Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrsr Structured version   Visualization version   GIF version

Theorem distrsr 10348
 Description: Multiplication of signed reals is distributive. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
distrsr (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶))

Proof of Theorem distrsr
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 10313 . . 3 R = ((P × P) / ~R )
2 addsrpr 10332 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑧, 𝑤⟩] ~R +R [⟨𝑣, 𝑢⟩] ~R ) = [⟨(𝑧 +P 𝑣), (𝑤 +P 𝑢)⟩] ~R )
3 mulsrpr 10333 . . 3 (((𝑥P𝑦P) ∧ ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(𝑧 +P 𝑣), (𝑤 +P 𝑢)⟩] ~R ) = [⟨((𝑥 ·P (𝑧 +P 𝑣)) +P (𝑦 ·P (𝑤 +P 𝑢))), ((𝑥 ·P (𝑤 +P 𝑢)) +P (𝑦 ·P (𝑧 +P 𝑣)))⟩] ~R )
4 mulsrpr 10333 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R )
5 mulsrpr 10333 . . 3 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑣, 𝑢⟩] ~R ) = [⟨((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)), ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣))⟩] ~R )
6 addsrpr 10332 . . 3 (((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) ∧ (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P ∧ ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)) → ([⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R +R [⟨((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)), ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣))⟩] ~R ) = [⟨(((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))), (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)))⟩] ~R )
7 addclpr 10275 . . . . 5 ((𝑧P𝑣P) → (𝑧 +P 𝑣) ∈ P)
8 addclpr 10275 . . . . 5 ((𝑤P𝑢P) → (𝑤 +P 𝑢) ∈ P)
97, 8anim12i 612 . . . 4 (((𝑧P𝑣P) ∧ (𝑤P𝑢P)) → ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P))
109an4s 656 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P))
11 mulclpr 10277 . . . . . 6 ((𝑥P𝑧P) → (𝑥 ·P 𝑧) ∈ P)
12 mulclpr 10277 . . . . . 6 ((𝑦P𝑤P) → (𝑦 ·P 𝑤) ∈ P)
13 addclpr 10275 . . . . . 6 (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
1411, 12, 13syl2an 595 . . . . 5 (((𝑥P𝑧P) ∧ (𝑦P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
1514an4s 656 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
16 mulclpr 10277 . . . . . 6 ((𝑥P𝑤P) → (𝑥 ·P 𝑤) ∈ P)
17 mulclpr 10277 . . . . . 6 ((𝑦P𝑧P) → (𝑦 ·P 𝑧) ∈ P)
18 addclpr 10275 . . . . . 6 (((𝑥 ·P 𝑤) ∈ P ∧ (𝑦 ·P 𝑧) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
1916, 17, 18syl2an 595 . . . . 5 (((𝑥P𝑤P) ∧ (𝑦P𝑧P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
2019an42s 657 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
2115, 20jca 512 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P))
22 mulclpr 10277 . . . . . 6 ((𝑥P𝑣P) → (𝑥 ·P 𝑣) ∈ P)
23 mulclpr 10277 . . . . . 6 ((𝑦P𝑢P) → (𝑦 ·P 𝑢) ∈ P)
24 addclpr 10275 . . . . . 6 (((𝑥 ·P 𝑣) ∈ P ∧ (𝑦 ·P 𝑢) ∈ P) → ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P)
2522, 23, 24syl2an 595 . . . . 5 (((𝑥P𝑣P) ∧ (𝑦P𝑢P)) → ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P)
2625an4s 656 . . . 4 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P)
27 mulclpr 10277 . . . . . 6 ((𝑥P𝑢P) → (𝑥 ·P 𝑢) ∈ P)
28 mulclpr 10277 . . . . . 6 ((𝑦P𝑣P) → (𝑦 ·P 𝑣) ∈ P)
29 addclpr 10275 . . . . . 6 (((𝑥 ·P 𝑢) ∈ P ∧ (𝑦 ·P 𝑣) ∈ P) → ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)
3027, 28, 29syl2an 595 . . . . 5 (((𝑥P𝑢P) ∧ (𝑦P𝑣P)) → ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)
3130an42s 657 . . . 4 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)
3226, 31jca 512 . . 3 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P ∧ ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P))
33 distrpr 10285 . . . . 5 (𝑥 ·P (𝑧 +P 𝑣)) = ((𝑥 ·P 𝑧) +P (𝑥 ·P 𝑣))
34 distrpr 10285 . . . . 5 (𝑦 ·P (𝑤 +P 𝑢)) = ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢))
3533, 34oveq12i 7019 . . . 4 ((𝑥 ·P (𝑧 +P 𝑣)) +P (𝑦 ·P (𝑤 +P 𝑢))) = (((𝑥 ·P 𝑧) +P (𝑥 ·P 𝑣)) +P ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)))
36 ovex 7039 . . . . 5 (𝑥 ·P 𝑧) ∈ V
37 ovex 7039 . . . . 5 (𝑥 ·P 𝑣) ∈ V
38 ovex 7039 . . . . 5 (𝑦 ·P 𝑤) ∈ V
39 addcompr 10278 . . . . 5 (𝑓 +P 𝑔) = (𝑔 +P 𝑓)
40 addasspr 10279 . . . . 5 ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P ))
41 ovex 7039 . . . . 5 (𝑦 ·P 𝑢) ∈ V
4236, 37, 38, 39, 40, 41caov4 7226 . . . 4 (((𝑥 ·P 𝑧) +P (𝑥 ·P 𝑣)) +P ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢))) = (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)))
4335, 42eqtri 2817 . . 3 ((𝑥 ·P (𝑧 +P 𝑣)) +P (𝑦 ·P (𝑤 +P 𝑢))) = (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)))
44 distrpr 10285 . . . . 5 (𝑥 ·P (𝑤 +P 𝑢)) = ((𝑥 ·P 𝑤) +P (𝑥 ·P 𝑢))
45 distrpr 10285 . . . . 5 (𝑦 ·P (𝑧 +P 𝑣)) = ((𝑦 ·P 𝑧) +P (𝑦 ·P 𝑣))
4644, 45oveq12i 7019 . . . 4 ((𝑥 ·P (𝑤 +P 𝑢)) +P (𝑦 ·P (𝑧 +P 𝑣))) = (((𝑥 ·P 𝑤) +P (𝑥 ·P 𝑢)) +P ((𝑦 ·P 𝑧) +P (𝑦 ·P 𝑣)))
47 ovex 7039 . . . . 5 (𝑥 ·P 𝑤) ∈ V
48 ovex 7039 . . . . 5 (𝑥 ·P 𝑢) ∈ V
49 ovex 7039 . . . . 5 (𝑦 ·P 𝑧) ∈ V
50 ovex 7039 . . . . 5 (𝑦 ·P 𝑣) ∈ V
5147, 48, 49, 39, 40, 50caov4 7226 . . . 4 (((𝑥 ·P 𝑤) +P (𝑥 ·P 𝑢)) +P ((𝑦 ·P 𝑧) +P (𝑦 ·P 𝑣))) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)))
5246, 51eqtri 2817 . . 3 ((𝑥 ·P (𝑤 +P 𝑢)) +P (𝑦 ·P (𝑧 +P 𝑣))) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)))
531, 2, 3, 4, 5, 6, 10, 21, 32, 43, 52ecovdi 8246 . 2 ((𝐴R𝐵R𝐶R) → (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶)))
54 dmaddsr 10342 . . 3 dom +R = (R × R)
55 0nsr 10336 . . 3 ¬ ∅ ∈ R
56 dmmulsr 10343 . . 3 dom ·R = (R × R)
5754, 55, 56ndmovdistr 7184 . 2 (¬ (𝐴R𝐵R𝐶R) → (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶)))
5853, 57pm2.61i 183 1 (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶))
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 396   ∧ w3a 1078   = wceq 1520   ∈ wcel 2079  (class class class)co 7007  Pcnp 10116   +P cpp 10118   ·P cmp 10119   ~R cer 10121  Rcnr 10122   +R cplr 10126   ·R cmr 10127 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-inf2 8939 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-ov 7010  df-oprab 7011  df-mpo 7012  df-om 7428  df-1st 7536  df-2nd 7537  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-oadd 7948  df-omul 7949  df-er 8130  df-ec 8132  df-qs 8136  df-ni 10129  df-pli 10130  df-mi 10131  df-lti 10132  df-plpq 10165  df-mpq 10166  df-ltpq 10167  df-enq 10168  df-nq 10169  df-erq 10170  df-plq 10171  df-mq 10172  df-1nq 10173  df-rq 10174  df-ltnq 10175  df-np 10238  df-plp 10240  df-mp 10241  df-ltp 10242  df-enr 10312  df-nr 10313  df-plr 10314  df-mr 10315 This theorem is referenced by:  pn0sr  10358  axmulass  10414  axdistr  10415
 Copyright terms: Public domain W3C validator