | 19, 20, 21 | syl2anc 583 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → 〈𝑎, 𝑏〉 ∈ (𝑋 × 𝑌)) |
23 | | simpllr 772 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → (𝐹‘𝑎) = (1st ‘𝑐)) |
24 | | simpr 484 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → (𝐺‘𝑏) = (2nd ‘𝑐)) |
25 | 23, 24 | opeq12d 4809 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → 〈(𝐹‘𝑎), (𝐺‘𝑏)〉 = 〈(1st ‘𝑐), (2nd ‘𝑐)〉) |
26 | 13 | ad5antr 730 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → 𝑋 ⊆ 𝐴) |
27 | 26, 19 | sseldd 3918 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → 𝑎 ∈ 𝐴) |
28 | 14 | ad5antr 730 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → 𝑌 ⊆ 𝐵) |
29 | 28, 20 | sseldd 3918 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → 𝑏 ∈ 𝐵) |
30 | 2, 27, 29 | fvproj 7946 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → (𝐻‘〈𝑎, 𝑏〉) = 〈(𝐹‘𝑎), (𝐺‘𝑏)〉) |
31 | | 1st2nd2 7843 |
. . . . . . . . 9
⊢ (𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌)) → 𝑐 = 〈(1st ‘𝑐), (2nd ‘𝑐)〉) |
32 | 31 | ad5antlr 731 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → 𝑐 = 〈(1st ‘𝑐), (2nd ‘𝑐)〉) |
33 | 25, 30, 32 | 3eqtr4d 2788 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → (𝐻‘〈𝑎, 𝑏〉) = 𝑐) |
34 | | fveqeq2 6765 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑎, 𝑏〉 → ((𝐻‘𝑧) = 𝑐 ↔ (𝐻‘〈𝑎, 𝑏〉) = 𝑐)) |
35 | 34 | rspcev 3552 |
. . . . . . 7
⊢
((〈𝑎, 𝑏〉 ∈ (𝑋 × 𝑌) ∧ (𝐻‘〈𝑎, 𝑏〉) = 𝑐) → ∃𝑧 ∈ (𝑋 × 𝑌)(𝐻‘𝑧) = 𝑐) |
36 | 22, 33, 35 | syl2anc 583 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) ∧ 𝑏 ∈ 𝑌) ∧ (𝐺‘𝑏) = (2nd ‘𝑐)) → ∃𝑧 ∈ (𝑋 × 𝑌)(𝐻‘𝑧) = 𝑐) |
37 | | fimaproj.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 Fn 𝐵) |
38 | 37 | ad3antrrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) → 𝐺 Fn 𝐵) |
39 | | fnfun 6517 |
. . . . . . . 8
⊢ (𝐺 Fn 𝐵 → Fun 𝐺) |
40 | 38, 39 | syl 17 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) → Fun 𝐺) |
41 | | xp2nd 7837 |
. . . . . . . 8
⊢ (𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌)) → (2nd ‘𝑐) ∈ (𝐺 “ 𝑌)) |
42 | 41 | ad3antlr 727 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) → (2nd ‘𝑐) ∈ (𝐺 “ 𝑌)) |
43 | | fvelima 6817 |
. . . . . . 7
⊢ ((Fun
𝐺 ∧ (2nd
‘𝑐) ∈ (𝐺 “ 𝑌)) → ∃𝑏 ∈ 𝑌 (𝐺‘𝑏) = (2nd ‘𝑐)) |
44 | 40, 42, 43 | syl2anc 583 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) → ∃𝑏 ∈ 𝑌 (𝐺‘𝑏) = (2nd ‘𝑐)) |
45 | 36, 44 | r19.29a 3217 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = (1st ‘𝑐)) → ∃𝑧 ∈ (𝑋 × 𝑌)(𝐻‘𝑧) = 𝑐) |
46 | | fimaproj.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹 Fn 𝐴) |
47 | 46 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) → 𝐹 Fn 𝐴) |
48 | | fnfun 6517 |
. . . . . . 7
⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
49 | 47, 48 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) → Fun 𝐹) |
50 | | xp1st 7836 |
. . . . . . 7
⊢ (𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌)) → (1st ‘𝑐) ∈ (𝐹 “ 𝑋)) |
51 | 50 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) → (1st ‘𝑐) ∈ (𝐹 “ 𝑋)) |
52 | | fvelima 6817 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ (1st
‘𝑐) ∈ (𝐹 “ 𝑋)) → ∃𝑎 ∈ 𝑋 (𝐹‘𝑎) = (1st ‘𝑐)) |
53 | 49, 51, 52 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) → ∃𝑎 ∈ 𝑋 (𝐹‘𝑎) = (1st ‘𝑐)) |
54 | 45, 53 | r19.29a 3217 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) → ∃𝑧 ∈ (𝑋 × 𝑌)(𝐻‘𝑧) = 𝑐) |
55 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → (𝐻‘𝑧) = 𝑐) |
56 | 16 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → (𝑋 × 𝑌) ⊆ (𝐴 × 𝐵)) |
57 | | simplr 765 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → 𝑧 ∈ (𝑋 × 𝑌)) |
58 | 56, 57 | sseldd 3918 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → 𝑧 ∈ (𝐴 × 𝐵)) |
59 | 11 | fvmpt2 6868 |
. . . . . . . 8
⊢ ((𝑧 ∈ (𝐴 × 𝐵) ∧ 〈(𝐹‘(1st ‘𝑧)), (𝐺‘(2nd ‘𝑧))〉 ∈ V) → (𝐻‘𝑧) = 〈(𝐹‘(1st ‘𝑧)), (𝐺‘(2nd ‘𝑧))〉) |
60 | 58, 1, 59 | sylancl 585 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → (𝐻‘𝑧) = 〈(𝐹‘(1st ‘𝑧)), (𝐺‘(2nd ‘𝑧))〉) |
61 | 46 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → 𝐹 Fn 𝐴) |
62 | 13 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → 𝑋 ⊆ 𝐴) |
63 | | xp1st 7836 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝑋 × 𝑌) → (1st ‘𝑧) ∈ 𝑋) |
64 | 57, 63 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → (1st ‘𝑧) ∈ 𝑋) |
65 | | fnfvima 7091 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴 ∧ (1st ‘𝑧) ∈ 𝑋) → (𝐹‘(1st ‘𝑧)) ∈ (𝐹 “ 𝑋)) |
66 | 61, 62, 64, 65 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → (𝐹‘(1st ‘𝑧)) ∈ (𝐹 “ 𝑋)) |
67 | 37 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → 𝐺 Fn 𝐵) |
68 | 14 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → 𝑌 ⊆ 𝐵) |
69 | | xp2nd 7837 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝑋 × 𝑌) → (2nd ‘𝑧) ∈ 𝑌) |
70 | 57, 69 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → (2nd ‘𝑧) ∈ 𝑌) |
71 | | fnfvima 7091 |
. . . . . . . . 9
⊢ ((𝐺 Fn 𝐵 ∧ 𝑌 ⊆ 𝐵 ∧ (2nd ‘𝑧) ∈ 𝑌) → (𝐺‘(2nd ‘𝑧)) ∈ (𝐺 “ 𝑌)) |
72 | 67, 68, 70, 71 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → (𝐺‘(2nd ‘𝑧)) ∈ (𝐺 “ 𝑌)) |
73 | | opelxpi 5617 |
. . . . . . . 8
⊢ (((𝐹‘(1st
‘𝑧)) ∈ (𝐹 “ 𝑋) ∧ (𝐺‘(2nd ‘𝑧)) ∈ (𝐺 “ 𝑌)) → 〈(𝐹‘(1st ‘𝑧)), (𝐺‘(2nd ‘𝑧))〉 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) |
74 | 66, 72, 73 | syl2anc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → 〈(𝐹‘(1st ‘𝑧)), (𝐺‘(2nd ‘𝑧))〉 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) |
75 | 60, 74 | eqeltrd 2839 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → (𝐻‘𝑧) ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) |
76 | 55, 75 | eqeltrrd 2840 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) ∧ (𝐻‘𝑧) = 𝑐) → 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) |
77 | 76 | r19.29an 3216 |
. . . 4
⊢ ((𝜑 ∧ ∃𝑧 ∈ (𝑋 × 𝑌)(𝐻‘𝑧) = 𝑐) → 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) |
78 | 54, 77 | impbida 797 |
. . 3
⊢ (𝜑 → (𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌)) ↔ ∃𝑧 ∈ (𝑋 × 𝑌)(𝐻‘𝑧) = 𝑐)) |
79 | 18, 78 | bitr4d 281 |
. 2
⊢ (𝜑 → (𝑐 ∈ (𝐻 “ (𝑋 × 𝑌)) ↔ 𝑐 ∈ ((𝐹 “ 𝑋) × (𝐺 “ 𝑌)))) |
80 | 79 | eqrdv 2736 |
1
⊢ (𝜑 → (𝐻 “ (𝑋 × 𝑌)) = ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) |