MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmsucr Structured version   Visualization version   GIF version

Theorem nnmsucr 8234
Description: Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmsucr ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵))

Proof of Theorem nnmsucr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7143 . . . . 5 (𝑥 = 𝐵 → (suc 𝐴 ·o 𝑥) = (suc 𝐴 ·o 𝐵))
2 oveq2 7143 . . . . . 6 (𝑥 = 𝐵 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐵))
3 id 22 . . . . . 6 (𝑥 = 𝐵𝑥 = 𝐵)
42, 3oveq12d 7153 . . . . 5 (𝑥 = 𝐵 → ((𝐴 ·o 𝑥) +o 𝑥) = ((𝐴 ·o 𝐵) +o 𝐵))
51, 4eqeq12d 2814 . . . 4 (𝑥 = 𝐵 → ((suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥) ↔ (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵)))
65imbi2d 344 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥)) ↔ (𝐴 ∈ ω → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵))))
7 oveq2 7143 . . . . 5 (𝑥 = ∅ → (suc 𝐴 ·o 𝑥) = (suc 𝐴 ·o ∅))
8 oveq2 7143 . . . . . 6 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
9 id 22 . . . . . 6 (𝑥 = ∅ → 𝑥 = ∅)
108, 9oveq12d 7153 . . . . 5 (𝑥 = ∅ → ((𝐴 ·o 𝑥) +o 𝑥) = ((𝐴 ·o ∅) +o ∅))
117, 10eqeq12d 2814 . . . 4 (𝑥 = ∅ → ((suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥) ↔ (suc 𝐴 ·o ∅) = ((𝐴 ·o ∅) +o ∅)))
12 oveq2 7143 . . . . 5 (𝑥 = 𝑦 → (suc 𝐴 ·o 𝑥) = (suc 𝐴 ·o 𝑦))
13 oveq2 7143 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
14 id 22 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
1513, 14oveq12d 7153 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) +o 𝑥) = ((𝐴 ·o 𝑦) +o 𝑦))
1612, 15eqeq12d 2814 . . . 4 (𝑥 = 𝑦 → ((suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥) ↔ (suc 𝐴 ·o 𝑦) = ((𝐴 ·o 𝑦) +o 𝑦)))
17 oveq2 7143 . . . . 5 (𝑥 = suc 𝑦 → (suc 𝐴 ·o 𝑥) = (suc 𝐴 ·o suc 𝑦))
18 oveq2 7143 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
19 id 22 . . . . . 6 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
2018, 19oveq12d 7153 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) +o 𝑥) = ((𝐴 ·o suc 𝑦) +o suc 𝑦))
2117, 20eqeq12d 2814 . . . 4 (𝑥 = suc 𝑦 → ((suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥) ↔ (suc 𝐴 ·o suc 𝑦) = ((𝐴 ·o suc 𝑦) +o suc 𝑦)))
22 peano2 7582 . . . . . . 7 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
23 nnm0 8214 . . . . . . 7 (suc 𝐴 ∈ ω → (suc 𝐴 ·o ∅) = ∅)
2422, 23syl 17 . . . . . 6 (𝐴 ∈ ω → (suc 𝐴 ·o ∅) = ∅)
25 nnm0 8214 . . . . . 6 (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅)
2624, 25eqtr4d 2836 . . . . 5 (𝐴 ∈ ω → (suc 𝐴 ·o ∅) = (𝐴 ·o ∅))
27 peano1 7581 . . . . . . 7 ∅ ∈ ω
28 nnmcl 8221 . . . . . . 7 ((𝐴 ∈ ω ∧ ∅ ∈ ω) → (𝐴 ·o ∅) ∈ ω)
2927, 28mpan2 690 . . . . . 6 (𝐴 ∈ ω → (𝐴 ·o ∅) ∈ ω)
30 nna0 8213 . . . . . 6 ((𝐴 ·o ∅) ∈ ω → ((𝐴 ·o ∅) +o ∅) = (𝐴 ·o ∅))
3129, 30syl 17 . . . . 5 (𝐴 ∈ ω → ((𝐴 ·o ∅) +o ∅) = (𝐴 ·o ∅))
3226, 31eqtr4d 2836 . . . 4 (𝐴 ∈ ω → (suc 𝐴 ·o ∅) = ((𝐴 ·o ∅) +o ∅))
33 oveq1 7142 . . . . . 6 ((suc 𝐴 ·o 𝑦) = ((𝐴 ·o 𝑦) +o 𝑦) → ((suc 𝐴 ·o 𝑦) +o suc 𝐴) = (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴))
34 peano2b 7576 . . . . . . . 8 (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
35 nnmsuc 8216 . . . . . . . 8 ((suc 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 ·o suc 𝑦) = ((suc 𝐴 ·o 𝑦) +o suc 𝐴))
3634, 35sylanb 584 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 ·o suc 𝑦) = ((suc 𝐴 ·o 𝑦) +o suc 𝐴))
37 nnmcl 8221 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o 𝑦) ∈ ω)
38 peano2b 7576 . . . . . . . . . . . 12 (𝑦 ∈ ω ↔ suc 𝑦 ∈ ω)
39 nnaass 8231 . . . . . . . . . . . 12 (((𝐴 ·o 𝑦) ∈ ω ∧ 𝐴 ∈ ω ∧ suc 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
4038, 39syl3an3b 1402 . . . . . . . . . . 11 (((𝐴 ·o 𝑦) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
4137, 40syl3an1 1160 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
42413expb 1117 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝐴 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
4342anidms 570 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
44 nnmsuc 8216 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
4544oveq1d 7150 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o suc 𝑦) +o suc 𝑦) = (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦))
46 nnaass 8231 . . . . . . . . . . . . . 14 (((𝐴 ·o 𝑦) ∈ ω ∧ 𝑦 ∈ ω ∧ suc 𝐴 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
4734, 46syl3an3b 1402 . . . . . . . . . . . . 13 (((𝐴 ·o 𝑦) ∈ ω ∧ 𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
4837, 47syl3an1 1160 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
49483expb 1117 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝑦 ∈ ω ∧ 𝐴 ∈ ω)) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
5049an42s 660 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝐴 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
5150anidms 570 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
52 nnacom 8226 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) = (𝑦 +o 𝐴))
53 suceq 6224 . . . . . . . . . . . 12 ((𝐴 +o 𝑦) = (𝑦 +o 𝐴) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
5452, 53syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
55 nnasuc 8215 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
56 nnasuc 8215 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝑦 +o suc 𝐴) = suc (𝑦 +o 𝐴))
5756ancoms 462 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +o suc 𝐴) = suc (𝑦 +o 𝐴))
5854, 55, 573eqtr4d 2843 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = (𝑦 +o suc 𝐴))
5958oveq2d 7151 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
6051, 59eqtr4d 2836 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
6143, 45, 603eqtr4d 2843 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o suc 𝑦) +o suc 𝑦) = (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴))
6236, 61eqeq12d 2814 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝐴 ·o suc 𝑦) = ((𝐴 ·o suc 𝑦) +o suc 𝑦) ↔ ((suc 𝐴 ·o 𝑦) +o suc 𝐴) = (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴)))
6333, 62syl5ibr 249 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝐴 ·o 𝑦) = ((𝐴 ·o 𝑦) +o 𝑦) → (suc 𝐴 ·o suc 𝑦) = ((𝐴 ·o suc 𝑦) +o suc 𝑦)))
6463expcom 417 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((suc 𝐴 ·o 𝑦) = ((𝐴 ·o 𝑦) +o 𝑦) → (suc 𝐴 ·o suc 𝑦) = ((𝐴 ·o suc 𝑦) +o suc 𝑦))))
6511, 16, 21, 32, 64finds2 7591 . . 3 (𝑥 ∈ ω → (𝐴 ∈ ω → (suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥)))
666, 65vtoclga 3522 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵)))
6766impcom 411 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  c0 4243  suc csuc 6161  (class class class)co 7135  ωcom 7560   +o coa 8082   ·o comu 8083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-oadd 8089  df-omul 8090
This theorem is referenced by:  nnmcom  8235
  Copyright terms: Public domain W3C validator