MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmsucr Structured version   Visualization version   GIF version

Theorem nnmsucr 8572
Description: Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmsucr ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵))

Proof of Theorem nnmsucr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7365 . . . . 5 (𝑥 = 𝐵 → (suc 𝐴 ·o 𝑥) = (suc 𝐴 ·o 𝐵))
2 oveq2 7365 . . . . . 6 (𝑥 = 𝐵 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐵))
3 id 22 . . . . . 6 (𝑥 = 𝐵𝑥 = 𝐵)
42, 3oveq12d 7375 . . . . 5 (𝑥 = 𝐵 → ((𝐴 ·o 𝑥) +o 𝑥) = ((𝐴 ·o 𝐵) +o 𝐵))
51, 4eqeq12d 2752 . . . 4 (𝑥 = 𝐵 → ((suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥) ↔ (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵)))
65imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥)) ↔ (𝐴 ∈ ω → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵))))
7 oveq2 7365 . . . . 5 (𝑥 = ∅ → (suc 𝐴 ·o 𝑥) = (suc 𝐴 ·o ∅))
8 oveq2 7365 . . . . . 6 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
9 id 22 . . . . . 6 (𝑥 = ∅ → 𝑥 = ∅)
108, 9oveq12d 7375 . . . . 5 (𝑥 = ∅ → ((𝐴 ·o 𝑥) +o 𝑥) = ((𝐴 ·o ∅) +o ∅))
117, 10eqeq12d 2752 . . . 4 (𝑥 = ∅ → ((suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥) ↔ (suc 𝐴 ·o ∅) = ((𝐴 ·o ∅) +o ∅)))
12 oveq2 7365 . . . . 5 (𝑥 = 𝑦 → (suc 𝐴 ·o 𝑥) = (suc 𝐴 ·o 𝑦))
13 oveq2 7365 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
14 id 22 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
1513, 14oveq12d 7375 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) +o 𝑥) = ((𝐴 ·o 𝑦) +o 𝑦))
1612, 15eqeq12d 2752 . . . 4 (𝑥 = 𝑦 → ((suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥) ↔ (suc 𝐴 ·o 𝑦) = ((𝐴 ·o 𝑦) +o 𝑦)))
17 oveq2 7365 . . . . 5 (𝑥 = suc 𝑦 → (suc 𝐴 ·o 𝑥) = (suc 𝐴 ·o suc 𝑦))
18 oveq2 7365 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
19 id 22 . . . . . 6 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
2018, 19oveq12d 7375 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) +o 𝑥) = ((𝐴 ·o suc 𝑦) +o suc 𝑦))
2117, 20eqeq12d 2752 . . . 4 (𝑥 = suc 𝑦 → ((suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥) ↔ (suc 𝐴 ·o suc 𝑦) = ((𝐴 ·o suc 𝑦) +o suc 𝑦)))
22 peano2 7827 . . . . . . 7 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
23 nnm0 8552 . . . . . . 7 (suc 𝐴 ∈ ω → (suc 𝐴 ·o ∅) = ∅)
2422, 23syl 17 . . . . . 6 (𝐴 ∈ ω → (suc 𝐴 ·o ∅) = ∅)
25 nnm0 8552 . . . . . 6 (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅)
2624, 25eqtr4d 2779 . . . . 5 (𝐴 ∈ ω → (suc 𝐴 ·o ∅) = (𝐴 ·o ∅))
27 peano1 7825 . . . . . . 7 ∅ ∈ ω
28 nnmcl 8559 . . . . . . 7 ((𝐴 ∈ ω ∧ ∅ ∈ ω) → (𝐴 ·o ∅) ∈ ω)
2927, 28mpan2 689 . . . . . 6 (𝐴 ∈ ω → (𝐴 ·o ∅) ∈ ω)
30 nna0 8551 . . . . . 6 ((𝐴 ·o ∅) ∈ ω → ((𝐴 ·o ∅) +o ∅) = (𝐴 ·o ∅))
3129, 30syl 17 . . . . 5 (𝐴 ∈ ω → ((𝐴 ·o ∅) +o ∅) = (𝐴 ·o ∅))
3226, 31eqtr4d 2779 . . . 4 (𝐴 ∈ ω → (suc 𝐴 ·o ∅) = ((𝐴 ·o ∅) +o ∅))
33 oveq1 7364 . . . . . 6 ((suc 𝐴 ·o 𝑦) = ((𝐴 ·o 𝑦) +o 𝑦) → ((suc 𝐴 ·o 𝑦) +o suc 𝐴) = (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴))
34 peano2b 7819 . . . . . . . 8 (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
35 nnmsuc 8554 . . . . . . . 8 ((suc 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 ·o suc 𝑦) = ((suc 𝐴 ·o 𝑦) +o suc 𝐴))
3634, 35sylanb 581 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 ·o suc 𝑦) = ((suc 𝐴 ·o 𝑦) +o suc 𝐴))
37 nnmcl 8559 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o 𝑦) ∈ ω)
38 peano2b 7819 . . . . . . . . . . . 12 (𝑦 ∈ ω ↔ suc 𝑦 ∈ ω)
39 nnaass 8569 . . . . . . . . . . . 12 (((𝐴 ·o 𝑦) ∈ ω ∧ 𝐴 ∈ ω ∧ suc 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
4038, 39syl3an3b 1405 . . . . . . . . . . 11 (((𝐴 ·o 𝑦) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
4137, 40syl3an1 1163 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
42413expb 1120 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝐴 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
4342anidms 567 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
44 nnmsuc 8554 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
4544oveq1d 7372 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o suc 𝑦) +o suc 𝑦) = (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦))
46 nnaass 8569 . . . . . . . . . . . . . 14 (((𝐴 ·o 𝑦) ∈ ω ∧ 𝑦 ∈ ω ∧ suc 𝐴 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
4734, 46syl3an3b 1405 . . . . . . . . . . . . 13 (((𝐴 ·o 𝑦) ∈ ω ∧ 𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
4837, 47syl3an1 1163 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
49483expb 1120 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝑦 ∈ ω ∧ 𝐴 ∈ ω)) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
5049an42s 659 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝐴 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
5150anidms 567 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
52 nnacom 8564 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) = (𝑦 +o 𝐴))
53 suceq 6383 . . . . . . . . . . . 12 ((𝐴 +o 𝑦) = (𝑦 +o 𝐴) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
5452, 53syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
55 nnasuc 8553 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
56 nnasuc 8553 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝑦 +o suc 𝐴) = suc (𝑦 +o 𝐴))
5756ancoms 459 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +o suc 𝐴) = suc (𝑦 +o 𝐴))
5854, 55, 573eqtr4d 2786 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = (𝑦 +o suc 𝐴))
5958oveq2d 7373 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
6051, 59eqtr4d 2779 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
6143, 45, 603eqtr4d 2786 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o suc 𝑦) +o suc 𝑦) = (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴))
6236, 61eqeq12d 2752 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝐴 ·o suc 𝑦) = ((𝐴 ·o suc 𝑦) +o suc 𝑦) ↔ ((suc 𝐴 ·o 𝑦) +o suc 𝐴) = (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴)))
6333, 62syl5ibr 245 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝐴 ·o 𝑦) = ((𝐴 ·o 𝑦) +o 𝑦) → (suc 𝐴 ·o suc 𝑦) = ((𝐴 ·o suc 𝑦) +o suc 𝑦)))
6463expcom 414 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((suc 𝐴 ·o 𝑦) = ((𝐴 ·o 𝑦) +o 𝑦) → (suc 𝐴 ·o suc 𝑦) = ((𝐴 ·o suc 𝑦) +o suc 𝑦))))
6511, 16, 21, 32, 64finds2 7837 . . 3 (𝑥 ∈ ω → (𝐴 ∈ ω → (suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥)))
666, 65vtoclga 3534 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵)))
6766impcom 408 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  c0 4282  suc csuc 6319  (class class class)co 7357  ωcom 7802   +o coa 8409   ·o comu 8410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-oadd 8416  df-omul 8417
This theorem is referenced by:  nnmcom  8573
  Copyright terms: Public domain W3C validator