Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itg2gt0cn Structured version   Visualization version   GIF version

Theorem itg2gt0cn 37704
Description: itg2gt0 25718 holds on functions continuous on an open interval in the absence of ax-cc 10454. The fourth hypothesis is made unnecessary by the continuity hypothesis. (Contributed by Brendan Leahy, 16-Nov-2017.)
Hypotheses
Ref Expression
itg2gt0cn.2 (𝜑𝑋 < 𝑌)
itg2gt0cn.3 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2gt0cn.5 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 0 < (𝐹𝑥))
itg2gt0cn.cn (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
Assertion
Ref Expression
itg2gt0cn (𝜑 → 0 < (∫2𝐹))
Distinct variable groups:   𝑥,𝑋   𝑥,𝑌   𝑥,𝐹   𝜑,𝑥

Proof of Theorem itg2gt0cn
Dummy variables 𝑦 𝑧 𝑤 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 11287 . . 3 0 ∈ ℝ*
2 imassrn 6063 . . . . 5 (𝐹 “ (𝑋(,)𝑌)) ⊆ ran 𝐹
3 itg2gt0cn.3 . . . . . . 7 (𝜑𝐹:ℝ⟶(0[,)+∞))
43frnd 6719 . . . . . 6 (𝜑 → ran 𝐹 ⊆ (0[,)+∞))
5 icossxr 13454 . . . . . 6 (0[,)+∞) ⊆ ℝ*
64, 5sstrdi 3976 . . . . 5 (𝜑 → ran 𝐹 ⊆ ℝ*)
72, 6sstrid 3975 . . . 4 (𝜑 → (𝐹 “ (𝑋(,)𝑌)) ⊆ ℝ*)
8 supxrcl 13336 . . . 4 ((𝐹 “ (𝑋(,)𝑌)) ⊆ ℝ* → sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < ) ∈ ℝ*)
97, 8syl 17 . . 3 (𝜑 → sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < ) ∈ ℝ*)
10 itg2gt0cn.2 . . . . . 6 (𝜑𝑋 < 𝑌)
11 ltrelxr 11301 . . . . . . . . . 10 < ⊆ (ℝ* × ℝ*)
1211ssbri 5169 . . . . . . . . 9 (𝑋 < 𝑌𝑋(ℝ* × ℝ*)𝑌)
1310, 12syl 17 . . . . . . . 8 (𝜑𝑋(ℝ* × ℝ*)𝑌)
14 brxp 5708 . . . . . . . 8 (𝑋(ℝ* × ℝ*)𝑌 ↔ (𝑋 ∈ ℝ*𝑌 ∈ ℝ*))
1513, 14sylib 218 . . . . . . 7 (𝜑 → (𝑋 ∈ ℝ*𝑌 ∈ ℝ*))
16 ioon0 13393 . . . . . . 7 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*) → ((𝑋(,)𝑌) ≠ ∅ ↔ 𝑋 < 𝑌))
1715, 16syl 17 . . . . . 6 (𝜑 → ((𝑋(,)𝑌) ≠ ∅ ↔ 𝑋 < 𝑌))
1810, 17mpbird 257 . . . . 5 (𝜑 → (𝑋(,)𝑌) ≠ ∅)
19 itg2gt0cn.5 . . . . . 6 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 0 < (𝐹𝑥))
2019ralrimiva 3133 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝑋(,)𝑌)0 < (𝐹𝑥))
21 r19.2z 4475 . . . . 5 (((𝑋(,)𝑌) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋(,)𝑌)0 < (𝐹𝑥)) → ∃𝑥 ∈ (𝑋(,)𝑌)0 < (𝐹𝑥))
2218, 20, 21syl2anc 584 . . . 4 (𝜑 → ∃𝑥 ∈ (𝑋(,)𝑌)0 < (𝐹𝑥))
23 supxrlub 13346 . . . . . 6 (((𝐹 “ (𝑋(,)𝑌)) ⊆ ℝ* ∧ 0 ∈ ℝ*) → (0 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < ) ↔ ∃𝑦 ∈ (𝐹 “ (𝑋(,)𝑌))0 < 𝑦))
247, 1, 23sylancl 586 . . . . 5 (𝜑 → (0 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < ) ↔ ∃𝑦 ∈ (𝐹 “ (𝑋(,)𝑌))0 < 𝑦))
253ffnd 6712 . . . . . 6 (𝜑𝐹 Fn ℝ)
26 ioossre 13429 . . . . . 6 (𝑋(,)𝑌) ⊆ ℝ
27 breq2 5128 . . . . . . 7 (𝑦 = (𝐹𝑥) → (0 < 𝑦 ↔ 0 < (𝐹𝑥)))
2827rexima 7235 . . . . . 6 ((𝐹 Fn ℝ ∧ (𝑋(,)𝑌) ⊆ ℝ) → (∃𝑦 ∈ (𝐹 “ (𝑋(,)𝑌))0 < 𝑦 ↔ ∃𝑥 ∈ (𝑋(,)𝑌)0 < (𝐹𝑥)))
2925, 26, 28sylancl 586 . . . . 5 (𝜑 → (∃𝑦 ∈ (𝐹 “ (𝑋(,)𝑌))0 < 𝑦 ↔ ∃𝑥 ∈ (𝑋(,)𝑌)0 < (𝐹𝑥)))
3024, 29bitrd 279 . . . 4 (𝜑 → (0 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < ) ↔ ∃𝑥 ∈ (𝑋(,)𝑌)0 < (𝐹𝑥)))
3122, 30mpbird 257 . . 3 (𝜑 → 0 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < ))
32 qbtwnxr 13221 . . 3 ((0 ∈ ℝ* ∧ sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < ) ∈ ℝ* ∧ 0 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < )) → ∃𝑦 ∈ ℚ (0 < 𝑦𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < )))
331, 9, 31, 32mp3an2i 1468 . 2 (𝜑 → ∃𝑦 ∈ ℚ (0 < 𝑦𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < )))
34 qre 12974 . . . . . . . . 9 (𝑦 ∈ ℚ → 𝑦 ∈ ℝ)
3534adantr 480 . . . . . . . 8 ((𝑦 ∈ ℚ ∧ 0 < 𝑦) → 𝑦 ∈ ℝ)
36 simpr 484 . . . . . . . 8 ((𝑦 ∈ ℚ ∧ 0 < 𝑦) → 0 < 𝑦)
3735, 36elrpd 13053 . . . . . . 7 ((𝑦 ∈ ℚ ∧ 0 < 𝑦) → 𝑦 ∈ ℝ+)
3837anim1i 615 . . . . . 6 (((𝑦 ∈ ℚ ∧ 0 < 𝑦) ∧ 𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < )) → (𝑦 ∈ ℝ+𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < )))
3938anasss 466 . . . . 5 ((𝑦 ∈ ℚ ∧ (0 < 𝑦𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < ))) → (𝑦 ∈ ℝ+𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < )))
40 simplr 768 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < )) → 𝑦 ∈ ℝ+)
41 rpxr 13023 . . . . . . . . . . 11 (𝑦 ∈ ℝ+𝑦 ∈ ℝ*)
42 supxrlub 13346 . . . . . . . . . . 11 (((𝐹 “ (𝑋(,)𝑌)) ⊆ ℝ*𝑦 ∈ ℝ*) → (𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < ) ↔ ∃𝑧 ∈ (𝐹 “ (𝑋(,)𝑌))𝑦 < 𝑧))
437, 41, 42syl2an 596 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ+) → (𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < ) ↔ ∃𝑧 ∈ (𝐹 “ (𝑋(,)𝑌))𝑦 < 𝑧))
44 breq2 5128 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑥) → (𝑦 < 𝑧𝑦 < (𝐹𝑥)))
4544rexima 7235 . . . . . . . . . . . 12 ((𝐹 Fn ℝ ∧ (𝑋(,)𝑌) ⊆ ℝ) → (∃𝑧 ∈ (𝐹 “ (𝑋(,)𝑌))𝑦 < 𝑧 ↔ ∃𝑥 ∈ (𝑋(,)𝑌)𝑦 < (𝐹𝑥)))
4625, 26, 45sylancl 586 . . . . . . . . . . 11 (𝜑 → (∃𝑧 ∈ (𝐹 “ (𝑋(,)𝑌))𝑦 < 𝑧 ↔ ∃𝑥 ∈ (𝑋(,)𝑌)𝑦 < (𝐹𝑥)))
4746adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ+) → (∃𝑧 ∈ (𝐹 “ (𝑋(,)𝑌))𝑦 < 𝑧 ↔ ∃𝑥 ∈ (𝑋(,)𝑌)𝑦 < (𝐹𝑥)))
4843, 47bitrd 279 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ+) → (𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < ) ↔ ∃𝑥 ∈ (𝑋(,)𝑌)𝑦 < (𝐹𝑥)))
491a1i 11 . . . . . . . . . . . 12 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → 0 ∈ ℝ*)
50 ioorp 13447 . . . . . . . . . . . . . . . . . . 19 (0(,)+∞) = ℝ+
51 ioossicc 13455 . . . . . . . . . . . . . . . . . . 19 (0(,)+∞) ⊆ (0[,]+∞)
5250, 51eqsstrri 4011 . . . . . . . . . . . . . . . . . 18 + ⊆ (0[,]+∞)
5352sseli 3959 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ+𝑦 ∈ (0[,]+∞))
54 0e0iccpnf 13481 . . . . . . . . . . . . . . . . 17 0 ∈ (0[,]+∞)
55 ifcl 4551 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0) ∈ (0[,]+∞))
5653, 54, 55sylancl 586 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ+ → if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0) ∈ (0[,]+∞))
5756adantr 480 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ+𝑤 ∈ ℝ) → if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0) ∈ (0[,]+∞))
5857fmpttd 7110 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ → (𝑤 ∈ ℝ ↦ if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0)):ℝ⟶(0[,]+∞))
59 itg2cl 25690 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ ↦ if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0)):ℝ⟶(0[,]+∞) → (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0))) ∈ ℝ*)
6058, 59syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+ → (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0))) ∈ ℝ*)
6160ad5antlr 735 . . . . . . . . . . . 12 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0))) ∈ ℝ*)
62 ifcl 4551 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0) ∈ (0[,]+∞))
6353, 54, 62sylancl 586 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ+ → if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0) ∈ (0[,]+∞))
6463adantr 480 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ+𝑤 ∈ ℝ) → if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0) ∈ (0[,]+∞))
6564fmpttd 7110 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ → (𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0)):ℝ⟶(0[,]+∞))
66 itg2cl 25690 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0)):ℝ⟶(0[,]+∞) → (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))) ∈ ℝ*)
6765, 66syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+ → (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))) ∈ ℝ*)
6867ad5antlr 735 . . . . . . . . . . . 12 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))) ∈ ℝ*)
69 rpre 13022 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
7069ad4antlr 733 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → 𝑦 ∈ ℝ)
71 ioombl 25523 . . . . . . . . . . . . . . . . . 18 (if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥))) ∈ dom vol
72 mblvol 25488 . . . . . . . . . . . . . . . . . 18 ((if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥))) ∈ dom vol → (vol‘(if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)))) = (vol*‘(if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)))))
7371, 72ax-mp 5 . . . . . . . . . . . . . . . . 17 (vol‘(if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)))) = (vol*‘(if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥))))
74 elioore 13397 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝑋(,)𝑌) → 𝑥 ∈ ℝ)
7574ad3antlr 731 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → 𝑥 ∈ ℝ)
76 rpre 13022 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
7776adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → 𝑧 ∈ ℝ)
7875, 77resubcld 11670 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → (𝑥𝑧) ∈ ℝ)
7978adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑋 ≤ (𝑥𝑧)) → (𝑥𝑧) ∈ ℝ)
8078rexrd 11290 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → (𝑥𝑧) ∈ ℝ*)
8180adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ¬ 𝑋 ≤ (𝑥𝑧)) → (𝑥𝑧) ∈ ℝ*)
8215simpld 494 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ℝ*)
8382ad5antr 734 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ¬ 𝑋 ≤ (𝑥𝑧)) → 𝑋 ∈ ℝ*)
8415simprd 495 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ ℝ*)
8584ad5antr 734 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ¬ 𝑋 ≤ (𝑥𝑧)) → 𝑌 ∈ ℝ*)
8682ad4antr 732 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → 𝑋 ∈ ℝ*)
87 xrltnle 11307 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥𝑧) ∈ ℝ*𝑋 ∈ ℝ*) → ((𝑥𝑧) < 𝑋 ↔ ¬ 𝑋 ≤ (𝑥𝑧)))
8880, 86, 87syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → ((𝑥𝑧) < 𝑋 ↔ ¬ 𝑋 ≤ (𝑥𝑧)))
8988biimpar 477 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ¬ 𝑋 ≤ (𝑥𝑧)) → (𝑥𝑧) < 𝑋)
9010ad5antr 734 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ¬ 𝑋 ≤ (𝑥𝑧)) → 𝑋 < 𝑌)
91 xrre2 13191 . . . . . . . . . . . . . . . . . . . 20 ((((𝑥𝑧) ∈ ℝ*𝑋 ∈ ℝ*𝑌 ∈ ℝ*) ∧ ((𝑥𝑧) < 𝑋𝑋 < 𝑌)) → 𝑋 ∈ ℝ)
9281, 83, 85, 89, 90, 91syl32anc 1380 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ¬ 𝑋 ≤ (𝑥𝑧)) → 𝑋 ∈ ℝ)
9379, 92ifclda 4541 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋) ∈ ℝ)
9484ad5antr 734 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑌 ≤ (𝑧 + 𝑥)) → 𝑌 ∈ ℝ*)
9577, 75readdcld 11269 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → (𝑧 + 𝑥) ∈ ℝ)
9695adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑌 ≤ (𝑧 + 𝑥)) → (𝑧 + 𝑥) ∈ ℝ)
97 mnfxr 11297 . . . . . . . . . . . . . . . . . . . . . . 23 -∞ ∈ ℝ*
9897a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -∞ ∈ ℝ*)
99 mnfle 13156 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑋 ∈ ℝ* → -∞ ≤ 𝑋)
10082, 99syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -∞ ≤ 𝑋)
10198, 82, 84, 100, 10xrlelttrd 13181 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → -∞ < 𝑌)
102101ad5antr 734 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑌 ≤ (𝑧 + 𝑥)) → -∞ < 𝑌)
103 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑌 ≤ (𝑧 + 𝑥)) → 𝑌 ≤ (𝑧 + 𝑥))
104 xrre 13190 . . . . . . . . . . . . . . . . . . . 20 (((𝑌 ∈ ℝ* ∧ (𝑧 + 𝑥) ∈ ℝ) ∧ (-∞ < 𝑌𝑌 ≤ (𝑧 + 𝑥))) → 𝑌 ∈ ℝ)
10594, 96, 102, 103, 104syl22anc 838 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑌 ≤ (𝑧 + 𝑥)) → 𝑌 ∈ ℝ)
10695adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ¬ 𝑌 ≤ (𝑧 + 𝑥)) → (𝑧 + 𝑥) ∈ ℝ)
107105, 106ifclda 4541 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)) ∈ ℝ)
10875rexrd 11290 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → 𝑥 ∈ ℝ*)
10984ad4antr 732 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → 𝑌 ∈ ℝ*)
110 rpgt0 13026 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℝ+ → 0 < 𝑧)
111110adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → 0 < 𝑧)
11277, 75ltsubposd 11828 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → (0 < 𝑧 ↔ (𝑥𝑧) < 𝑥))
113111, 112mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → (𝑥𝑧) < 𝑥)
114 eliooord 13427 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (𝑋(,)𝑌) → (𝑋 < 𝑥𝑥 < 𝑌))
115114simprd 495 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (𝑋(,)𝑌) → 𝑥 < 𝑌)
116115ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → 𝑥 < 𝑌)
11780, 108, 109, 113, 116xrlttrd 13180 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → (𝑥𝑧) < 𝑌)
11877, 75ltaddpos2d 11827 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → (0 < 𝑧𝑥 < (𝑧 + 𝑥)))
119111, 118mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → 𝑥 < (𝑧 + 𝑥))
12078, 75, 95, 113, 119lttrd 11401 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → (𝑥𝑧) < (𝑧 + 𝑥))
121 breq2 5128 . . . . . . . . . . . . . . . . . . . . . 22 (𝑌 = if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)) → ((𝑥𝑧) < 𝑌 ↔ (𝑥𝑧) < if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥))))
122 breq2 5128 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 + 𝑥) = if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)) → ((𝑥𝑧) < (𝑧 + 𝑥) ↔ (𝑥𝑧) < if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥))))
123121, 122ifboth 4545 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝑧) < 𝑌 ∧ (𝑥𝑧) < (𝑧 + 𝑥)) → (𝑥𝑧) < if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)))
124117, 120, 123syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → (𝑥𝑧) < if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)))
12510ad4antr 732 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → 𝑋 < 𝑌)
12695rexrd 11290 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → (𝑧 + 𝑥) ∈ ℝ*)
127114simpld 494 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (𝑋(,)𝑌) → 𝑋 < 𝑥)
128127ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → 𝑋 < 𝑥)
12986, 108, 126, 128, 119xrlttrd 13180 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → 𝑋 < (𝑧 + 𝑥))
130 breq2 5128 . . . . . . . . . . . . . . . . . . . . . 22 (𝑌 = if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)) → (𝑋 < 𝑌𝑋 < if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥))))
131 breq2 5128 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 + 𝑥) = if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)) → (𝑋 < (𝑧 + 𝑥) ↔ 𝑋 < if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥))))
132130, 131ifboth 4545 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 < 𝑌𝑋 < (𝑧 + 𝑥)) → 𝑋 < if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)))
133125, 129, 132syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → 𝑋 < if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)))
134 breq1 5127 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝑧) = if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋) → ((𝑥𝑧) < if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)) ↔ if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋) < if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥))))
135 breq1 5127 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 = if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋) → (𝑋 < if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)) ↔ if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋) < if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥))))
136134, 135ifboth 4545 . . . . . . . . . . . . . . . . . . . 20 (((𝑥𝑧) < if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)) ∧ 𝑋 < if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥))) → if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋) < if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)))
137124, 133, 136syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋) < if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)))
13893, 107, 137ltled 11388 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋) ≤ if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)))
139 ovolioo 25526 . . . . . . . . . . . . . . . . . 18 ((if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋) ∈ ℝ ∧ if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)) ∈ ℝ ∧ if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋) ≤ if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥))) → (vol*‘(if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)))) = (if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)) − if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)))
14093, 107, 138, 139syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → (vol*‘(if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)))) = (if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)) − if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)))
14173, 140eqtrid 2783 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → (vol‘(if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)))) = (if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)) − if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)))
142107, 93resubcld 11670 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → (if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)) − if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)) ∈ ℝ)
143141, 142eqeltrd 2835 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → (vol‘(if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)))) ∈ ℝ)
144 rpgt0 13026 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ+ → 0 < 𝑦)
145144ad4antlr 733 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → 0 < 𝑦)
14693, 107posdifd 11829 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → (if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋) < if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)) ↔ 0 < (if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)) − if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋))))
147137, 146mpbid 232 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → 0 < (if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)) − if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)))
148147, 141breqtrrd 5152 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → 0 < (vol‘(if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)))))
14970, 143, 145, 148mulgt0d 11395 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → 0 < (𝑦 · (vol‘(if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥))))))
150 iooin 13401 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ ℝ*𝑌 ∈ ℝ*) ∧ ((𝑥𝑧) ∈ ℝ* ∧ (𝑧 + 𝑥) ∈ ℝ*)) → ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))) = (if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥))))
15186, 109, 80, 126, 150syl22anc 838 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))) = (if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥))))
152151eleq2d 2821 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → (𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))) ↔ 𝑤 ∈ (if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)))))
153152ifbid 4529 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0) = if(𝑤 ∈ (if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥))), 𝑦, 0))
154153mpteq2dv 5220 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → (𝑤 ∈ ℝ ↦ if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0)) = (𝑤 ∈ ℝ ↦ if(𝑤 ∈ (if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥))), 𝑦, 0)))
155154fveq2d 6885 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0))) = (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ (if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥))), 𝑦, 0))))
156 rpge0 13027 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℝ+ → 0 ≤ 𝑦)
157 elrege0 13476 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦))
15869, 156, 157sylanbrc 583 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ+𝑦 ∈ (0[,)+∞))
159158ad4antlr 733 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → 𝑦 ∈ (0[,)+∞))
160 itg2const 25698 . . . . . . . . . . . . . . . 16 (((if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥))) ∈ dom vol ∧ (vol‘(if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥)))) ∈ ℝ ∧ 𝑦 ∈ (0[,)+∞)) → (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ (if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥))), 𝑦, 0))) = (𝑦 · (vol‘(if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥))))))
16171, 143, 159, 160mp3an2i 1468 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ (if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥))), 𝑦, 0))) = (𝑦 · (vol‘(if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥))))))
162155, 161eqtrd 2771 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0))) = (𝑦 · (vol‘(if(𝑋 ≤ (𝑥𝑧), (𝑥𝑧), 𝑋)(,)if(𝑌 ≤ (𝑧 + 𝑥), 𝑌, (𝑧 + 𝑥))))))
163149, 162breqtrrd 5152 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → 0 < (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0))))
164163adantr 480 . . . . . . . . . . . 12 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → 0 < (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0))))
16558ad5antlr 735 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → (𝑤 ∈ ℝ ↦ if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0)):ℝ⟶(0[,]+∞))
16665ad5antlr 735 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → (𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0)):ℝ⟶(0[,]+∞))
167 fvoveq1 7433 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = 𝑤 → (abs‘(𝑢𝑥)) = (abs‘(𝑤𝑥)))
168167breq1d 5134 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝑤 → ((abs‘(𝑢𝑥)) < 𝑧 ↔ (abs‘(𝑤𝑥)) < 𝑧))
169168imbrov2fvoveq 7435 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑤 → (((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦)) ↔ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))))
170169rspccva 3605 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦)) ∧ 𝑤 ∈ (𝑋(,)𝑌)) → ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦)))
171 breq1 5127 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = if(𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥)), 𝑦, 0) → (𝑦 ≤ if(𝑦 ≤ (𝐹𝑤), 𝑦, 0) ↔ if(𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥)), 𝑦, 0) ≤ if(𝑦 ≤ (𝐹𝑤), 𝑦, 0)))
172 breq1 5127 . . . . . . . . . . . . . . . . . . . . . 22 (0 = if(𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥)), 𝑦, 0) → (0 ≤ if(𝑦 ≤ (𝐹𝑤), 𝑦, 0) ↔ if(𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥)), 𝑦, 0) ≤ if(𝑦 ≤ (𝐹𝑤), 𝑦, 0)))
17369leidd 11808 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ+𝑦𝑦)
174173ad6antlr 737 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥))) → 𝑦𝑦)
17574ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → 𝑥 ∈ ℝ)
17676ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → 𝑧 ∈ ℝ)
177175, 176resubcld 11670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → (𝑥𝑧) ∈ ℝ)
178177rexrd 11290 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → (𝑥𝑧) ∈ ℝ*)
179176, 175readdcld 11269 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → (𝑧 + 𝑥) ∈ ℝ)
180179rexrd 11290 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → (𝑧 + 𝑥) ∈ ℝ*)
181 elioo2 13408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥𝑧) ∈ ℝ* ∧ (𝑧 + 𝑥) ∈ ℝ*) → (𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥)) ↔ (𝑤 ∈ ℝ ∧ (𝑥𝑧) < 𝑤𝑤 < (𝑧 + 𝑥))))
182178, 180, 181syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → (𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥)) ↔ (𝑤 ∈ ℝ ∧ (𝑥𝑧) < 𝑤𝑤 < (𝑧 + 𝑥))))
183 3anass 1094 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑤 ∈ ℝ ∧ (𝑥𝑧) < 𝑤𝑤 < (𝑧 + 𝑥)) ↔ (𝑤 ∈ ℝ ∧ ((𝑥𝑧) < 𝑤𝑤 < (𝑧 + 𝑥))))
184182, 183bitrdi 287 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → (𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥)) ↔ (𝑤 ∈ ℝ ∧ ((𝑥𝑧) < 𝑤𝑤 < (𝑧 + 𝑥)))))
185 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
18674ad5antlr 735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ ℝ) → 𝑥 ∈ ℝ)
187185, 186resubcld 11670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ ℝ) → (𝑤𝑥) ∈ ℝ)
18876ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ ℝ) → 𝑧 ∈ ℝ)
189187, 188absltd 15453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ ℝ) → ((abs‘(𝑤𝑥)) < 𝑧 ↔ (-𝑧 < (𝑤𝑥) ∧ (𝑤𝑥) < 𝑧)))
190188renegcld 11669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ ℝ) → -𝑧 ∈ ℝ)
191186, 190, 185ltaddsub2d 11843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ ℝ) → ((𝑥 + -𝑧) < 𝑤 ↔ -𝑧 < (𝑤𝑥)))
192186recnd 11268 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ ℝ) → 𝑥 ∈ ℂ)
193188recnd 11268 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ ℝ) → 𝑧 ∈ ℂ)
194192, 193negsubd 11605 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ ℝ) → (𝑥 + -𝑧) = (𝑥𝑧))
195194breq1d 5134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ ℝ) → ((𝑥 + -𝑧) < 𝑤 ↔ (𝑥𝑧) < 𝑤))
196191, 195bitr3d 281 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ ℝ) → (-𝑧 < (𝑤𝑥) ↔ (𝑥𝑧) < 𝑤))
197185, 186, 188ltsubaddd 11838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ ℝ) → ((𝑤𝑥) < 𝑧𝑤 < (𝑧 + 𝑥)))
198196, 197anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ ℝ) → ((-𝑧 < (𝑤𝑥) ∧ (𝑤𝑥) < 𝑧) ↔ ((𝑥𝑧) < 𝑤𝑤 < (𝑧 + 𝑥))))
199189, 198bitrd 279 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ ℝ) → ((abs‘(𝑤𝑥)) < 𝑧 ↔ ((𝑥𝑧) < 𝑤𝑤 < (𝑧 + 𝑥))))
200199pm5.32da 579 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → ((𝑤 ∈ ℝ ∧ (abs‘(𝑤𝑥)) < 𝑧) ↔ (𝑤 ∈ ℝ ∧ ((𝑥𝑧) < 𝑤𝑤 < (𝑧 + 𝑥)))))
201184, 200bitr4d 282 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → (𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥)) ↔ (𝑤 ∈ ℝ ∧ (abs‘(𝑤𝑥)) < 𝑧)))
202201biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥))) → (𝑤 ∈ ℝ ∧ (abs‘(𝑤𝑥)) < 𝑧))
203 pm3.35 802 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((abs‘(𝑤𝑥)) < 𝑧 ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))
204203ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦)) ∧ (abs‘(𝑤𝑥)) < 𝑧) → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))
20569ad6antlr 737 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ) ∧ (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦)) → 𝑦 ∈ ℝ)
206 rge0ssre 13478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (0[,)+∞) ⊆ ℝ
2073ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) → 𝐹:ℝ⟶(0[,)+∞))
208207ffvelcdmda 7079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ) → (𝐹𝑤) ∈ (0[,)+∞))
209206, 208sselid 3961 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ) → (𝐹𝑤) ∈ ℝ)
210209adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ) ∧ (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦)) → (𝐹𝑤) ∈ ℝ)
2113adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑦 ∈ ℝ+) → 𝐹:ℝ⟶(0[,)+∞))
212211ffvelcdmda 7079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
213206, 212sselid 3961 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
21474, 213sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) → (𝐹𝑥) ∈ ℝ)
215214ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
216209, 215resubcld 11670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ) → ((𝐹𝑤) − (𝐹𝑥)) ∈ ℝ)
21769ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝑦 ∈ ℝ)
218214, 217resubcld 11670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) → ((𝐹𝑥) − 𝑦) ∈ ℝ)
219218ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ) → ((𝐹𝑥) − 𝑦) ∈ ℝ)
220216, 219absltd 15453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ) → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦) ↔ (-((𝐹𝑥) − 𝑦) < ((𝐹𝑤) − (𝐹𝑥)) ∧ ((𝐹𝑤) − (𝐹𝑥)) < ((𝐹𝑥) − 𝑦))))
221214recnd 11268 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) → (𝐹𝑥) ∈ ℂ)
222 rpcn 13024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
223222ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝑦 ∈ ℂ)
224221, 223negsubdi2d 11615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) → -((𝐹𝑥) − 𝑦) = (𝑦 − (𝐹𝑥)))
225224ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ) → -((𝐹𝑥) − 𝑦) = (𝑦 − (𝐹𝑥)))
226225breq1d 5134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ) → (-((𝐹𝑥) − 𝑦) < ((𝐹𝑤) − (𝐹𝑥)) ↔ (𝑦 − (𝐹𝑥)) < ((𝐹𝑤) − (𝐹𝑥))))
227226anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ) → ((-((𝐹𝑥) − 𝑦) < ((𝐹𝑤) − (𝐹𝑥)) ∧ ((𝐹𝑤) − (𝐹𝑥)) < ((𝐹𝑥) − 𝑦)) ↔ ((𝑦 − (𝐹𝑥)) < ((𝐹𝑤) − (𝐹𝑥)) ∧ ((𝐹𝑤) − (𝐹𝑥)) < ((𝐹𝑥) − 𝑦))))
228220, 227bitrd 279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ) → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦) ↔ ((𝑦 − (𝐹𝑥)) < ((𝐹𝑤) − (𝐹𝑥)) ∧ ((𝐹𝑤) − (𝐹𝑥)) < ((𝐹𝑥) − 𝑦))))
229228simprbda 498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ) ∧ (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦)) → (𝑦 − (𝐹𝑥)) < ((𝐹𝑤) − (𝐹𝑥)))
230214ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ) ∧ (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦)) → (𝐹𝑥) ∈ ℝ)
231205, 210, 230ltsub1d 11851 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ) ∧ (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦)) → (𝑦 < (𝐹𝑤) ↔ (𝑦 − (𝐹𝑥)) < ((𝐹𝑤) − (𝐹𝑥))))
232229, 231mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ) ∧ (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦)) → 𝑦 < (𝐹𝑤))
233205, 210, 232ltled 11388 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ) ∧ (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦)) → 𝑦 ≤ (𝐹𝑤))
234204, 233sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ) ∧ (((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦)) ∧ (abs‘(𝑤𝑥)) < 𝑧)) → 𝑦 ≤ (𝐹𝑤))
235234an4s 660 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ (𝑤 ∈ ℝ ∧ (abs‘(𝑤𝑥)) < 𝑧)) → 𝑦 ≤ (𝐹𝑤))
236202, 235syldan 591 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥))) → 𝑦 ≤ (𝐹𝑤))
237236iftrued 4513 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥))) → if(𝑦 ≤ (𝐹𝑤), 𝑦, 0) = 𝑦)
238174, 237breqtrrd 5152 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥))) → 𝑦 ≤ if(𝑦 ≤ (𝐹𝑤), 𝑦, 0))
239 0le0 12346 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ≤ 0
240 breq2 5128 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = if(𝑦 ≤ (𝐹𝑤), 𝑦, 0) → (0 ≤ 𝑦 ↔ 0 ≤ if(𝑦 ≤ (𝐹𝑤), 𝑦, 0)))
241 breq2 5128 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 = if(𝑦 ≤ (𝐹𝑤), 𝑦, 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑦 ≤ (𝐹𝑤), 𝑦, 0)))
242240, 241ifboth 4545 . . . . . . . . . . . . . . . . . . . . . . . 24 ((0 ≤ 𝑦 ∧ 0 ≤ 0) → 0 ≤ if(𝑦 ≤ (𝐹𝑤), 𝑦, 0))
243156, 239, 242sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℝ+ → 0 ≤ if(𝑦 ≤ (𝐹𝑤), 𝑦, 0))
244243ad6antlr 737 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ ¬ 𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥))) → 0 ≤ if(𝑦 ≤ (𝐹𝑤), 𝑦, 0))
245171, 172, 238, 244ifbothda 4544 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → if(𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥)), 𝑦, 0) ≤ if(𝑦 ≤ (𝐹𝑤), 𝑦, 0))
246170, 245sylan2 593 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ (∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦)) ∧ 𝑤 ∈ (𝑋(,)𝑌))) → if(𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥)), 𝑦, 0) ≤ if(𝑦 ≤ (𝐹𝑤), 𝑦, 0))
247246anassrs 467 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ (𝑋(,)𝑌)) → if(𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥)), 𝑦, 0) ≤ if(𝑦 ≤ (𝐹𝑤), 𝑦, 0))
248 iftrue 4511 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ (𝑋(,)𝑌) → if(𝑤 ∈ (𝑋(,)𝑌), if(𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥)), 𝑦, 0), 0) = if(𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥)), 𝑦, 0))
249248adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ (𝑋(,)𝑌)) → if(𝑤 ∈ (𝑋(,)𝑌), if(𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥)), 𝑦, 0), 0) = if(𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥)), 𝑦, 0))
250 iftrue 4511 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ (𝑋(,)𝑌) → if(𝑤 ∈ (𝑋(,)𝑌), if(𝑦 ≤ (𝐹𝑤), 𝑦, 0), 0) = if(𝑦 ≤ (𝐹𝑤), 𝑦, 0))
251250adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ (𝑋(,)𝑌)) → if(𝑤 ∈ (𝑋(,)𝑌), if(𝑦 ≤ (𝐹𝑤), 𝑦, 0), 0) = if(𝑦 ≤ (𝐹𝑤), 𝑦, 0))
252247, 249, 2513brtr4d 5156 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ (𝑋(,)𝑌)) → if(𝑤 ∈ (𝑋(,)𝑌), if(𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥)), 𝑦, 0), 0) ≤ if(𝑤 ∈ (𝑋(,)𝑌), if(𝑦 ≤ (𝐹𝑤), 𝑦, 0), 0))
253252ex 412 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → (𝑤 ∈ (𝑋(,)𝑌) → if(𝑤 ∈ (𝑋(,)𝑌), if(𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥)), 𝑦, 0), 0) ≤ if(𝑤 ∈ (𝑋(,)𝑌), if(𝑦 ≤ (𝐹𝑤), 𝑦, 0), 0)))
254239a1i 11 . . . . . . . . . . . . . . . . . 18 𝑤 ∈ (𝑋(,)𝑌) → 0 ≤ 0)
255 iffalse 4514 . . . . . . . . . . . . . . . . . 18 𝑤 ∈ (𝑋(,)𝑌) → if(𝑤 ∈ (𝑋(,)𝑌), if(𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥)), 𝑦, 0), 0) = 0)
256 iffalse 4514 . . . . . . . . . . . . . . . . . 18 𝑤 ∈ (𝑋(,)𝑌) → if(𝑤 ∈ (𝑋(,)𝑌), if(𝑦 ≤ (𝐹𝑤), 𝑦, 0), 0) = 0)
257254, 255, 2563brtr4d 5156 . . . . . . . . . . . . . . . . 17 𝑤 ∈ (𝑋(,)𝑌) → if(𝑤 ∈ (𝑋(,)𝑌), if(𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥)), 𝑦, 0), 0) ≤ if(𝑤 ∈ (𝑋(,)𝑌), if(𝑦 ≤ (𝐹𝑤), 𝑦, 0), 0))
258253, 257pm2.61d1 180 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → if(𝑤 ∈ (𝑋(,)𝑌), if(𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥)), 𝑦, 0), 0) ≤ if(𝑤 ∈ (𝑋(,)𝑌), if(𝑦 ≤ (𝐹𝑤), 𝑦, 0), 0))
259 elin 3947 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))) ↔ (𝑤 ∈ (𝑋(,)𝑌) ∧ 𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥))))
260 ifbi 4528 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))) ↔ (𝑤 ∈ (𝑋(,)𝑌) ∧ 𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥)))) → if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0) = if((𝑤 ∈ (𝑋(,)𝑌) ∧ 𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0))
261259, 260ax-mp 5 . . . . . . . . . . . . . . . . 17 if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0) = if((𝑤 ∈ (𝑋(,)𝑌) ∧ 𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0)
262 ifan 4559 . . . . . . . . . . . . . . . . 17 if((𝑤 ∈ (𝑋(,)𝑌) ∧ 𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0) = if(𝑤 ∈ (𝑋(,)𝑌), if(𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥)), 𝑦, 0), 0)
263261, 262eqtri 2759 . . . . . . . . . . . . . . . 16 if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0) = if(𝑤 ∈ (𝑋(,)𝑌), if(𝑤 ∈ ((𝑥𝑧)(,)(𝑧 + 𝑥)), 𝑦, 0), 0)
264 fveq2 6881 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑤 → (𝐹𝑣) = (𝐹𝑤))
265264breq2d 5136 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤 → (𝑦 ≤ (𝐹𝑣) ↔ 𝑦 ≤ (𝐹𝑤)))
266265elrab 3676 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)} ↔ (𝑤 ∈ (𝑋(,)𝑌) ∧ 𝑦 ≤ (𝐹𝑤)))
267 ifbi 4528 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)} ↔ (𝑤 ∈ (𝑋(,)𝑌) ∧ 𝑦 ≤ (𝐹𝑤))) → if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0) = if((𝑤 ∈ (𝑋(,)𝑌) ∧ 𝑦 ≤ (𝐹𝑤)), 𝑦, 0))
268266, 267ax-mp 5 . . . . . . . . . . . . . . . . 17 if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0) = if((𝑤 ∈ (𝑋(,)𝑌) ∧ 𝑦 ≤ (𝐹𝑤)), 𝑦, 0)
269 ifan 4559 . . . . . . . . . . . . . . . . 17 if((𝑤 ∈ (𝑋(,)𝑌) ∧ 𝑦 ≤ (𝐹𝑤)), 𝑦, 0) = if(𝑤 ∈ (𝑋(,)𝑌), if(𝑦 ≤ (𝐹𝑤), 𝑦, 0), 0)
270268, 269eqtri 2759 . . . . . . . . . . . . . . . 16 if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0) = if(𝑤 ∈ (𝑋(,)𝑌), if(𝑦 ≤ (𝐹𝑤), 𝑦, 0), 0)
271258, 263, 2703brtr4g 5158 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0) ≤ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))
272271ralrimivw 3137 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → ∀𝑤 ∈ ℝ if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0) ≤ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))
273 reex 11225 . . . . . . . . . . . . . . . 16 ℝ ∈ V
274273a1i 11 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → ℝ ∈ V)
27556ad6antlr 737 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ ℝ) → if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0) ∈ (0[,]+∞))
27663ad6antlr 737 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) ∧ 𝑤 ∈ ℝ) → if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0) ∈ (0[,]+∞))
277 eqidd 2737 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → (𝑤 ∈ ℝ ↦ if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0)) = (𝑤 ∈ ℝ ↦ if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0)))
278 eqidd 2737 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → (𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0)) = (𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0)))
279274, 275, 276, 277, 278ofrfval2 7697 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → ((𝑤 ∈ ℝ ↦ if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0)) ∘r ≤ (𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0)) ↔ ∀𝑤 ∈ ℝ if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0) ≤ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0)))
280272, 279mpbird 257 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → (𝑤 ∈ ℝ ↦ if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0)) ∘r ≤ (𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0)))
281 itg2le 25697 . . . . . . . . . . . . 13 (((𝑤 ∈ ℝ ↦ if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0)):ℝ⟶(0[,]+∞) ∧ (𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0)):ℝ⟶(0[,]+∞) ∧ (𝑤 ∈ ℝ ↦ if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0)) ∘r ≤ (𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))) → (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0))) ≤ (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))))
282165, 166, 280, 281syl3anc 1373 . . . . . . . . . . . 12 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ ((𝑋(,)𝑌) ∩ ((𝑥𝑧)(,)(𝑧 + 𝑥))), 𝑦, 0))) ≤ (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))))
28349, 61, 68, 164, 282xrltletrd 13182 . . . . . . . . . . 11 ((((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))) → 0 < (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))))
284 itg2gt0cn.cn . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
285284ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < ((𝐹 ↾ (𝑋(,)𝑌))‘𝑥)) → (𝐹 ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
286 simplr 768 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < ((𝐹 ↾ (𝑋(,)𝑌))‘𝑥)) → 𝑥 ∈ (𝑋(,)𝑌))
287 fssres 6749 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:ℝ⟶(0[,)+∞) ∧ (𝑋(,)𝑌) ⊆ ℝ) → (𝐹 ↾ (𝑋(,)𝑌)):(𝑋(,)𝑌)⟶(0[,)+∞))
28826, 287mpan2 691 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:ℝ⟶(0[,)+∞) → (𝐹 ↾ (𝑋(,)𝑌)):(𝑋(,)𝑌)⟶(0[,)+∞))
289 fss 6727 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ↾ (𝑋(,)𝑌)):(𝑋(,)𝑌)⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → (𝐹 ↾ (𝑋(,)𝑌)):(𝑋(,)𝑌)⟶ℝ)
290206, 289mpan2 691 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ↾ (𝑋(,)𝑌)):(𝑋(,)𝑌)⟶(0[,)+∞) → (𝐹 ↾ (𝑋(,)𝑌)):(𝑋(,)𝑌)⟶ℝ)
2913, 288, 2903syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)):(𝑋(,)𝑌)⟶ℝ)
292291adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℝ+) → (𝐹 ↾ (𝑋(,)𝑌)):(𝑋(,)𝑌)⟶ℝ)
293292ffvelcdmda 7079 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) → ((𝐹 ↾ (𝑋(,)𝑌))‘𝑥) ∈ ℝ)
294293, 217resubcld 11670 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) → (((𝐹 ↾ (𝑋(,)𝑌))‘𝑥) − 𝑦) ∈ ℝ)
295294adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < ((𝐹 ↾ (𝑋(,)𝑌))‘𝑥)) → (((𝐹 ↾ (𝑋(,)𝑌))‘𝑥) − 𝑦) ∈ ℝ)
296217, 293posdifd 11829 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) → (𝑦 < ((𝐹 ↾ (𝑋(,)𝑌))‘𝑥) ↔ 0 < (((𝐹 ↾ (𝑋(,)𝑌))‘𝑥) − 𝑦)))
297296biimpa 476 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < ((𝐹 ↾ (𝑋(,)𝑌))‘𝑥)) → 0 < (((𝐹 ↾ (𝑋(,)𝑌))‘𝑥) − 𝑦))
298295, 297elrpd 13053 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < ((𝐹 ↾ (𝑋(,)𝑌))‘𝑥)) → (((𝐹 ↾ (𝑋(,)𝑌))‘𝑥) − 𝑦) ∈ ℝ+)
299 cncfi 24843 . . . . . . . . . . . . . . 15 (((𝐹 ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ) ∧ 𝑥 ∈ (𝑋(,)𝑌) ∧ (((𝐹 ↾ (𝑋(,)𝑌))‘𝑥) − 𝑦) ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘(((𝐹 ↾ (𝑋(,)𝑌))‘𝑢) − ((𝐹 ↾ (𝑋(,)𝑌))‘𝑥))) < (((𝐹 ↾ (𝑋(,)𝑌))‘𝑥) − 𝑦)))
300285, 286, 298, 299syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < ((𝐹 ↾ (𝑋(,)𝑌))‘𝑥)) → ∃𝑧 ∈ ℝ+𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘(((𝐹 ↾ (𝑋(,)𝑌))‘𝑢) − ((𝐹 ↾ (𝑋(,)𝑌))‘𝑥))) < (((𝐹 ↾ (𝑋(,)𝑌))‘𝑥) − 𝑦)))
301300ex 412 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) → (𝑦 < ((𝐹 ↾ (𝑋(,)𝑌))‘𝑥) → ∃𝑧 ∈ ℝ+𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘(((𝐹 ↾ (𝑋(,)𝑌))‘𝑢) − ((𝐹 ↾ (𝑋(,)𝑌))‘𝑥))) < (((𝐹 ↾ (𝑋(,)𝑌))‘𝑥) − 𝑦))))
302 fvres 6900 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑋(,)𝑌) → ((𝐹 ↾ (𝑋(,)𝑌))‘𝑥) = (𝐹𝑥))
303302breq2d 5136 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑋(,)𝑌) → (𝑦 < ((𝐹 ↾ (𝑋(,)𝑌))‘𝑥) ↔ 𝑦 < (𝐹𝑥)))
304303adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) → (𝑦 < ((𝐹 ↾ (𝑋(,)𝑌))‘𝑥) ↔ 𝑦 < (𝐹𝑥)))
305 fvres 6900 . . . . . . . . . . . . . . . . . . . 20 (𝑢 ∈ (𝑋(,)𝑌) → ((𝐹 ↾ (𝑋(,)𝑌))‘𝑢) = (𝐹𝑢))
306305adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 ∈ (𝑋(,)𝑌)) → ((𝐹 ↾ (𝑋(,)𝑌))‘𝑢) = (𝐹𝑢))
307302ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 ∈ (𝑋(,)𝑌)) → ((𝐹 ↾ (𝑋(,)𝑌))‘𝑥) = (𝐹𝑥))
308306, 307oveq12d 7428 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 ∈ (𝑋(,)𝑌)) → (((𝐹 ↾ (𝑋(,)𝑌))‘𝑢) − ((𝐹 ↾ (𝑋(,)𝑌))‘𝑥)) = ((𝐹𝑢) − (𝐹𝑥)))
309308fveq2d 6885 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 ∈ (𝑋(,)𝑌)) → (abs‘(((𝐹 ↾ (𝑋(,)𝑌))‘𝑢) − ((𝐹 ↾ (𝑋(,)𝑌))‘𝑥))) = (abs‘((𝐹𝑢) − (𝐹𝑥))))
310302oveq1d 7425 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝑋(,)𝑌) → (((𝐹 ↾ (𝑋(,)𝑌))‘𝑥) − 𝑦) = ((𝐹𝑥) − 𝑦))
311310ad2antlr 727 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 ∈ (𝑋(,)𝑌)) → (((𝐹 ↾ (𝑋(,)𝑌))‘𝑥) − 𝑦) = ((𝐹𝑥) − 𝑦))
312309, 311breq12d 5137 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 ∈ (𝑋(,)𝑌)) → ((abs‘(((𝐹 ↾ (𝑋(,)𝑌))‘𝑢) − ((𝐹 ↾ (𝑋(,)𝑌))‘𝑥))) < (((𝐹 ↾ (𝑋(,)𝑌))‘𝑥) − 𝑦) ↔ (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦)))
313312imbi2d 340 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 ∈ (𝑋(,)𝑌)) → (((abs‘(𝑢𝑥)) < 𝑧 → (abs‘(((𝐹 ↾ (𝑋(,)𝑌))‘𝑢) − ((𝐹 ↾ (𝑋(,)𝑌))‘𝑥))) < (((𝐹 ↾ (𝑋(,)𝑌))‘𝑥) − 𝑦)) ↔ ((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))))
314313ralbidva 3162 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) → (∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘(((𝐹 ↾ (𝑋(,)𝑌))‘𝑢) − ((𝐹 ↾ (𝑋(,)𝑌))‘𝑥))) < (((𝐹 ↾ (𝑋(,)𝑌))‘𝑥) − 𝑦)) ↔ ∀𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))))
315314rexbidv 3165 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) → (∃𝑧 ∈ ℝ+𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘(((𝐹 ↾ (𝑋(,)𝑌))‘𝑢) − ((𝐹 ↾ (𝑋(,)𝑌))‘𝑥))) < (((𝐹 ↾ (𝑋(,)𝑌))‘𝑥) − 𝑦)) ↔ ∃𝑧 ∈ ℝ+𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))))
316301, 304, 3153imtr3d 293 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) → (𝑦 < (𝐹𝑥) → ∃𝑧 ∈ ℝ+𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦))))
317316imp 406 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) → ∃𝑧 ∈ ℝ+𝑢 ∈ (𝑋(,)𝑌)((abs‘(𝑢𝑥)) < 𝑧 → (abs‘((𝐹𝑢) − (𝐹𝑥))) < ((𝐹𝑥) − 𝑦)))
318283, 317r19.29a 3149 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑦 < (𝐹𝑥)) → 0 < (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))))
319318rexlimdva2 3144 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ+) → (∃𝑥 ∈ (𝑋(,)𝑌)𝑦 < (𝐹𝑥) → 0 < (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0)))))
32048, 319sylbid 240 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → (𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < ) → 0 < (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0)))))
321320imp 406 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < )) → 0 < (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))))
32265ad2antlr 727 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < )) → (𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0)):ℝ⟶(0[,]+∞))
323 icossicc 13458 . . . . . . . . . 10 (0[,)+∞) ⊆ (0[,]+∞)
324 fss 6727 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞))
3253, 323, 324sylancl 586 . . . . . . . . 9 (𝜑𝐹:ℝ⟶(0[,]+∞))
326325ad2antrr 726 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < )) → 𝐹:ℝ⟶(0[,]+∞))
327 breq1 5127 . . . . . . . . . . . 12 (𝑦 = if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0) → (𝑦 ≤ (𝐹𝑤) ↔ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0) ≤ (𝐹𝑤)))
328 breq1 5127 . . . . . . . . . . . 12 (0 = if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0) → (0 ≤ (𝐹𝑤) ↔ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0) ≤ (𝐹𝑤)))
329266simprbi 496 . . . . . . . . . . . . 13 (𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)} → 𝑦 ≤ (𝐹𝑤))
330329adantl 481 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}) → 𝑦 ≤ (𝐹𝑤))
3313ffvelcdmda 7079 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ℝ) → (𝐹𝑤) ∈ (0[,)+∞))
332 elrege0 13476 . . . . . . . . . . . . . . 15 ((𝐹𝑤) ∈ (0[,)+∞) ↔ ((𝐹𝑤) ∈ ℝ ∧ 0 ≤ (𝐹𝑤)))
333331, 332sylib 218 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ ℝ) → ((𝐹𝑤) ∈ ℝ ∧ 0 ≤ (𝐹𝑤)))
334333simprd 495 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ℝ) → 0 ≤ (𝐹𝑤))
335334adantr 480 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ ¬ 𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}) → 0 ≤ (𝐹𝑤))
336327, 328, 330, 335ifbothda 4544 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ℝ) → if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0) ≤ (𝐹𝑤))
337336ralrimiva 3133 . . . . . . . . . 10 (𝜑 → ∀𝑤 ∈ ℝ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0) ≤ (𝐹𝑤))
338337ad2antrr 726 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < )) → ∀𝑤 ∈ ℝ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0) ≤ (𝐹𝑤))
339273a1i 11 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < )) → ℝ ∈ V)
34063ad3antlr 731 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < )) ∧ 𝑤 ∈ ℝ) → if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0) ∈ (0[,]+∞))
341 fvexd 6896 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < )) ∧ 𝑤 ∈ ℝ) → (𝐹𝑤) ∈ V)
342 eqidd 2737 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < )) → (𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0)) = (𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0)))
3433feqmptd 6952 . . . . . . . . . . 11 (𝜑𝐹 = (𝑤 ∈ ℝ ↦ (𝐹𝑤)))
344343ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < )) → 𝐹 = (𝑤 ∈ ℝ ↦ (𝐹𝑤)))
345339, 340, 341, 342, 344ofrfval2 7697 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < )) → ((𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0)) ∘r𝐹 ↔ ∀𝑤 ∈ ℝ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0) ≤ (𝐹𝑤)))
346338, 345mpbird 257 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < )) → (𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0)) ∘r𝐹)
347 itg2le 25697 . . . . . . . 8 (((𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0)):ℝ⟶(0[,]+∞) ∧ 𝐹:ℝ⟶(0[,]+∞) ∧ (𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0)) ∘r𝐹) → (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))) ≤ (∫2𝐹))
348322, 326, 346, 347syl3anc 1373 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < )) → (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))) ≤ (∫2𝐹))
34940, 321, 348jca32 515 . . . . . 6 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < )) → (𝑦 ∈ ℝ+ ∧ (0 < (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))) ∧ (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))) ≤ (∫2𝐹))))
350349expl 457 . . . . 5 (𝜑 → ((𝑦 ∈ ℝ+𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < )) → (𝑦 ∈ ℝ+ ∧ (0 < (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))) ∧ (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))) ≤ (∫2𝐹)))))
35139, 350syl5 34 . . . 4 (𝜑 → ((𝑦 ∈ ℚ ∧ (0 < 𝑦𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < ))) → (𝑦 ∈ ℝ+ ∧ (0 < (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))) ∧ (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))) ≤ (∫2𝐹)))))
352351reximdv2 3151 . . 3 (𝜑 → (∃𝑦 ∈ ℚ (0 < 𝑦𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < )) → ∃𝑦 ∈ ℝ+ (0 < (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))) ∧ (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))) ≤ (∫2𝐹))))
35367adantl 481 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))) ∈ ℝ*)
354 itg2cl 25690 . . . . . . 7 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) ∈ ℝ*)
355325, 354syl 17 . . . . . 6 (𝜑 → (∫2𝐹) ∈ ℝ*)
356355adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (∫2𝐹) ∈ ℝ*)
357 xrltletr 13178 . . . . 5 ((0 ∈ ℝ* ∧ (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))) ∈ ℝ* ∧ (∫2𝐹) ∈ ℝ*) → ((0 < (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))) ∧ (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))) ≤ (∫2𝐹)) → 0 < (∫2𝐹)))
3581, 353, 356, 357mp3an2i 1468 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ((0 < (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))) ∧ (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))) ≤ (∫2𝐹)) → 0 < (∫2𝐹)))
359358rexlimdva 3142 . . 3 (𝜑 → (∃𝑦 ∈ ℝ+ (0 < (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))) ∧ (∫2‘(𝑤 ∈ ℝ ↦ if(𝑤 ∈ {𝑣 ∈ (𝑋(,)𝑌) ∣ 𝑦 ≤ (𝐹𝑣)}, 𝑦, 0))) ≤ (∫2𝐹)) → 0 < (∫2𝐹)))
360352, 359syld 47 . 2 (𝜑 → (∃𝑦 ∈ ℚ (0 < 𝑦𝑦 < sup((𝐹 “ (𝑋(,)𝑌)), ℝ*, < )) → 0 < (∫2𝐹)))
36133, 360mpd 15 1 (𝜑 → 0 < (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  cin 3930  wss 3931  c0 4313  ifcif 4505   class class class wbr 5124  cmpt 5206   × cxp 5657  dom cdm 5659  ran crn 5660  cres 5661  cima 5662   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  r cofr 7675  supcsup 9457  cc 11132  cr 11133  0cc0 11134   + caddc 11137   · cmul 11139  +∞cpnf 11271  -∞cmnf 11272  *cxr 11273   < clt 11274  cle 11275  cmin 11471  -cneg 11472  cq 12969  +crp 13013  (,)cioo 13367  [,)cico 13369  [,]cicc 13370  abscabs 15258  cnccncf 24825  vol*covol 25420  volcvol 25421  2citg2 25574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-rest 17441  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-top 22837  df-topon 22854  df-bases 22889  df-cmp 23330  df-cncf 24827  df-ovol 25422  df-vol 25423  df-mbf 25577  df-itg1 25578  df-itg2 25579  df-0p 25628
This theorem is referenced by:  itggt0cn  37719
  Copyright terms: Public domain W3C validator