![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad5antr | Structured version Visualization version GIF version |
Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad5antr | ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
3 | 2 | ad4antr 728 | 1 ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 |
This theorem is referenced by: ad6antr 732 ad6antlr 733 simp-5l 781 catass 16790 catpropd 16812 cidpropd 16813 monpropd 16840 funcpropd 17003 fucpropd 17080 drsdirfi 17381 mhmmnd 17982 neitr 21476 xkoccn 21915 trust 22525 restutopopn 22534 ucncn 22581 trcfilu 22590 ulmcau 24670 lgamucov 25301 tgcgrxfr 25990 tgbtwnconn1 26047 legov 26057 legso 26071 midexlem 26164 perpneq 26186 footexALT 26190 footex 26193 colperpexlem3 26204 colperpex 26205 opphllem 26207 opphllem3 26221 outpasch 26227 hlpasch 26228 lmieu 26256 trgcopy 26276 trgcopyeu 26278 dfcgra2 26302 acopyeu 26307 cgrg3col4 26326 f1otrg 26344 fnpreimac 30102 nn0xmulclb 30180 s3f1 30299 omndmul2 30369 cyc3conja 30433 fedgmul 30627 extdg1id 30653 fimaproj 30710 qtophaus 30713 locfinreflem 30717 hgt750lemb 31540 matunitlindflem1 34440 heicant 34479 mblfinlem3 34483 mblfinlem4 34484 itg2gt0cn 34499 sstotbnd2 34605 pell1234qrdich 38964 supxrgelem 41167 icccncfext 41733 etransclem35 42118 smflimlem2 42612 |
Copyright terms: Public domain | W3C validator |