Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad5antr | Structured version Visualization version GIF version |
Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad5antr | ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
3 | 2 | ad4antr 728 | 1 ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: ad6antr 732 ad6antlr 733 simp-5l 781 fimaproj 7947 catass 17312 catpropd 17335 cidpropd 17336 monpropd 17366 funcpropd 17532 fucpropd 17611 drsdirfi 17938 mhmmnd 18612 neitr 22239 xkoccn 22678 trust 23289 restutopopn 23298 ucncn 23345 trcfilu 23354 ulmcau 25459 lgamucov 26092 tgcgrxfr 26783 tgbtwnconn1 26840 legov 26850 legso 26864 midexlem 26957 perpneq 26979 footexALT 26983 footex 26986 colperpexlem3 26997 colperpex 26998 opphllem 27000 opphllem3 27014 outpasch 27020 hlpasch 27021 lmieu 27049 trgcopy 27069 trgcopyeu 27071 dfcgra2 27095 acopyeu 27099 cgrg3col4 27118 f1otrg 27136 fnpreimac 30910 nn0xmulclb 30996 s3f1 31123 omndmul2 31240 cyc3conja 31326 nsgqusf1olem3 31502 rhmimaidl 31511 mxidlprm 31542 ssmxidllem 31543 fedgmul 31614 extdg1id 31640 qtophaus 31688 locfinreflem 31692 zarclssn 31725 hgt750lemb 32536 matunitlindflem1 35700 heicant 35739 mblfinlem3 35743 mblfinlem4 35744 itg2gt0cn 35759 sstotbnd2 35859 aks4d1p8 40023 fsuppind 40202 pell1234qrdich 40599 supxrgelem 42766 icccncfext 43318 etransclem35 43700 smflimlem2 44194 |
Copyright terms: Public domain | W3C validator |