| Step | Hyp | Ref
| Expression |
| 1 | | gricushgr.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐴) |
| 2 | | gricushgr.w |
. . 3
⊢ 𝑊 = (Vtx‘𝐵) |
| 3 | | eqid 2737 |
. . 3
⊢
(iEdg‘𝐴) =
(iEdg‘𝐴) |
| 4 | | eqid 2737 |
. . 3
⊢
(iEdg‘𝐵) =
(iEdg‘𝐵) |
| 5 | 1, 2, 3, 4 | dfgric2 47884 |
. 2
⊢ ((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) → (𝐴
≃𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃ℎ(ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))))) |
| 6 | | fvex 6919 |
. . . . . . . . . 10
⊢
(iEdg‘𝐵)
∈ V |
| 7 | | vex 3484 |
. . . . . . . . . . 11
⊢ ℎ ∈ V |
| 8 | | fvex 6919 |
. . . . . . . . . . . 12
⊢
(iEdg‘𝐴)
∈ V |
| 9 | 8 | cnvex 7947 |
. . . . . . . . . . 11
⊢ ◡(iEdg‘𝐴) ∈ V |
| 10 | 7, 9 | coex 7952 |
. . . . . . . . . 10
⊢ (ℎ ∘ ◡(iEdg‘𝐴)) ∈ V |
| 11 | 6, 10 | coex 7952 |
. . . . . . . . 9
⊢
((iEdg‘𝐵)
∘ (ℎ ∘ ◡(iEdg‘𝐴))) ∈ V |
| 12 | 11 | a1i 11 |
. . . . . . . 8
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → ((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴))) ∈ V) |
| 13 | 2, 4 | ushgrf 29080 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ USHGraph →
(iEdg‘𝐵):dom
(iEdg‘𝐵)–1-1→(𝒫 𝑊 ∖ {∅})) |
| 14 | | f1f1orn 6859 |
. . . . . . . . . . . . 13
⊢
((iEdg‘𝐵):dom
(iEdg‘𝐵)–1-1→(𝒫 𝑊 ∖ {∅}) → (iEdg‘𝐵):dom (iEdg‘𝐵)–1-1-onto→ran
(iEdg‘𝐵)) |
| 15 | 13, 14 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ USHGraph →
(iEdg‘𝐵):dom
(iEdg‘𝐵)–1-1-onto→ran (iEdg‘𝐵)) |
| 16 | | gricushgr.k |
. . . . . . . . . . . . . 14
⊢ 𝐾 = (Edg‘𝐵) |
| 17 | | edgval 29066 |
. . . . . . . . . . . . . 14
⊢
(Edg‘𝐵) = ran
(iEdg‘𝐵) |
| 18 | 16, 17 | eqtri 2765 |
. . . . . . . . . . . . 13
⊢ 𝐾 = ran (iEdg‘𝐵) |
| 19 | | f1oeq3 6838 |
. . . . . . . . . . . . 13
⊢ (𝐾 = ran (iEdg‘𝐵) → ((iEdg‘𝐵):dom (iEdg‘𝐵)–1-1-onto→𝐾 ↔ (iEdg‘𝐵):dom (iEdg‘𝐵)–1-1-onto→ran
(iEdg‘𝐵))) |
| 20 | 18, 19 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
((iEdg‘𝐵):dom
(iEdg‘𝐵)–1-1-onto→𝐾 ↔ (iEdg‘𝐵):dom (iEdg‘𝐵)–1-1-onto→ran
(iEdg‘𝐵)) |
| 21 | 15, 20 | sylibr 234 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ USHGraph →
(iEdg‘𝐵):dom
(iEdg‘𝐵)–1-1-onto→𝐾) |
| 22 | 21 | ad3antlr 731 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → (iEdg‘𝐵):dom (iEdg‘𝐵)–1-1-onto→𝐾) |
| 23 | | simprl 771 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵)) |
| 24 | 1, 3 | ushgrf 29080 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ USHGraph →
(iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1→(𝒫 𝑉 ∖ {∅})) |
| 25 | | f1f1orn 6859 |
. . . . . . . . . . . . . . 15
⊢
((iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1→(𝒫 𝑉 ∖ {∅}) → (iEdg‘𝐴):dom (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐴)) |
| 26 | 24, 25 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ USHGraph →
(iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1-onto→ran (iEdg‘𝐴)) |
| 27 | | gricushgr.e |
. . . . . . . . . . . . . . . 16
⊢ 𝐸 = (Edg‘𝐴) |
| 28 | | edgval 29066 |
. . . . . . . . . . . . . . . 16
⊢
(Edg‘𝐴) = ran
(iEdg‘𝐴) |
| 29 | 27, 28 | eqtri 2765 |
. . . . . . . . . . . . . . 15
⊢ 𝐸 = ran (iEdg‘𝐴) |
| 30 | | f1oeq3 6838 |
. . . . . . . . . . . . . . 15
⊢ (𝐸 = ran (iEdg‘𝐴) → ((iEdg‘𝐴):dom (iEdg‘𝐴)–1-1-onto→𝐸 ↔ (iEdg‘𝐴):dom (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐴))) |
| 31 | 29, 30 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
((iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1-onto→𝐸 ↔ (iEdg‘𝐴):dom (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐴)) |
| 32 | 26, 31 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ USHGraph →
(iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1-onto→𝐸) |
| 33 | | f1ocnv 6860 |
. . . . . . . . . . . . 13
⊢
((iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1-onto→𝐸 → ◡(iEdg‘𝐴):𝐸–1-1-onto→dom
(iEdg‘𝐴)) |
| 34 | 32, 33 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ USHGraph → ◡(iEdg‘𝐴):𝐸–1-1-onto→dom
(iEdg‘𝐴)) |
| 35 | 34 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → ◡(iEdg‘𝐴):𝐸–1-1-onto→dom
(iEdg‘𝐴)) |
| 36 | | f1oco 6871 |
. . . . . . . . . . 11
⊢ ((ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧ ◡(iEdg‘𝐴):𝐸–1-1-onto→dom
(iEdg‘𝐴)) →
(ℎ ∘ ◡(iEdg‘𝐴)):𝐸–1-1-onto→dom
(iEdg‘𝐵)) |
| 37 | 23, 35, 36 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → (ℎ ∘ ◡(iEdg‘𝐴)):𝐸–1-1-onto→dom
(iEdg‘𝐵)) |
| 38 | | f1oco 6871 |
. . . . . . . . . 10
⊢
(((iEdg‘𝐵):dom
(iEdg‘𝐵)–1-1-onto→𝐾 ∧ (ℎ ∘ ◡(iEdg‘𝐴)):𝐸–1-1-onto→dom
(iEdg‘𝐵)) →
((iEdg‘𝐵) ∘
(ℎ ∘ ◡(iEdg‘𝐴))):𝐸–1-1-onto→𝐾) |
| 39 | 22, 37, 38 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → ((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴))):𝐸–1-1-onto→𝐾) |
| 40 | 29 | eleq2i 2833 |
. . . . . . . . . . 11
⊢ (𝑒 ∈ 𝐸 ↔ 𝑒 ∈ ran (iEdg‘𝐴)) |
| 41 | | f1fn 6805 |
. . . . . . . . . . . . . . 15
⊢
((iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1→(𝒫 𝑉 ∖ {∅}) → (iEdg‘𝐴) Fn dom (iEdg‘𝐴)) |
| 42 | 24, 41 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ USHGraph →
(iEdg‘𝐴) Fn dom
(iEdg‘𝐴)) |
| 43 | | fvelrnb 6969 |
. . . . . . . . . . . . . 14
⊢
((iEdg‘𝐴) Fn
dom (iEdg‘𝐴) →
(𝑒 ∈ ran
(iEdg‘𝐴) ↔
∃𝑗 ∈ dom
(iEdg‘𝐴)((iEdg‘𝐴)‘𝑗) = 𝑒)) |
| 44 | 42, 43 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ USHGraph → (𝑒 ∈ ran (iEdg‘𝐴) ↔ ∃𝑗 ∈ dom (iEdg‘𝐴)((iEdg‘𝐴)‘𝑗) = 𝑒)) |
| 45 | 44 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → (𝑒 ∈ ran (iEdg‘𝐴) ↔ ∃𝑗 ∈ dom (iEdg‘𝐴)((iEdg‘𝐴)‘𝑗) = 𝑒)) |
| 46 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑗 → ((iEdg‘𝐴)‘𝑖) = ((iEdg‘𝐴)‘𝑗)) |
| 47 | 46 | imaeq2d 6078 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑗 → (𝑓 “ ((iEdg‘𝐴)‘𝑖)) = (𝑓 “ ((iEdg‘𝐴)‘𝑗))) |
| 48 | | 2fveq3 6911 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑗 → ((iEdg‘𝐵)‘(ℎ‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) |
| 49 | 47, 48 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑗 → ((𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)) ↔ (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗)))) |
| 50 | 49 | rspccv 3619 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑖 ∈
dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗)))) |
| 51 | 50 | ad2antll 729 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗)))) |
| 52 | 51 | imp 406 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) |
| 53 | | coass 6285 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((iEdg‘𝐵)
∘ ℎ) ∘ ◡(iEdg‘𝐴)) = ((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴))) |
| 54 | 53 | eqcomi 2746 |
. . . . . . . . . . . . . . . . . . 19
⊢
((iEdg‘𝐵)
∘ (ℎ ∘ ◡(iEdg‘𝐴))) = (((iEdg‘𝐵) ∘ ℎ) ∘ ◡(iEdg‘𝐴)) |
| 55 | 54 | fveq1i 6907 |
. . . . . . . . . . . . . . . . . 18
⊢
(((iEdg‘𝐵)
∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘((iEdg‘𝐴)‘𝑗)) = ((((iEdg‘𝐵) ∘ ℎ) ∘ ◡(iEdg‘𝐴))‘((iEdg‘𝐴)‘𝑗)) |
| 56 | | dff1o4 6856 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1-onto→ran (iEdg‘𝐴) ↔ ((iEdg‘𝐴) Fn dom (iEdg‘𝐴) ∧ ◡(iEdg‘𝐴) Fn ran (iEdg‘𝐴))) |
| 57 | 26, 56 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ USHGraph →
((iEdg‘𝐴) Fn dom
(iEdg‘𝐴) ∧ ◡(iEdg‘𝐴) Fn ran (iEdg‘𝐴))) |
| 58 | 57 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ USHGraph → ◡(iEdg‘𝐴) Fn ran (iEdg‘𝐴)) |
| 59 | 58 | ad4antr 732 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ◡(iEdg‘𝐴) Fn ran (iEdg‘𝐴)) |
| 60 | | f1of 6848 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1-onto→ran (iEdg‘𝐴) → (iEdg‘𝐴):dom (iEdg‘𝐴)⟶ran (iEdg‘𝐴)) |
| 61 | 26, 60 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ USHGraph →
(iEdg‘𝐴):dom
(iEdg‘𝐴)⟶ran
(iEdg‘𝐴)) |
| 62 | 61 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → (iEdg‘𝐴):dom (iEdg‘𝐴)⟶ran (iEdg‘𝐴)) |
| 63 | 62 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘𝑗) ∈ ran (iEdg‘𝐴)) |
| 64 | | fvco2 7006 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((◡(iEdg‘𝐴) Fn ran (iEdg‘𝐴) ∧ ((iEdg‘𝐴)‘𝑗) ∈ ran (iEdg‘𝐴)) → ((((iEdg‘𝐵) ∘ ℎ) ∘ ◡(iEdg‘𝐴))‘((iEdg‘𝐴)‘𝑗)) = (((iEdg‘𝐵) ∘ ℎ)‘(◡(iEdg‘𝐴)‘((iEdg‘𝐴)‘𝑗)))) |
| 65 | 59, 63, 64 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ((((iEdg‘𝐵) ∘ ℎ) ∘ ◡(iEdg‘𝐴))‘((iEdg‘𝐴)‘𝑗)) = (((iEdg‘𝐵) ∘ ℎ)‘(◡(iEdg‘𝐴)‘((iEdg‘𝐴)‘𝑗)))) |
| 66 | 32 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → (iEdg‘𝐴):dom (iEdg‘𝐴)–1-1-onto→𝐸) |
| 67 | | f1ocnvfv1 7296 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1-onto→𝐸 ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (◡(iEdg‘𝐴)‘((iEdg‘𝐴)‘𝑗)) = 𝑗) |
| 68 | 66, 67 | sylan 580 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (◡(iEdg‘𝐴)‘((iEdg‘𝐴)‘𝑗)) = 𝑗) |
| 69 | 68 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (((iEdg‘𝐵) ∘ ℎ)‘(◡(iEdg‘𝐴)‘((iEdg‘𝐴)‘𝑗))) = (((iEdg‘𝐵) ∘ ℎ)‘𝑗)) |
| 70 | | f1ofn 6849 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) → ℎ Fn dom (iEdg‘𝐴)) |
| 71 | 70 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → ℎ Fn dom (iEdg‘𝐴)) |
| 72 | | fvco2 7006 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((ℎ Fn dom (iEdg‘𝐴) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (((iEdg‘𝐵) ∘ ℎ)‘𝑗) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) |
| 73 | 71, 72 | sylan 580 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (((iEdg‘𝐵) ∘ ℎ)‘𝑗) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) |
| 74 | 65, 69, 73 | 3eqtrd 2781 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ((((iEdg‘𝐵) ∘ ℎ) ∘ ◡(iEdg‘𝐴))‘((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) |
| 75 | 55, 74 | eqtr2id 2790 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐵)‘(ℎ‘𝑗)) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘((iEdg‘𝐴)‘𝑗))) |
| 76 | 75 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) ∧ (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) ∧ ((iEdg‘𝐴)‘𝑗) = 𝑒) → ((iEdg‘𝐵)‘(ℎ‘𝑗)) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘((iEdg‘𝐴)‘𝑗))) |
| 77 | | imaeq2 6074 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = ((iEdg‘𝐴)‘𝑗) → (𝑓 “ 𝑒) = (𝑓 “ ((iEdg‘𝐴)‘𝑗))) |
| 78 | 77 | eqcoms 2745 |
. . . . . . . . . . . . . . . . 17
⊢
(((iEdg‘𝐴)‘𝑗) = 𝑒 → (𝑓 “ 𝑒) = (𝑓 “ ((iEdg‘𝐴)‘𝑗))) |
| 79 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) ∧ (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) → (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) |
| 80 | 78, 79 | sylan9eqr 2799 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) ∧ (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) ∧ ((iEdg‘𝐴)‘𝑗) = 𝑒) → (𝑓 “ 𝑒) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) |
| 81 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = ((iEdg‘𝐴)‘𝑗) → (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘((iEdg‘𝐴)‘𝑗))) |
| 82 | 81 | eqcoms 2745 |
. . . . . . . . . . . . . . . . 17
⊢
(((iEdg‘𝐴)‘𝑗) = 𝑒 → (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘((iEdg‘𝐴)‘𝑗))) |
| 83 | 82 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) ∧ (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) ∧ ((iEdg‘𝐴)‘𝑗) = 𝑒) → (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘((iEdg‘𝐴)‘𝑗))) |
| 84 | 76, 80, 83 | 3eqtr4d 2787 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) ∧ (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) ∧ ((iEdg‘𝐴)‘𝑗) = 𝑒) → (𝑓 “ 𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒)) |
| 85 | 84 | ex 412 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) ∧ (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(ℎ‘𝑗))) → (((iEdg‘𝐴)‘𝑗) = 𝑒 → (𝑓 “ 𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒))) |
| 86 | 52, 85 | mpdan 687 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (((iEdg‘𝐴)‘𝑗) = 𝑒 → (𝑓 “ 𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒))) |
| 87 | 86 | rexlimdva 3155 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → (∃𝑗 ∈ dom (iEdg‘𝐴)((iEdg‘𝐴)‘𝑗) = 𝑒 → (𝑓 “ 𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒))) |
| 88 | 45, 87 | sylbid 240 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → (𝑒 ∈ ran (iEdg‘𝐴) → (𝑓 “ 𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒))) |
| 89 | 40, 88 | biimtrid 242 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → (𝑒 ∈ 𝐸 → (𝑓 “ 𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒))) |
| 90 | 89 | ralrimiv 3145 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒)) |
| 91 | 39, 90 | jca 511 |
. . . . . . . 8
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴))):𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒))) |
| 92 | | f1oeq1 6836 |
. . . . . . . . 9
⊢ (𝑔 = ((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴))) → (𝑔:𝐸–1-1-onto→𝐾 ↔ ((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴))):𝐸–1-1-onto→𝐾)) |
| 93 | | fveq1 6905 |
. . . . . . . . . . 11
⊢ (𝑔 = ((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴))) → (𝑔‘𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒)) |
| 94 | 93 | eqeq2d 2748 |
. . . . . . . . . 10
⊢ (𝑔 = ((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴))) → ((𝑓 “ 𝑒) = (𝑔‘𝑒) ↔ (𝑓 “ 𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒))) |
| 95 | 94 | ralbidv 3178 |
. . . . . . . . 9
⊢ (𝑔 = ((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴))) → (∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒) ↔ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒))) |
| 96 | 92, 95 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑔 = ((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴))) → ((𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) ↔ (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴))):𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (((iEdg‘𝐵) ∘ (ℎ ∘ ◡(iEdg‘𝐴)))‘𝑒)))) |
| 97 | 12, 91, 96 | spcedv 3598 |
. . . . . . 7
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) → ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) |
| 98 | 97 | ex 412 |
. . . . . 6
⊢ (((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → ((ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖))) → ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)))) |
| 99 | 98 | exlimdv 1933 |
. . . . 5
⊢ (((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → (∃ℎ(ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖))) → ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)))) |
| 100 | 6 | cnvex 7947 |
. . . . . . . . . 10
⊢ ◡(iEdg‘𝐵) ∈ V |
| 101 | | vex 3484 |
. . . . . . . . . . 11
⊢ 𝑔 ∈ V |
| 102 | 101, 8 | coex 7952 |
. . . . . . . . . 10
⊢ (𝑔 ∘ (iEdg‘𝐴)) ∈ V |
| 103 | 100, 102 | coex 7952 |
. . . . . . . . 9
⊢ (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))) ∈ V |
| 104 | 103 | a1i 11 |
. . . . . . . 8
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))) ∈ V) |
| 105 | 15 | ad3antlr 731 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (iEdg‘𝐵):dom (iEdg‘𝐵)–1-1-onto→ran
(iEdg‘𝐵)) |
| 106 | | f1ocnv 6860 |
. . . . . . . . . . 11
⊢
((iEdg‘𝐵):dom
(iEdg‘𝐵)–1-1-onto→ran (iEdg‘𝐵) → ◡(iEdg‘𝐵):ran (iEdg‘𝐵)–1-1-onto→dom
(iEdg‘𝐵)) |
| 107 | 105, 106 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ◡(iEdg‘𝐵):ran (iEdg‘𝐵)–1-1-onto→dom
(iEdg‘𝐵)) |
| 108 | | f1oeq23 6839 |
. . . . . . . . . . . . . 14
⊢ ((𝐸 = ran (iEdg‘𝐴) ∧ 𝐾 = ran (iEdg‘𝐵)) → (𝑔:𝐸–1-1-onto→𝐾 ↔ 𝑔:ran (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐵))) |
| 109 | 29, 18, 108 | mp2an 692 |
. . . . . . . . . . . . 13
⊢ (𝑔:𝐸–1-1-onto→𝐾 ↔ 𝑔:ran (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐵)) |
| 110 | 109 | biimpi 216 |
. . . . . . . . . . . 12
⊢ (𝑔:𝐸–1-1-onto→𝐾 → 𝑔:ran (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐵)) |
| 111 | 110 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → 𝑔:ran (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐵)) |
| 112 | 26 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (iEdg‘𝐴):dom (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐴)) |
| 113 | | f1oco 6871 |
. . . . . . . . . . 11
⊢ ((𝑔:ran (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐵) ∧
(iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1-onto→ran (iEdg‘𝐴)) → (𝑔 ∘ (iEdg‘𝐴)):dom (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐵)) |
| 114 | 111, 112,
113 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (𝑔 ∘ (iEdg‘𝐴)):dom (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐵)) |
| 115 | | f1oco 6871 |
. . . . . . . . . 10
⊢ ((◡(iEdg‘𝐵):ran (iEdg‘𝐵)–1-1-onto→dom
(iEdg‘𝐵) ∧ (𝑔 ∘ (iEdg‘𝐴)):dom (iEdg‘𝐴)–1-1-onto→ran
(iEdg‘𝐵)) →
(◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))):dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵)) |
| 116 | 107, 114,
115 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))):dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵)) |
| 117 | 61 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → (iEdg‘𝐴):dom (iEdg‘𝐴)⟶ran (iEdg‘𝐴)) |
| 118 | 117 | ffund 6740 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → Fun (iEdg‘𝐴)) |
| 119 | 118 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → Fun (iEdg‘𝐴)) |
| 120 | | fvelrn 7096 |
. . . . . . . . . . . 12
⊢ ((Fun
(iEdg‘𝐴) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) |
| 121 | 119, 120 | sylan 580 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) |
| 122 | 29 | raleqi 3324 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑒 ∈
𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒) ↔ ∀𝑒 ∈ ran (iEdg‘𝐴)(𝑓 “ 𝑒) = (𝑔‘𝑒)) |
| 123 | 122 | biimpi 216 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑒 ∈
𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒) → ∀𝑒 ∈ ran (iEdg‘𝐴)(𝑓 “ 𝑒) = (𝑔‘𝑒)) |
| 124 | 123 | ad2antll 729 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ∀𝑒 ∈ ran (iEdg‘𝐴)(𝑓 “ 𝑒) = (𝑔‘𝑒)) |
| 125 | 124 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ∀𝑒 ∈ ran (iEdg‘𝐴)(𝑓 “ 𝑒) = (𝑔‘𝑒)) |
| 126 | | imaeq2 6074 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = ((iEdg‘𝐴)‘𝑖) → (𝑓 “ 𝑒) = (𝑓 “ ((iEdg‘𝐴)‘𝑖))) |
| 127 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = ((iEdg‘𝐴)‘𝑖) → (𝑔‘𝑒) = (𝑔‘((iEdg‘𝐴)‘𝑖))) |
| 128 | 126, 127 | eqeq12d 2753 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = ((iEdg‘𝐴)‘𝑖) → ((𝑓 “ 𝑒) = (𝑔‘𝑒) ↔ (𝑓 “ ((iEdg‘𝐴)‘𝑖)) = (𝑔‘((iEdg‘𝐴)‘𝑖)))) |
| 129 | 128 | rspccva 3621 |
. . . . . . . . . . . . 13
⊢
((∀𝑒 ∈
ran (iEdg‘𝐴)(𝑓 “ 𝑒) = (𝑔‘𝑒) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (𝑓 “ ((iEdg‘𝐴)‘𝑖)) = (𝑔‘((iEdg‘𝐴)‘𝑖))) |
| 130 | 125, 129 | sylan 580 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (𝑓 “ ((iEdg‘𝐴)‘𝑖)) = (𝑔‘((iEdg‘𝐴)‘𝑖))) |
| 131 | | feq3 6718 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐸 = ran (iEdg‘𝐴) → ((iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸 ↔ (iEdg‘𝐴):dom (iEdg‘𝐴)⟶ran (iEdg‘𝐴))) |
| 132 | 29, 131 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
((iEdg‘𝐴):dom
(iEdg‘𝐴)⟶𝐸 ↔ (iEdg‘𝐴):dom (iEdg‘𝐴)⟶ran (iEdg‘𝐴)) |
| 133 | 61, 132 | sylibr 234 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ USHGraph →
(iEdg‘𝐴):dom
(iEdg‘𝐴)⟶𝐸) |
| 134 | 133 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → (iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸) |
| 135 | | f1ofn 6849 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔:𝐸–1-1-onto→𝐾 → 𝑔 Fn 𝐸) |
| 136 | 135 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) → 𝑔 Fn 𝐸) |
| 137 | 134, 136 | anim12ci 614 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (𝑔 Fn 𝐸 ∧ (iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸)) |
| 138 | 137 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (𝑔 Fn 𝐸 ∧ (iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸)) |
| 139 | | fnfco 6773 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔 Fn 𝐸 ∧ (iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸) → (𝑔 ∘ (iEdg‘𝐴)) Fn dom (iEdg‘𝐴)) |
| 140 | 138, 139 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (𝑔 ∘ (iEdg‘𝐴)) Fn dom (iEdg‘𝐴)) |
| 141 | | simplr 769 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → 𝑖 ∈ dom (iEdg‘𝐴)) |
| 142 | | fvco2 7006 |
. . . . . . . . . . . . . 14
⊢ (((𝑔 ∘ (iEdg‘𝐴)) Fn dom (iEdg‘𝐴) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((( I ↾ ran
(iEdg‘𝐵)) ∘
(𝑔 ∘
(iEdg‘𝐴)))‘𝑖) = (( I ↾ ran (iEdg‘𝐵))‘((𝑔 ∘ (iEdg‘𝐴))‘𝑖))) |
| 143 | 140, 141,
142 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → ((( I ↾ ran
(iEdg‘𝐵)) ∘
(𝑔 ∘
(iEdg‘𝐴)))‘𝑖) = (( I ↾ ran (iEdg‘𝐵))‘((𝑔 ∘ (iEdg‘𝐴))‘𝑖))) |
| 144 | | f1of 6848 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((iEdg‘𝐵):dom
(iEdg‘𝐵)–1-1-onto→𝐾 → (iEdg‘𝐵):dom (iEdg‘𝐵)⟶𝐾) |
| 145 | 21, 144 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐵 ∈ USHGraph →
(iEdg‘𝐵):dom
(iEdg‘𝐵)⟶𝐾) |
| 146 | 145 | ffund 6740 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 ∈ USHGraph → Fun
(iEdg‘𝐵)) |
| 147 | | funcocnv2 6873 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Fun
(iEdg‘𝐵) →
((iEdg‘𝐵) ∘
◡(iEdg‘𝐵)) = ( I ↾ ran (iEdg‘𝐵))) |
| 148 | 146, 147 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ USHGraph →
((iEdg‘𝐵) ∘
◡(iEdg‘𝐵)) = ( I ↾ ran (iEdg‘𝐵))) |
| 149 | 148 | eqcomd 2743 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ∈ USHGraph → ( I
↾ ran (iEdg‘𝐵))
= ((iEdg‘𝐵) ∘
◡(iEdg‘𝐵))) |
| 150 | 149 | ad5antlr 735 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → ( I ↾ ran (iEdg‘𝐵)) = ((iEdg‘𝐵) ∘ ◡(iEdg‘𝐵))) |
| 151 | 150 | coeq1d 5872 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (( I ↾ ran (iEdg‘𝐵)) ∘ (𝑔 ∘ (iEdg‘𝐴))) = (((iEdg‘𝐵) ∘ ◡(iEdg‘𝐵)) ∘ (𝑔 ∘ (iEdg‘𝐴)))) |
| 152 | 151 | fveq1d 6908 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → ((( I ↾ ran
(iEdg‘𝐵)) ∘
(𝑔 ∘
(iEdg‘𝐴)))‘𝑖) = ((((iEdg‘𝐵) ∘ ◡(iEdg‘𝐵)) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖)) |
| 153 | | coass 6285 |
. . . . . . . . . . . . . . 15
⊢
(((iEdg‘𝐵)
∘ ◡(iEdg‘𝐵)) ∘ (𝑔 ∘ (iEdg‘𝐴))) = ((iEdg‘𝐵) ∘ (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))) |
| 154 | 153 | fveq1i 6907 |
. . . . . . . . . . . . . 14
⊢
((((iEdg‘𝐵)
∘ ◡(iEdg‘𝐵)) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖) = (((iEdg‘𝐵) ∘ (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))))‘𝑖) |
| 155 | 152, 154 | eqtrdi 2793 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → ((( I ↾ ran
(iEdg‘𝐵)) ∘
(𝑔 ∘
(iEdg‘𝐴)))‘𝑖) = (((iEdg‘𝐵) ∘ (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))))‘𝑖)) |
| 156 | | f1of 6848 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔:𝐸–1-1-onto→𝐾 → 𝑔:𝐸⟶𝐾) |
| 157 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐸 = 𝐸 |
| 158 | 157, 18 | feq23i 6730 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔:𝐸⟶𝐾 ↔ 𝑔:𝐸⟶ran (iEdg‘𝐵)) |
| 159 | 156, 158 | sylib 218 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔:𝐸–1-1-onto→𝐾 → 𝑔:𝐸⟶ran (iEdg‘𝐵)) |
| 160 | 159 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) → 𝑔:𝐸⟶ran (iEdg‘𝐵)) |
| 161 | | f1of 6848 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((iEdg‘𝐴):dom
(iEdg‘𝐴)–1-1-onto→𝐸 → (iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸) |
| 162 | 32, 161 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ USHGraph →
(iEdg‘𝐴):dom
(iEdg‘𝐴)⟶𝐸) |
| 163 | 162 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → (iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸) |
| 164 | | fco 6760 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑔:𝐸⟶ran (iEdg‘𝐵) ∧ (iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸) → (𝑔 ∘ (iEdg‘𝐴)):dom (iEdg‘𝐴)⟶ran (iEdg‘𝐵)) |
| 165 | 160, 163,
164 | syl2anr 597 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (𝑔 ∘ (iEdg‘𝐴)):dom (iEdg‘𝐴)⟶ran (iEdg‘𝐵)) |
| 166 | 165 | anim1i 615 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((𝑔 ∘ (iEdg‘𝐴)):dom (iEdg‘𝐴)⟶ran (iEdg‘𝐵) ∧ 𝑖 ∈ dom (iEdg‘𝐴))) |
| 167 | 166 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → ((𝑔 ∘ (iEdg‘𝐴)):dom (iEdg‘𝐴)⟶ran (iEdg‘𝐵) ∧ 𝑖 ∈ dom (iEdg‘𝐴))) |
| 168 | | ffvelcdm 7101 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑔 ∘ (iEdg‘𝐴)):dom (iEdg‘𝐴)⟶ran (iEdg‘𝐵) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((𝑔 ∘ (iEdg‘𝐴))‘𝑖) ∈ ran (iEdg‘𝐵)) |
| 169 | 167, 168 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → ((𝑔 ∘ (iEdg‘𝐴))‘𝑖) ∈ ran (iEdg‘𝐵)) |
| 170 | | fvresi 7193 |
. . . . . . . . . . . . . . 15
⊢ (((𝑔 ∘ (iEdg‘𝐴))‘𝑖) ∈ ran (iEdg‘𝐵) → (( I ↾ ran (iEdg‘𝐵))‘((𝑔 ∘ (iEdg‘𝐴))‘𝑖)) = ((𝑔 ∘ (iEdg‘𝐴))‘𝑖)) |
| 171 | 169, 170 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (( I ↾ ran (iEdg‘𝐵))‘((𝑔 ∘ (iEdg‘𝐴))‘𝑖)) = ((𝑔 ∘ (iEdg‘𝐴))‘𝑖)) |
| 172 | 162 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸) |
| 173 | 172 | anim1i 615 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸 ∧ 𝑖 ∈ dom (iEdg‘𝐴))) |
| 174 | 173 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → ((iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸 ∧ 𝑖 ∈ dom (iEdg‘𝐴))) |
| 175 | | fvco3 7008 |
. . . . . . . . . . . . . . 15
⊢
(((iEdg‘𝐴):dom
(iEdg‘𝐴)⟶𝐸 ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((𝑔 ∘ (iEdg‘𝐴))‘𝑖) = (𝑔‘((iEdg‘𝐴)‘𝑖))) |
| 176 | 174, 175 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → ((𝑔 ∘ (iEdg‘𝐴))‘𝑖) = (𝑔‘((iEdg‘𝐴)‘𝑖))) |
| 177 | 171, 176 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (( I ↾ ran (iEdg‘𝐵))‘((𝑔 ∘ (iEdg‘𝐴))‘𝑖)) = (𝑔‘((iEdg‘𝐴)‘𝑖))) |
| 178 | 143, 155,
177 | 3eqtr3rd 2786 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (𝑔‘((iEdg‘𝐴)‘𝑖)) = (((iEdg‘𝐵) ∘ (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))))‘𝑖)) |
| 179 | | dff1o4 6856 |
. . . . . . . . . . . . . . . . 17
⊢
((iEdg‘𝐵):dom
(iEdg‘𝐵)–1-1-onto→𝐾 ↔ ((iEdg‘𝐵) Fn dom (iEdg‘𝐵) ∧ ◡(iEdg‘𝐵) Fn 𝐾)) |
| 180 | 21, 179 | sylib 218 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈ USHGraph →
((iEdg‘𝐵) Fn dom
(iEdg‘𝐵) ∧ ◡(iEdg‘𝐵) Fn 𝐾)) |
| 181 | 180 | simprd 495 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ USHGraph → ◡(iEdg‘𝐵) Fn 𝐾) |
| 182 | 181 | ad5antlr 735 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → ◡(iEdg‘𝐵) Fn 𝐾) |
| 183 | 156 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) → 𝑔:𝐸⟶𝐾) |
| 184 | 134, 183 | anim12ci 614 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (𝑔:𝐸⟶𝐾 ∧ (iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸)) |
| 185 | 184 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (𝑔:𝐸⟶𝐾 ∧ (iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸)) |
| 186 | | fco 6760 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔:𝐸⟶𝐾 ∧ (iEdg‘𝐴):dom (iEdg‘𝐴)⟶𝐸) → (𝑔 ∘ (iEdg‘𝐴)):dom (iEdg‘𝐴)⟶𝐾) |
| 187 | 185, 186 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (𝑔 ∘ (iEdg‘𝐴)):dom (iEdg‘𝐴)⟶𝐾) |
| 188 | | fnfco 6773 |
. . . . . . . . . . . . . 14
⊢ ((◡(iEdg‘𝐵) Fn 𝐾 ∧ (𝑔 ∘ (iEdg‘𝐴)):dom (iEdg‘𝐴)⟶𝐾) → (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))) Fn dom (iEdg‘𝐴)) |
| 189 | 182, 187,
188 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))) Fn dom (iEdg‘𝐴)) |
| 190 | | fvco2 7006 |
. . . . . . . . . . . . 13
⊢ (((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))) Fn dom (iEdg‘𝐴) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → (((iEdg‘𝐵) ∘ (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))))‘𝑖) = ((iEdg‘𝐵)‘((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖))) |
| 191 | 189, 141,
190 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (((iEdg‘𝐵) ∘ (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))))‘𝑖) = ((iEdg‘𝐵)‘((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖))) |
| 192 | 130, 178,
191 | 3eqtrd 2781 |
. . . . . . . . . . 11
⊢
((((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) ∧ ((iEdg‘𝐴)‘𝑖) ∈ ran (iEdg‘𝐴)) → (𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖))) |
| 193 | 121, 192 | mpdan 687 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
USHGraph ∧ 𝐵 ∈
USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → (𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖))) |
| 194 | 193 | ralrimiva 3146 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖))) |
| 195 | 116, 194 | jca 511 |
. . . . . . . 8
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))):dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖)))) |
| 196 | | f1oeq1 6836 |
. . . . . . . . 9
⊢ (ℎ = (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))) → (ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ↔
(◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))):dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵))) |
| 197 | | fveq1 6905 |
. . . . . . . . . . . 12
⊢ (ℎ = (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))) → (ℎ‘𝑖) = ((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖)) |
| 198 | 197 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (ℎ = (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))) → ((iEdg‘𝐵)‘(ℎ‘𝑖)) = ((iEdg‘𝐵)‘((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖))) |
| 199 | 198 | eqeq2d 2748 |
. . . . . . . . . 10
⊢ (ℎ = (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))) → ((𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)) ↔ (𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖)))) |
| 200 | 199 | ralbidv 3178 |
. . . . . . . . 9
⊢ (ℎ = (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))) → (∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖)))) |
| 201 | 196, 200 | anbi12d 632 |
. . . . . . . 8
⊢ (ℎ = (◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))) → ((ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖))) ↔ ((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴))):dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘((◡(iEdg‘𝐵) ∘ (𝑔 ∘ (iEdg‘𝐴)))‘𝑖))))) |
| 202 | 104, 195,
201 | spcedv 3598 |
. . . . . . 7
⊢ ((((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ∃ℎ(ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) |
| 203 | 202 | ex 412 |
. . . . . 6
⊢ (((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → ((𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) → ∃ℎ(ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖))))) |
| 204 | 203 | exlimdv 1933 |
. . . . 5
⊢ (((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → (∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) → ∃ℎ(ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖))))) |
| 205 | 99, 204 | impbid 212 |
. . . 4
⊢ (((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → (∃ℎ(ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖))) ↔ ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)))) |
| 206 | 205 | pm5.32da 579 |
. . 3
⊢ ((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) → ((𝑓:𝑉–1-1-onto→𝑊 ∧ ∃ℎ(ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ↔ (𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))))) |
| 207 | 206 | exbidv 1921 |
. 2
⊢ ((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) →
(∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃ℎ(ℎ:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(ℎ‘𝑖)))) ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))))) |
| 208 | 5, 207 | bitrd 279 |
1
⊢ ((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) → (𝐴
≃𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))))) |