![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad5antr | Structured version Visualization version GIF version |
Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad5antr | ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantr 479 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
3 | 2 | ad4antr 728 | 1 ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: ad6antr 732 ad6antlr 733 simp-5l 781 fimaproj 8123 catass 17634 catpropd 17657 cidpropd 17658 monpropd 17688 funcpropd 17855 fucpropd 17934 drsdirfi 18262 mhmmnd 18983 neitr 22904 xkoccn 23343 trust 23954 restutopopn 23963 ucncn 24010 trcfilu 24019 ulmcau 26143 lgamucov 26778 tgcgrxfr 28036 tgbtwnconn1 28093 legov 28103 legso 28117 midexlem 28210 perpneq 28232 footexALT 28236 footex 28239 colperpexlem3 28250 colperpex 28251 opphllem 28253 opphllem3 28267 outpasch 28273 hlpasch 28274 lmieu 28302 trgcopy 28322 trgcopyeu 28324 dfcgra2 28348 acopyeu 28352 cgrg3col4 28371 f1otrg 28389 fnpreimac 32163 nn0xmulclb 32251 s3f1 32380 omndmul2 32500 cyc3conja 32586 isdrng4 32665 dvdsruasso 32764 nsgqusf1olem3 32800 ghmquskerlem3 32805 rhmquskerlem 32817 elrspunsn 32821 rhmimaidl 32824 mxidlprm 32860 ssmxidllem 32863 qsdrng 32885 fedgmul 33004 extdg1id 33030 qtophaus 33114 locfinreflem 33118 zarclssn 33151 hgt750lemb 33966 matunitlindflem1 36787 heicant 36826 mblfinlem3 36830 mblfinlem4 36831 itg2gt0cn 36846 sstotbnd2 36945 aks4d1p8 41258 aks6d1c2p2 41263 fsuppind 41464 pell1234qrdich 41901 omabs2 42384 supxrgelem 44345 icccncfext 44901 etransclem35 45283 smflimlem2 45786 |
Copyright terms: Public domain | W3C validator |