MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrsr Structured version   Visualization version   GIF version

Theorem distrsr 10778
Description: Multiplication of signed reals is distributive. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
distrsr (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶))

Proof of Theorem distrsr
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 10743 . . 3 R = ((P × P) / ~R )
2 addsrpr 10762 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑧, 𝑤⟩] ~R +R [⟨𝑣, 𝑢⟩] ~R ) = [⟨(𝑧 +P 𝑣), (𝑤 +P 𝑢)⟩] ~R )
3 mulsrpr 10763 . . 3 (((𝑥P𝑦P) ∧ ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(𝑧 +P 𝑣), (𝑤 +P 𝑢)⟩] ~R ) = [⟨((𝑥 ·P (𝑧 +P 𝑣)) +P (𝑦 ·P (𝑤 +P 𝑢))), ((𝑥 ·P (𝑤 +P 𝑢)) +P (𝑦 ·P (𝑧 +P 𝑣)))⟩] ~R )
4 mulsrpr 10763 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R )
5 mulsrpr 10763 . . 3 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑣, 𝑢⟩] ~R ) = [⟨((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)), ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣))⟩] ~R )
6 addsrpr 10762 . . 3 (((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) ∧ (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P ∧ ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)) → ([⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R +R [⟨((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)), ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣))⟩] ~R ) = [⟨(((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))), (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)))⟩] ~R )
7 addclpr 10705 . . . . 5 ((𝑧P𝑣P) → (𝑧 +P 𝑣) ∈ P)
8 addclpr 10705 . . . . 5 ((𝑤P𝑢P) → (𝑤 +P 𝑢) ∈ P)
97, 8anim12i 612 . . . 4 (((𝑧P𝑣P) ∧ (𝑤P𝑢P)) → ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P))
109an4s 656 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P))
11 mulclpr 10707 . . . . . 6 ((𝑥P𝑧P) → (𝑥 ·P 𝑧) ∈ P)
12 mulclpr 10707 . . . . . 6 ((𝑦P𝑤P) → (𝑦 ·P 𝑤) ∈ P)
13 addclpr 10705 . . . . . 6 (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
1411, 12, 13syl2an 595 . . . . 5 (((𝑥P𝑧P) ∧ (𝑦P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
1514an4s 656 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
16 mulclpr 10707 . . . . . 6 ((𝑥P𝑤P) → (𝑥 ·P 𝑤) ∈ P)
17 mulclpr 10707 . . . . . 6 ((𝑦P𝑧P) → (𝑦 ·P 𝑧) ∈ P)
18 addclpr 10705 . . . . . 6 (((𝑥 ·P 𝑤) ∈ P ∧ (𝑦 ·P 𝑧) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
1916, 17, 18syl2an 595 . . . . 5 (((𝑥P𝑤P) ∧ (𝑦P𝑧P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
2019an42s 657 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
2115, 20jca 511 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P))
22 mulclpr 10707 . . . . . 6 ((𝑥P𝑣P) → (𝑥 ·P 𝑣) ∈ P)
23 mulclpr 10707 . . . . . 6 ((𝑦P𝑢P) → (𝑦 ·P 𝑢) ∈ P)
24 addclpr 10705 . . . . . 6 (((𝑥 ·P 𝑣) ∈ P ∧ (𝑦 ·P 𝑢) ∈ P) → ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P)
2522, 23, 24syl2an 595 . . . . 5 (((𝑥P𝑣P) ∧ (𝑦P𝑢P)) → ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P)
2625an4s 656 . . . 4 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P)
27 mulclpr 10707 . . . . . 6 ((𝑥P𝑢P) → (𝑥 ·P 𝑢) ∈ P)
28 mulclpr 10707 . . . . . 6 ((𝑦P𝑣P) → (𝑦 ·P 𝑣) ∈ P)
29 addclpr 10705 . . . . . 6 (((𝑥 ·P 𝑢) ∈ P ∧ (𝑦 ·P 𝑣) ∈ P) → ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)
3027, 28, 29syl2an 595 . . . . 5 (((𝑥P𝑢P) ∧ (𝑦P𝑣P)) → ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)
3130an42s 657 . . . 4 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)
3226, 31jca 511 . . 3 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P ∧ ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P))
33 distrpr 10715 . . . . 5 (𝑥 ·P (𝑧 +P 𝑣)) = ((𝑥 ·P 𝑧) +P (𝑥 ·P 𝑣))
34 distrpr 10715 . . . . 5 (𝑦 ·P (𝑤 +P 𝑢)) = ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢))
3533, 34oveq12i 7267 . . . 4 ((𝑥 ·P (𝑧 +P 𝑣)) +P (𝑦 ·P (𝑤 +P 𝑢))) = (((𝑥 ·P 𝑧) +P (𝑥 ·P 𝑣)) +P ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)))
36 ovex 7288 . . . . 5 (𝑥 ·P 𝑧) ∈ V
37 ovex 7288 . . . . 5 (𝑥 ·P 𝑣) ∈ V
38 ovex 7288 . . . . 5 (𝑦 ·P 𝑤) ∈ V
39 addcompr 10708 . . . . 5 (𝑓 +P 𝑔) = (𝑔 +P 𝑓)
40 addasspr 10709 . . . . 5 ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P ))
41 ovex 7288 . . . . 5 (𝑦 ·P 𝑢) ∈ V
4236, 37, 38, 39, 40, 41caov4 7481 . . . 4 (((𝑥 ·P 𝑧) +P (𝑥 ·P 𝑣)) +P ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢))) = (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)))
4335, 42eqtri 2766 . . 3 ((𝑥 ·P (𝑧 +P 𝑣)) +P (𝑦 ·P (𝑤 +P 𝑢))) = (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)))
44 distrpr 10715 . . . . 5 (𝑥 ·P (𝑤 +P 𝑢)) = ((𝑥 ·P 𝑤) +P (𝑥 ·P 𝑢))
45 distrpr 10715 . . . . 5 (𝑦 ·P (𝑧 +P 𝑣)) = ((𝑦 ·P 𝑧) +P (𝑦 ·P 𝑣))
4644, 45oveq12i 7267 . . . 4 ((𝑥 ·P (𝑤 +P 𝑢)) +P (𝑦 ·P (𝑧 +P 𝑣))) = (((𝑥 ·P 𝑤) +P (𝑥 ·P 𝑢)) +P ((𝑦 ·P 𝑧) +P (𝑦 ·P 𝑣)))
47 ovex 7288 . . . . 5 (𝑥 ·P 𝑤) ∈ V
48 ovex 7288 . . . . 5 (𝑥 ·P 𝑢) ∈ V
49 ovex 7288 . . . . 5 (𝑦 ·P 𝑧) ∈ V
50 ovex 7288 . . . . 5 (𝑦 ·P 𝑣) ∈ V
5147, 48, 49, 39, 40, 50caov4 7481 . . . 4 (((𝑥 ·P 𝑤) +P (𝑥 ·P 𝑢)) +P ((𝑦 ·P 𝑧) +P (𝑦 ·P 𝑣))) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)))
5246, 51eqtri 2766 . . 3 ((𝑥 ·P (𝑤 +P 𝑢)) +P (𝑦 ·P (𝑧 +P 𝑣))) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)))
531, 2, 3, 4, 5, 6, 10, 21, 32, 43, 52ecovdi 8572 . 2 ((𝐴R𝐵R𝐶R) → (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶)))
54 dmaddsr 10772 . . 3 dom +R = (R × R)
55 0nsr 10766 . . 3 ¬ ∅ ∈ R
56 dmmulsr 10773 . . 3 dom ·R = (R × R)
5754, 55, 56ndmovdistr 7439 . 2 (¬ (𝐴R𝐵R𝐶R) → (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶)))
5853, 57pm2.61i 182 1 (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1085   = wceq 1539  wcel 2108  (class class class)co 7255  Pcnp 10546   +P cpp 10548   ·P cmp 10549   ~R cer 10551  Rcnr 10552   +R cplr 10556   ·R cmr 10557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-ec 8458  df-qs 8462  df-ni 10559  df-pli 10560  df-mi 10561  df-lti 10562  df-plpq 10595  df-mpq 10596  df-ltpq 10597  df-enq 10598  df-nq 10599  df-erq 10600  df-plq 10601  df-mq 10602  df-1nq 10603  df-rq 10604  df-ltnq 10605  df-np 10668  df-plp 10670  df-mp 10671  df-ltp 10672  df-enr 10742  df-nr 10743  df-plr 10744  df-mr 10745
This theorem is referenced by:  pn0sr  10788  axmulass  10844  axdistr  10845
  Copyright terms: Public domain W3C validator