Step | Hyp | Ref
| Expression |
1 | | remulcl 10660 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
2 | 1 | ad5antlr 734 |
. . . . . . . . . 10
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (𝐴 · 𝐵) ∈ ℝ) |
3 | | simprl 770 |
. . . . . . . . . . . . . 14
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℤ) |
4 | 3 | ad3antrrr 729 |
. . . . . . . . . . . . 13
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → 𝑎 ∈ ℤ) |
5 | | simplrl 776 |
. . . . . . . . . . . . 13
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → 𝑐 ∈ ℤ) |
6 | 4, 5 | zmulcld 12132 |
. . . . . . . . . . . 12
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (𝑎 · 𝑐) ∈ ℤ) |
7 | | eldifi 4032 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → 𝐷 ∈ ℕ) |
8 | 7 | ad2antrr 725 |
. . . . . . . . . . . . . . 15
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐷 ∈ ℕ) |
9 | 8 | nnzd 12125 |
. . . . . . . . . . . . . 14
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐷 ∈ ℤ) |
10 | 9 | ad3antrrr 729 |
. . . . . . . . . . . . 13
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → 𝐷 ∈ ℤ) |
11 | | simplrr 777 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → 𝑑 ∈ ℤ) |
12 | | simprr 772 |
. . . . . . . . . . . . . . 15
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℤ) |
13 | 12 | ad3antrrr 729 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → 𝑏 ∈ ℤ) |
14 | 11, 13 | zmulcld 12132 |
. . . . . . . . . . . . 13
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (𝑑 · 𝑏) ∈ ℤ) |
15 | 10, 14 | zmulcld 12132 |
. . . . . . . . . . . 12
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (𝐷 · (𝑑 · 𝑏)) ∈ ℤ) |
16 | 6, 15 | zaddcld 12130 |
. . . . . . . . . . 11
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) ∈ ℤ) |
17 | 4, 11 | zmulcld 12132 |
. . . . . . . . . . . 12
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (𝑎 · 𝑑) ∈ ℤ) |
18 | 5, 13 | zmulcld 12132 |
. . . . . . . . . . . 12
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (𝑐 · 𝑏) ∈ ℤ) |
19 | 17, 18 | zaddcld 12130 |
. . . . . . . . . . 11
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((𝑎 · 𝑑) + (𝑐 · 𝑏)) ∈ ℤ) |
20 | | simprl 770 |
. . . . . . . . . . . . . 14
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏))) |
21 | 20 | ad2antrr 725 |
. . . . . . . . . . . . 13
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏))) |
22 | | simprl 770 |
. . . . . . . . . . . . 13
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → 𝐵 = (𝑐 + ((√‘𝐷) · 𝑑))) |
23 | 21, 22 | oveq12d 7168 |
. . . . . . . . . . . 12
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (𝐴 · 𝐵) = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑐 + ((√‘𝐷) · 𝑑)))) |
24 | | zcn 12025 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ ℤ → 𝑎 ∈
ℂ) |
25 | 24 | ad2antrl 727 |
. . . . . . . . . . . . . 14
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℂ) |
26 | 25 | ad3antrrr 729 |
. . . . . . . . . . . . 13
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → 𝑎 ∈ ℂ) |
27 | 8 | nncnd 11690 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐷 ∈ ℂ) |
28 | 27 | ad3antrrr 729 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → 𝐷 ∈ ℂ) |
29 | 28 | sqrtcld 14845 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (√‘𝐷) ∈
ℂ) |
30 | | zcn 12025 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ∈ ℤ → 𝑏 ∈
ℂ) |
31 | 30 | ad2antll 728 |
. . . . . . . . . . . . . . 15
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℂ) |
32 | 31 | ad3antrrr 729 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → 𝑏 ∈ ℂ) |
33 | 29, 32 | mulcld 10699 |
. . . . . . . . . . . . 13
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((√‘𝐷) · 𝑏) ∈ ℂ) |
34 | | zcn 12025 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ ℤ → 𝑐 ∈
ℂ) |
35 | 34 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → 𝑐 ∈
ℂ) |
36 | 35 | ad2antlr 726 |
. . . . . . . . . . . . 13
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → 𝑐 ∈ ℂ) |
37 | | zcn 12025 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 ∈ ℤ → 𝑑 ∈
ℂ) |
38 | 37 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → 𝑑 ∈
ℂ) |
39 | 38 | ad2antlr 726 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → 𝑑 ∈ ℂ) |
40 | 29, 39 | mulcld 10699 |
. . . . . . . . . . . . 13
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((√‘𝐷) · 𝑑) ∈ ℂ) |
41 | 26, 33, 36, 40 | muladdd 11136 |
. . . . . . . . . . . 12
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑐 + ((√‘𝐷) · 𝑑))) = (((𝑎 · 𝑐) + (((√‘𝐷) · 𝑑) · ((√‘𝐷) · 𝑏))) + ((𝑎 · ((√‘𝐷) · 𝑑)) + (𝑐 · ((√‘𝐷) · 𝑏))))) |
42 | 29, 39, 29, 32 | mul4d 10890 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) →
(((√‘𝐷)
· 𝑑) ·
((√‘𝐷) ·
𝑏)) =
(((√‘𝐷)
· (√‘𝐷))
· (𝑑 · 𝑏))) |
43 | 28 | msqsqrtd 14848 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((√‘𝐷) · (√‘𝐷)) = 𝐷) |
44 | 43 | oveq1d 7165 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) →
(((√‘𝐷)
· (√‘𝐷))
· (𝑑 · 𝑏)) = (𝐷 · (𝑑 · 𝑏))) |
45 | 42, 44 | eqtrd 2793 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) →
(((√‘𝐷)
· 𝑑) ·
((√‘𝐷) ·
𝑏)) = (𝐷 · (𝑑 · 𝑏))) |
46 | 45 | oveq2d 7166 |
. . . . . . . . . . . . 13
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((𝑎 · 𝑐) + (((√‘𝐷) · 𝑑) · ((√‘𝐷) · 𝑏))) = ((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏)))) |
47 | 26, 29, 39 | mul12d 10887 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (𝑎 · ((√‘𝐷) · 𝑑)) = ((√‘𝐷) · (𝑎 · 𝑑))) |
48 | 36, 29, 32 | mul12d 10887 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (𝑐 · ((√‘𝐷) · 𝑏)) = ((√‘𝐷) · (𝑐 · 𝑏))) |
49 | 47, 48 | oveq12d 7168 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((𝑎 · ((√‘𝐷) · 𝑑)) + (𝑐 · ((√‘𝐷) · 𝑏))) = (((√‘𝐷) · (𝑎 · 𝑑)) + ((√‘𝐷) · (𝑐 · 𝑏)))) |
50 | 26, 39 | mulcld 10699 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (𝑎 · 𝑑) ∈ ℂ) |
51 | 36, 32 | mulcld 10699 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (𝑐 · 𝑏) ∈ ℂ) |
52 | 29, 50, 51 | adddid 10703 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((√‘𝐷) · ((𝑎 · 𝑑) + (𝑐 · 𝑏))) = (((√‘𝐷) · (𝑎 · 𝑑)) + ((√‘𝐷) · (𝑐 · 𝑏)))) |
53 | 49, 52 | eqtr4d 2796 |
. . . . . . . . . . . . 13
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((𝑎 · ((√‘𝐷) · 𝑑)) + (𝑐 · ((√‘𝐷) · 𝑏))) = ((√‘𝐷) · ((𝑎 · 𝑑) + (𝑐 · 𝑏)))) |
54 | 46, 53 | oveq12d 7168 |
. . . . . . . . . . . 12
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (((𝑎 · 𝑐) + (((√‘𝐷) · 𝑑) · ((√‘𝐷) · 𝑏))) + ((𝑎 · ((√‘𝐷) · 𝑑)) + (𝑐 · ((√‘𝐷) · 𝑏)))) = (((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) + ((√‘𝐷) · ((𝑎 · 𝑑) + (𝑐 · 𝑏))))) |
55 | 23, 41, 54 | 3eqtrd 2797 |
. . . . . . . . . . 11
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (𝐴 · 𝐵) = (((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) + ((√‘𝐷) · ((𝑎 · 𝑑) + (𝑐 · 𝑏))))) |
56 | 50, 51 | addcld 10698 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((𝑎 · 𝑑) + (𝑐 · 𝑏)) ∈ ℂ) |
57 | 29, 56 | sqmuld 13572 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) →
(((√‘𝐷)
· ((𝑎 · 𝑑) + (𝑐 · 𝑏)))↑2) = (((√‘𝐷)↑2) · (((𝑎 · 𝑑) + (𝑐 · 𝑏))↑2))) |
58 | 28 | sqsqrtd 14847 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((√‘𝐷)↑2) = 𝐷) |
59 | 58 | oveq1d 7165 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) →
(((√‘𝐷)↑2)
· (((𝑎 ·
𝑑) + (𝑐 · 𝑏))↑2)) = (𝐷 · (((𝑎 · 𝑑) + (𝑐 · 𝑏))↑2))) |
60 | 57, 59 | eqtr2d 2794 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (𝐷 · (((𝑎 · 𝑑) + (𝑐 · 𝑏))↑2)) = (((√‘𝐷) · ((𝑎 · 𝑑) + (𝑐 · 𝑏)))↑2)) |
61 | 60 | oveq2d 7166 |
. . . . . . . . . . . . 13
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏)))↑2) − (𝐷 · (((𝑎 · 𝑑) + (𝑐 · 𝑏))↑2))) = ((((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏)))↑2) − (((√‘𝐷) · ((𝑎 · 𝑑) + (𝑐 · 𝑏)))↑2))) |
62 | 26, 36 | mulcld 10699 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (𝑎 · 𝑐) ∈ ℂ) |
63 | 39, 32 | mulcld 10699 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (𝑑 · 𝑏) ∈ ℂ) |
64 | 28, 63 | mulcld 10699 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (𝐷 · (𝑑 · 𝑏)) ∈ ℂ) |
65 | 62, 64 | addcld 10698 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) ∈ ℂ) |
66 | 29, 56 | mulcld 10699 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((√‘𝐷) · ((𝑎 · 𝑑) + (𝑐 · 𝑏))) ∈ ℂ) |
67 | | subsq 13622 |
. . . . . . . . . . . . . 14
⊢ ((((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) ∈ ℂ ∧
((√‘𝐷) ·
((𝑎 · 𝑑) + (𝑐 · 𝑏))) ∈ ℂ) → ((((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏)))↑2) − (((√‘𝐷) · ((𝑎 · 𝑑) + (𝑐 · 𝑏)))↑2)) = ((((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) + ((√‘𝐷) · ((𝑎 · 𝑑) + (𝑐 · 𝑏)))) · (((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) − ((√‘𝐷) · ((𝑎 · 𝑑) + (𝑐 · 𝑏)))))) |
68 | 65, 66, 67 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏)))↑2) − (((√‘𝐷) · ((𝑎 · 𝑑) + (𝑐 · 𝑏)))↑2)) = ((((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) + ((√‘𝐷) · ((𝑎 · 𝑑) + (𝑐 · 𝑏)))) · (((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) − ((√‘𝐷) · ((𝑎 · 𝑑) + (𝑐 · 𝑏)))))) |
69 | 41, 54 | eqtr2d 2794 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) + ((√‘𝐷) · ((𝑎 · 𝑑) + (𝑐 · 𝑏)))) = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑐 + ((√‘𝐷) · 𝑑)))) |
70 | 26, 33, 36, 40 | mulsubd 11137 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((𝑎 − ((√‘𝐷) · 𝑏)) · (𝑐 − ((√‘𝐷) · 𝑑))) = (((𝑎 · 𝑐) + (((√‘𝐷) · 𝑑) · ((√‘𝐷) · 𝑏))) − ((𝑎 · ((√‘𝐷) · 𝑑)) + (𝑐 · ((√‘𝐷) · 𝑏))))) |
71 | 46, 53 | oveq12d 7168 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (((𝑎 · 𝑐) + (((√‘𝐷) · 𝑑) · ((√‘𝐷) · 𝑏))) − ((𝑎 · ((√‘𝐷) · 𝑑)) + (𝑐 · ((√‘𝐷) · 𝑏)))) = (((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) − ((√‘𝐷) · ((𝑎 · 𝑑) + (𝑐 · 𝑏))))) |
72 | 70, 71 | eqtr2d 2794 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) − ((√‘𝐷) · ((𝑎 · 𝑑) + (𝑐 · 𝑏)))) = ((𝑎 − ((√‘𝐷) · 𝑏)) · (𝑐 − ((√‘𝐷) · 𝑑)))) |
73 | 69, 72 | oveq12d 7168 |
. . . . . . . . . . . . 13
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) + ((√‘𝐷) · ((𝑎 · 𝑑) + (𝑐 · 𝑏)))) · (((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) − ((√‘𝐷) · ((𝑎 · 𝑑) + (𝑐 · 𝑏))))) = (((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑐 + ((√‘𝐷) · 𝑑))) · ((𝑎 − ((√‘𝐷) · 𝑏)) · (𝑐 − ((√‘𝐷) · 𝑑))))) |
74 | 61, 68, 73 | 3eqtrd 2797 |
. . . . . . . . . . . 12
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏)))↑2) − (𝐷 · (((𝑎 · 𝑑) + (𝑐 · 𝑏))↑2))) = (((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑐 + ((√‘𝐷) · 𝑑))) · ((𝑎 − ((√‘𝐷) · 𝑏)) · (𝑐 − ((√‘𝐷) · 𝑑))))) |
75 | 26, 33 | addcld 10698 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (𝑎 + ((√‘𝐷) · 𝑏)) ∈ ℂ) |
76 | 36, 40 | addcld 10698 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (𝑐 + ((√‘𝐷) · 𝑑)) ∈ ℂ) |
77 | 26, 33 | subcld 11035 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (𝑎 − ((√‘𝐷) · 𝑏)) ∈ ℂ) |
78 | 36, 40 | subcld 11035 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (𝑐 − ((√‘𝐷) · 𝑑)) ∈ ℂ) |
79 | 75, 76, 77, 78 | mul4d 10890 |
. . . . . . . . . . . . 13
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑐 + ((√‘𝐷) · 𝑑))) · ((𝑎 − ((√‘𝐷) · 𝑏)) · (𝑐 − ((√‘𝐷) · 𝑑)))) = (((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))) · ((𝑐 + ((√‘𝐷) · 𝑑)) · (𝑐 − ((√‘𝐷) · 𝑑))))) |
80 | | subsq 13622 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℂ ∧
((√‘𝐷) ·
𝑏) ∈ ℂ) →
((𝑎↑2) −
(((√‘𝐷)
· 𝑏)↑2)) =
((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏)))) |
81 | 26, 33, 80 | syl2anc 587 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2)) = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏)))) |
82 | | subsq 13622 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐 ∈ ℂ ∧
((√‘𝐷) ·
𝑑) ∈ ℂ) →
((𝑐↑2) −
(((√‘𝐷)
· 𝑑)↑2)) =
((𝑐 + ((√‘𝐷) · 𝑑)) · (𝑐 − ((√‘𝐷) · 𝑑)))) |
83 | 36, 40, 82 | syl2anc 587 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((𝑐↑2) − (((√‘𝐷) · 𝑑)↑2)) = ((𝑐 + ((√‘𝐷) · 𝑑)) · (𝑐 − ((√‘𝐷) · 𝑑)))) |
84 | 81, 83 | oveq12d 7168 |
. . . . . . . . . . . . 13
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2)) · ((𝑐↑2) − (((√‘𝐷) · 𝑑)↑2))) = (((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))) · ((𝑐 + ((√‘𝐷) · 𝑑)) · (𝑐 − ((√‘𝐷) · 𝑑))))) |
85 | 29, 32 | sqmuld 13572 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) →
(((√‘𝐷)
· 𝑏)↑2) =
(((√‘𝐷)↑2)
· (𝑏↑2))) |
86 | 85 | oveq2d 7166 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2)) = ((𝑎↑2) − (((√‘𝐷)↑2) · (𝑏↑2)))) |
87 | 29, 39 | sqmuld 13572 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) →
(((√‘𝐷)
· 𝑑)↑2) =
(((√‘𝐷)↑2)
· (𝑑↑2))) |
88 | 87 | oveq2d 7166 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((𝑐↑2) − (((√‘𝐷) · 𝑑)↑2)) = ((𝑐↑2) − (((√‘𝐷)↑2) · (𝑑↑2)))) |
89 | 86, 88 | oveq12d 7168 |
. . . . . . . . . . . . 13
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2)) · ((𝑐↑2) − (((√‘𝐷) · 𝑑)↑2))) = (((𝑎↑2) − (((√‘𝐷)↑2) · (𝑏↑2))) · ((𝑐↑2) −
(((√‘𝐷)↑2)
· (𝑑↑2))))) |
90 | 79, 84, 89 | 3eqtr2d 2799 |
. . . . . . . . . . . 12
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑐 + ((√‘𝐷) · 𝑑))) · ((𝑎 − ((√‘𝐷) · 𝑏)) · (𝑐 − ((√‘𝐷) · 𝑑)))) = (((𝑎↑2) − (((√‘𝐷)↑2) · (𝑏↑2))) · ((𝑐↑2) −
(((√‘𝐷)↑2)
· (𝑑↑2))))) |
91 | 58 | oveq1d 7165 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) →
(((√‘𝐷)↑2)
· (𝑏↑2)) =
(𝐷 · (𝑏↑2))) |
92 | 91 | oveq2d 7166 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((𝑎↑2) − (((√‘𝐷)↑2) · (𝑏↑2))) = ((𝑎↑2) − (𝐷 · (𝑏↑2)))) |
93 | 58 | oveq1d 7165 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) →
(((√‘𝐷)↑2)
· (𝑑↑2)) =
(𝐷 · (𝑑↑2))) |
94 | 93 | oveq2d 7166 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((𝑐↑2) − (((√‘𝐷)↑2) · (𝑑↑2))) = ((𝑐↑2) − (𝐷 · (𝑑↑2)))) |
95 | 92, 94 | oveq12d 7168 |
. . . . . . . . . . . . 13
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (((𝑎↑2) − (((√‘𝐷)↑2) · (𝑏↑2))) · ((𝑐↑2) −
(((√‘𝐷)↑2)
· (𝑑↑2)))) =
(((𝑎↑2) − (𝐷 · (𝑏↑2))) · ((𝑐↑2) − (𝐷 · (𝑑↑2))))) |
96 | | simprr 772 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) |
97 | 96 | ad2antrr 725 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) |
98 | | simprr 772 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) |
99 | 97, 98 | oveq12d 7168 |
. . . . . . . . . . . . 13
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (((𝑎↑2) − (𝐷 · (𝑏↑2))) · ((𝑐↑2) − (𝐷 · (𝑑↑2)))) = (1 ·
1)) |
100 | | 1t1e1 11836 |
. . . . . . . . . . . . . 14
⊢ (1
· 1) = 1 |
101 | 100 | a1i 11 |
. . . . . . . . . . . . 13
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (1 · 1) =
1) |
102 | 95, 99, 101 | 3eqtrd 2797 |
. . . . . . . . . . . 12
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → (((𝑎↑2) − (((√‘𝐷)↑2) · (𝑏↑2))) · ((𝑐↑2) −
(((√‘𝐷)↑2)
· (𝑑↑2)))) =
1) |
103 | 74, 90, 102 | 3eqtrd 2797 |
. . . . . . . . . . 11
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏)))↑2) − (𝐷 · (((𝑎 · 𝑑) + (𝑐 · 𝑏))↑2))) = 1) |
104 | | oveq1 7157 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = ((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) → (𝑒 + ((√‘𝐷) · 𝑓)) = (((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) + ((√‘𝐷) · 𝑓))) |
105 | 104 | eqeq2d 2769 |
. . . . . . . . . . . . 13
⊢ (𝑒 = ((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) → ((𝐴 · 𝐵) = (𝑒 + ((√‘𝐷) · 𝑓)) ↔ (𝐴 · 𝐵) = (((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) + ((√‘𝐷) · 𝑓)))) |
106 | | oveq1 7157 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = ((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) → (𝑒↑2) = (((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏)))↑2)) |
107 | 106 | oveq1d 7165 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = ((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) → ((𝑒↑2) − (𝐷 · (𝑓↑2))) = ((((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏)))↑2) − (𝐷 · (𝑓↑2)))) |
108 | 107 | eqeq1d 2760 |
. . . . . . . . . . . . 13
⊢ (𝑒 = ((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) → (((𝑒↑2) − (𝐷 · (𝑓↑2))) = 1 ↔ ((((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏)))↑2) − (𝐷 · (𝑓↑2))) = 1)) |
109 | 105, 108 | anbi12d 633 |
. . . . . . . . . . . 12
⊢ (𝑒 = ((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) → (((𝐴 · 𝐵) = (𝑒 + ((√‘𝐷) · 𝑓)) ∧ ((𝑒↑2) − (𝐷 · (𝑓↑2))) = 1) ↔ ((𝐴 · 𝐵) = (((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) + ((√‘𝐷) · 𝑓)) ∧ ((((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏)))↑2) − (𝐷 · (𝑓↑2))) = 1))) |
110 | | oveq2 7158 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = ((𝑎 · 𝑑) + (𝑐 · 𝑏)) → ((√‘𝐷) · 𝑓) = ((√‘𝐷) · ((𝑎 · 𝑑) + (𝑐 · 𝑏)))) |
111 | 110 | oveq2d 7166 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = ((𝑎 · 𝑑) + (𝑐 · 𝑏)) → (((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) + ((√‘𝐷) · 𝑓)) = (((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) + ((√‘𝐷) · ((𝑎 · 𝑑) + (𝑐 · 𝑏))))) |
112 | 111 | eqeq2d 2769 |
. . . . . . . . . . . . 13
⊢ (𝑓 = ((𝑎 · 𝑑) + (𝑐 · 𝑏)) → ((𝐴 · 𝐵) = (((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) + ((√‘𝐷) · 𝑓)) ↔ (𝐴 · 𝐵) = (((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) + ((√‘𝐷) · ((𝑎 · 𝑑) + (𝑐 · 𝑏)))))) |
113 | | oveq1 7157 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = ((𝑎 · 𝑑) + (𝑐 · 𝑏)) → (𝑓↑2) = (((𝑎 · 𝑑) + (𝑐 · 𝑏))↑2)) |
114 | 113 | oveq2d 7166 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = ((𝑎 · 𝑑) + (𝑐 · 𝑏)) → (𝐷 · (𝑓↑2)) = (𝐷 · (((𝑎 · 𝑑) + (𝑐 · 𝑏))↑2))) |
115 | 114 | oveq2d 7166 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = ((𝑎 · 𝑑) + (𝑐 · 𝑏)) → ((((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏)))↑2) − (𝐷 · (𝑓↑2))) = ((((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏)))↑2) − (𝐷 · (((𝑎 · 𝑑) + (𝑐 · 𝑏))↑2)))) |
116 | 115 | eqeq1d 2760 |
. . . . . . . . . . . . 13
⊢ (𝑓 = ((𝑎 · 𝑑) + (𝑐 · 𝑏)) → (((((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏)))↑2) − (𝐷 · (𝑓↑2))) = 1 ↔ ((((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏)))↑2) − (𝐷 · (((𝑎 · 𝑑) + (𝑐 · 𝑏))↑2))) = 1)) |
117 | 112, 116 | anbi12d 633 |
. . . . . . . . . . . 12
⊢ (𝑓 = ((𝑎 · 𝑑) + (𝑐 · 𝑏)) → (((𝐴 · 𝐵) = (((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) + ((√‘𝐷) · 𝑓)) ∧ ((((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏)))↑2) − (𝐷 · (𝑓↑2))) = 1) ↔ ((𝐴 · 𝐵) = (((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) + ((√‘𝐷) · ((𝑎 · 𝑑) + (𝑐 · 𝑏)))) ∧ ((((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏)))↑2) − (𝐷 · (((𝑎 · 𝑑) + (𝑐 · 𝑏))↑2))) = 1))) |
118 | 109, 117 | rspc2ev 3553 |
. . . . . . . . . . 11
⊢ ((((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) ∈ ℤ ∧ ((𝑎 · 𝑑) + (𝑐 · 𝑏)) ∈ ℤ ∧ ((𝐴 · 𝐵) = (((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏))) + ((√‘𝐷) · ((𝑎 · 𝑑) + (𝑐 · 𝑏)))) ∧ ((((𝑎 · 𝑐) + (𝐷 · (𝑑 · 𝑏)))↑2) − (𝐷 · (((𝑎 · 𝑑) + (𝑐 · 𝑏))↑2))) = 1)) → ∃𝑒 ∈ ℤ ∃𝑓 ∈ ℤ ((𝐴 · 𝐵) = (𝑒 + ((√‘𝐷) · 𝑓)) ∧ ((𝑒↑2) − (𝐷 · (𝑓↑2))) = 1)) |
119 | 16, 19, 55, 103, 118 | syl112anc 1371 |
. . . . . . . . . 10
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ∃𝑒 ∈ ℤ ∃𝑓 ∈ ℤ ((𝐴 · 𝐵) = (𝑒 + ((√‘𝐷) · 𝑓)) ∧ ((𝑒↑2) − (𝐷 · (𝑓↑2))) = 1)) |
120 | 2, 119 | jca 515 |
. . . . . . . . 9
⊢
((((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((𝐴 · 𝐵) ∈ ℝ ∧ ∃𝑒 ∈ ℤ ∃𝑓 ∈ ℤ ((𝐴 · 𝐵) = (𝑒 + ((√‘𝐷) · 𝑓)) ∧ ((𝑒↑2) − (𝐷 · (𝑓↑2))) = 1))) |
121 | 120 | ex 416 |
. . . . . . . 8
⊢
(((((𝐷 ∈
(ℕ ∖ ◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → ((𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → ((𝐴 · 𝐵) ∈ ℝ ∧ ∃𝑒 ∈ ℤ ∃𝑓 ∈ ℤ ((𝐴 · 𝐵) = (𝑒 + ((√‘𝐷) · 𝑓)) ∧ ((𝑒↑2) − (𝐷 · (𝑓↑2))) = 1)))) |
122 | 121 | rexlimdvva 3218 |
. . . . . . 7
⊢ ((((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → ((𝐴 · 𝐵) ∈ ℝ ∧ ∃𝑒 ∈ ℤ ∃𝑓 ∈ ℤ ((𝐴 · 𝐵) = (𝑒 + ((√‘𝐷) · 𝑓)) ∧ ((𝑒↑2) − (𝐷 · (𝑓↑2))) = 1)))) |
123 | 122 | ex 416 |
. . . . . 6
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → ((𝐴 · 𝐵) ∈ ℝ ∧ ∃𝑒 ∈ ℤ ∃𝑓 ∈ ℤ ((𝐴 · 𝐵) = (𝑒 + ((√‘𝐷) · 𝑓)) ∧ ((𝑒↑2) − (𝐷 · (𝑓↑2))) = 1))))) |
124 | 123 | rexlimdvva 3218 |
. . . . 5
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → ((𝐴 · 𝐵) ∈ ℝ ∧ ∃𝑒 ∈ ℤ ∃𝑓 ∈ ℤ ((𝐴 · 𝐵) = (𝑒 + ((√‘𝐷) · 𝑓)) ∧ ((𝑒↑2) − (𝐷 · (𝑓↑2))) = 1))))) |
125 | 124 | impd 414 |
. . . 4
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)) → ((𝐴 · 𝐵) ∈ ℝ ∧ ∃𝑒 ∈ ℤ ∃𝑓 ∈ ℤ ((𝐴 · 𝐵) = (𝑒 + ((√‘𝐷) · 𝑓)) ∧ ((𝑒↑2) − (𝐷 · (𝑓↑2))) = 1)))) |
126 | 125 | expimpd 457 |
. . 3
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))) → ((𝐴 · 𝐵) ∈ ℝ ∧ ∃𝑒 ∈ ℤ ∃𝑓 ∈ ℤ ((𝐴 · 𝐵) = (𝑒 + ((√‘𝐷) · 𝑓)) ∧ ((𝑒↑2) − (𝐷 · (𝑓↑2))) = 1)))) |
127 | | elpell1234qr 40187 |
. . . . 5
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))) |
128 | | elpell1234qr 40187 |
. . . . 5
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → (𝐵 ∈ (Pell1234QR‘𝐷) ↔ (𝐵 ∈ ℝ ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)))) |
129 | 127, 128 | anbi12d 633 |
. . . 4
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 𝐵 ∈ (Pell1234QR‘𝐷)) ↔ ((𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝐵 ∈ ℝ ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))))) |
130 | | an4 655 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧
∃𝑎 ∈ ℤ
∃𝑏 ∈ ℤ
(𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ (𝐵 ∈ ℝ ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))) ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)))) |
131 | 129, 130 | bitrdi 290 |
. . 3
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 𝐵 ∈ (Pell1234QR‘𝐷)) ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝐵 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))))) |
132 | | elpell1234qr 40187 |
. . 3
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → ((𝐴 · 𝐵) ∈ (Pell1234QR‘𝐷) ↔ ((𝐴 · 𝐵) ∈ ℝ ∧ ∃𝑒 ∈ ℤ ∃𝑓 ∈ ℤ ((𝐴 · 𝐵) = (𝑒 + ((√‘𝐷) · 𝑓)) ∧ ((𝑒↑2) − (𝐷 · (𝑓↑2))) = 1)))) |
133 | 126, 131,
132 | 3imtr4d 297 |
. 2
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 𝐵 ∈ (Pell1234QR‘𝐷)) → (𝐴 · 𝐵) ∈ (Pell1234QR‘𝐷))) |
134 | 133 | 3impib 1113 |
1
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷) ∧ 𝐵 ∈ (Pell1234QR‘𝐷)) → (𝐴 · 𝐵) ∈ (Pell1234QR‘𝐷)) |