Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad5antr | Structured version Visualization version GIF version |
Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad5antr | ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantr 484 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
3 | 2 | ad4antr 732 | 1 ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: ad6antr 736 ad6antlr 737 simp-5l 785 fimaproj 7902 catass 17189 catpropd 17212 cidpropd 17213 monpropd 17242 funcpropd 17407 fucpropd 17486 drsdirfi 17812 mhmmnd 18485 neitr 22077 xkoccn 22516 trust 23127 restutopopn 23136 ucncn 23182 trcfilu 23191 ulmcau 25287 lgamucov 25920 tgcgrxfr 26609 tgbtwnconn1 26666 legov 26676 legso 26690 midexlem 26783 perpneq 26805 footexALT 26809 footex 26812 colperpexlem3 26823 colperpex 26824 opphllem 26826 opphllem3 26840 outpasch 26846 hlpasch 26847 lmieu 26875 trgcopy 26895 trgcopyeu 26897 dfcgra2 26921 acopyeu 26925 cgrg3col4 26944 f1otrg 26962 fnpreimac 30728 nn0xmulclb 30814 s3f1 30941 omndmul2 31057 cyc3conja 31143 nsgqusf1olem3 31314 rhmimaidl 31323 mxidlprm 31354 ssmxidllem 31355 fedgmul 31426 extdg1id 31452 qtophaus 31500 locfinreflem 31504 zarclssn 31537 hgt750lemb 32348 matunitlindflem1 35510 heicant 35549 mblfinlem3 35553 mblfinlem4 35554 itg2gt0cn 35569 sstotbnd2 35669 fsuppind 39989 pell1234qrdich 40386 supxrgelem 42549 icccncfext 43103 etransclem35 43485 smflimlem2 43979 |
Copyright terms: Public domain | W3C validator |