MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmsucr Structured version   Visualization version   GIF version

Theorem nnmsucr 8663
Description: Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmsucr ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵))

Proof of Theorem nnmsucr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . 5 (𝑥 = 𝐵 → (suc 𝐴 ·o 𝑥) = (suc 𝐴 ·o 𝐵))
2 oveq2 7439 . . . . . 6 (𝑥 = 𝐵 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐵))
3 id 22 . . . . . 6 (𝑥 = 𝐵𝑥 = 𝐵)
42, 3oveq12d 7449 . . . . 5 (𝑥 = 𝐵 → ((𝐴 ·o 𝑥) +o 𝑥) = ((𝐴 ·o 𝐵) +o 𝐵))
51, 4eqeq12d 2753 . . . 4 (𝑥 = 𝐵 → ((suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥) ↔ (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵)))
65imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥)) ↔ (𝐴 ∈ ω → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵))))
7 oveq2 7439 . . . . 5 (𝑥 = ∅ → (suc 𝐴 ·o 𝑥) = (suc 𝐴 ·o ∅))
8 oveq2 7439 . . . . . 6 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
9 id 22 . . . . . 6 (𝑥 = ∅ → 𝑥 = ∅)
108, 9oveq12d 7449 . . . . 5 (𝑥 = ∅ → ((𝐴 ·o 𝑥) +o 𝑥) = ((𝐴 ·o ∅) +o ∅))
117, 10eqeq12d 2753 . . . 4 (𝑥 = ∅ → ((suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥) ↔ (suc 𝐴 ·o ∅) = ((𝐴 ·o ∅) +o ∅)))
12 oveq2 7439 . . . . 5 (𝑥 = 𝑦 → (suc 𝐴 ·o 𝑥) = (suc 𝐴 ·o 𝑦))
13 oveq2 7439 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
14 id 22 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
1513, 14oveq12d 7449 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) +o 𝑥) = ((𝐴 ·o 𝑦) +o 𝑦))
1612, 15eqeq12d 2753 . . . 4 (𝑥 = 𝑦 → ((suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥) ↔ (suc 𝐴 ·o 𝑦) = ((𝐴 ·o 𝑦) +o 𝑦)))
17 oveq2 7439 . . . . 5 (𝑥 = suc 𝑦 → (suc 𝐴 ·o 𝑥) = (suc 𝐴 ·o suc 𝑦))
18 oveq2 7439 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
19 id 22 . . . . . 6 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
2018, 19oveq12d 7449 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) +o 𝑥) = ((𝐴 ·o suc 𝑦) +o suc 𝑦))
2117, 20eqeq12d 2753 . . . 4 (𝑥 = suc 𝑦 → ((suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥) ↔ (suc 𝐴 ·o suc 𝑦) = ((𝐴 ·o suc 𝑦) +o suc 𝑦)))
22 peano2 7912 . . . . . . 7 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
23 nnm0 8643 . . . . . . 7 (suc 𝐴 ∈ ω → (suc 𝐴 ·o ∅) = ∅)
2422, 23syl 17 . . . . . 6 (𝐴 ∈ ω → (suc 𝐴 ·o ∅) = ∅)
25 nnm0 8643 . . . . . 6 (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅)
2624, 25eqtr4d 2780 . . . . 5 (𝐴 ∈ ω → (suc 𝐴 ·o ∅) = (𝐴 ·o ∅))
27 peano1 7910 . . . . . . 7 ∅ ∈ ω
28 nnmcl 8650 . . . . . . 7 ((𝐴 ∈ ω ∧ ∅ ∈ ω) → (𝐴 ·o ∅) ∈ ω)
2927, 28mpan2 691 . . . . . 6 (𝐴 ∈ ω → (𝐴 ·o ∅) ∈ ω)
30 nna0 8642 . . . . . 6 ((𝐴 ·o ∅) ∈ ω → ((𝐴 ·o ∅) +o ∅) = (𝐴 ·o ∅))
3129, 30syl 17 . . . . 5 (𝐴 ∈ ω → ((𝐴 ·o ∅) +o ∅) = (𝐴 ·o ∅))
3226, 31eqtr4d 2780 . . . 4 (𝐴 ∈ ω → (suc 𝐴 ·o ∅) = ((𝐴 ·o ∅) +o ∅))
33 oveq1 7438 . . . . . 6 ((suc 𝐴 ·o 𝑦) = ((𝐴 ·o 𝑦) +o 𝑦) → ((suc 𝐴 ·o 𝑦) +o suc 𝐴) = (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴))
34 peano2b 7904 . . . . . . . 8 (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
35 nnmsuc 8645 . . . . . . . 8 ((suc 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 ·o suc 𝑦) = ((suc 𝐴 ·o 𝑦) +o suc 𝐴))
3634, 35sylanb 581 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 ·o suc 𝑦) = ((suc 𝐴 ·o 𝑦) +o suc 𝐴))
37 nnmcl 8650 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o 𝑦) ∈ ω)
38 peano2b 7904 . . . . . . . . . . . 12 (𝑦 ∈ ω ↔ suc 𝑦 ∈ ω)
39 nnaass 8660 . . . . . . . . . . . 12 (((𝐴 ·o 𝑦) ∈ ω ∧ 𝐴 ∈ ω ∧ suc 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
4038, 39syl3an3b 1407 . . . . . . . . . . 11 (((𝐴 ·o 𝑦) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
4137, 40syl3an1 1164 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
42413expb 1121 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝐴 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
4342anidms 566 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
44 nnmsuc 8645 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
4544oveq1d 7446 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o suc 𝑦) +o suc 𝑦) = (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦))
46 nnaass 8660 . . . . . . . . . . . . . 14 (((𝐴 ·o 𝑦) ∈ ω ∧ 𝑦 ∈ ω ∧ suc 𝐴 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
4734, 46syl3an3b 1407 . . . . . . . . . . . . 13 (((𝐴 ·o 𝑦) ∈ ω ∧ 𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
4837, 47syl3an1 1164 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
49483expb 1121 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝑦 ∈ ω ∧ 𝐴 ∈ ω)) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
5049an42s 661 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝐴 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
5150anidms 566 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
52 nnacom 8655 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) = (𝑦 +o 𝐴))
53 suceq 6450 . . . . . . . . . . . 12 ((𝐴 +o 𝑦) = (𝑦 +o 𝐴) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
5452, 53syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
55 nnasuc 8644 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
56 nnasuc 8644 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝑦 +o suc 𝐴) = suc (𝑦 +o 𝐴))
5756ancoms 458 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +o suc 𝐴) = suc (𝑦 +o 𝐴))
5854, 55, 573eqtr4d 2787 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = (𝑦 +o suc 𝐴))
5958oveq2d 7447 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
6051, 59eqtr4d 2780 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
6143, 45, 603eqtr4d 2787 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o suc 𝑦) +o suc 𝑦) = (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴))
6236, 61eqeq12d 2753 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝐴 ·o suc 𝑦) = ((𝐴 ·o suc 𝑦) +o suc 𝑦) ↔ ((suc 𝐴 ·o 𝑦) +o suc 𝐴) = (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴)))
6333, 62imbitrrid 246 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝐴 ·o 𝑦) = ((𝐴 ·o 𝑦) +o 𝑦) → (suc 𝐴 ·o suc 𝑦) = ((𝐴 ·o suc 𝑦) +o suc 𝑦)))
6463expcom 413 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((suc 𝐴 ·o 𝑦) = ((𝐴 ·o 𝑦) +o 𝑦) → (suc 𝐴 ·o suc 𝑦) = ((𝐴 ·o suc 𝑦) +o suc 𝑦))))
6511, 16, 21, 32, 64finds2 7920 . . 3 (𝑥 ∈ ω → (𝐴 ∈ ω → (suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥)))
666, 65vtoclga 3577 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵)))
6766impcom 407 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  c0 4333  suc csuc 6386  (class class class)co 7431  ωcom 7887   +o coa 8503   ·o comu 8504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-oadd 8510  df-omul 8511
This theorem is referenced by:  nnmcom  8664
  Copyright terms: Public domain W3C validator