Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad5antr | Structured version Visualization version GIF version |
Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad5antr | ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
3 | 2 | ad4antr 729 | 1 ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: ad6antr 733 ad6antlr 734 simp-5l 782 fimaproj 7976 catass 17395 catpropd 17418 cidpropd 17419 monpropd 17449 funcpropd 17616 fucpropd 17695 drsdirfi 18023 mhmmnd 18697 neitr 22331 xkoccn 22770 trust 23381 restutopopn 23390 ucncn 23437 trcfilu 23446 ulmcau 25554 lgamucov 26187 tgcgrxfr 26879 tgbtwnconn1 26936 legov 26946 legso 26960 midexlem 27053 perpneq 27075 footexALT 27079 footex 27082 colperpexlem3 27093 colperpex 27094 opphllem 27096 opphllem3 27110 outpasch 27116 hlpasch 27117 lmieu 27145 trgcopy 27165 trgcopyeu 27167 dfcgra2 27191 acopyeu 27195 cgrg3col4 27214 f1otrg 27232 fnpreimac 31008 nn0xmulclb 31094 s3f1 31221 omndmul2 31338 cyc3conja 31424 nsgqusf1olem3 31600 rhmimaidl 31609 mxidlprm 31640 ssmxidllem 31641 fedgmul 31712 extdg1id 31738 qtophaus 31786 locfinreflem 31790 zarclssn 31823 hgt750lemb 32636 matunitlindflem1 35773 heicant 35812 mblfinlem3 35816 mblfinlem4 35817 itg2gt0cn 35832 sstotbnd2 35932 aks4d1p8 40095 fsuppind 40279 pell1234qrdich 40683 supxrgelem 42876 icccncfext 43428 etransclem35 43810 smflimlem2 44307 |
Copyright terms: Public domain | W3C validator |