MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibndlem2 Structured version   Visualization version   GIF version

Theorem pntibndlem2 27509
Description: Lemma for pntibnd 27511. The main work, after eliminating all the quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypotheses
Ref Expression
pntibnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntibndlem1.1 (𝜑𝐴 ∈ ℝ+)
pntibndlem1.l 𝐿 = ((1 / 4) / (𝐴 + 3))
pntibndlem3.2 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntibndlem3.3 (𝜑𝐵 ∈ ℝ+)
pntibndlem3.k 𝐾 = (exp‘(𝐵 / (𝐸 / 2)))
pntibndlem3.c 𝐶 = ((2 · 𝐵) + (log‘2))
pntibndlem3.4 (𝜑𝐸 ∈ (0(,)1))
pntibndlem3.6 (𝜑𝑍 ∈ ℝ+)
pntibndlem2.10 (𝜑𝑁 ∈ ℕ)
pntibndlem2.5 (𝜑𝑇 ∈ ℝ+)
pntibndlem2.6 (𝜑 → ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](2 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑇 · (𝑥 / (log‘𝑥)))))
pntibndlem2.7 𝑋 = ((exp‘(𝑇 / (𝐸 / 4))) + 𝑍)
pntibndlem2.8 (𝜑𝑀 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
pntibndlem2.9 (𝜑𝑌 ∈ (𝑋(,)+∞))
pntibndlem2.11 (𝜑 → ((𝑌 < 𝑁𝑁 ≤ ((𝑀 / 2) · 𝑌)) ∧ (abs‘((𝑅𝑁) / 𝑁)) ≤ (𝐸 / 2)))
Assertion
Ref Expression
pntibndlem2 (𝜑 → ∃𝑧 ∈ ℝ+ ((𝑌 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Distinct variable groups:   𝑢,𝑎,𝑥,𝑦,𝑧,𝐸   𝑢,𝐿,𝑥,𝑧   𝑁,𝑎,𝑢,𝑥,𝑦,𝑧   𝑢,𝐴,𝑥   𝑢,𝐶,𝑥,𝑦   𝑢,𝑅,𝑥,𝑦,𝑧   𝑧,𝑀   𝑥,𝑇,𝑦   𝑧,𝑌   𝑢,𝑍,𝑥,𝑦   𝜑,𝑢
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑎)   𝐴(𝑦,𝑧,𝑎)   𝐵(𝑥,𝑦,𝑧,𝑢,𝑎)   𝐶(𝑧,𝑎)   𝑅(𝑎)   𝑇(𝑧,𝑢,𝑎)   𝐾(𝑥,𝑦,𝑧,𝑢,𝑎)   𝐿(𝑦,𝑎)   𝑀(𝑥,𝑦,𝑢,𝑎)   𝑋(𝑥,𝑦,𝑧,𝑢,𝑎)   𝑌(𝑥,𝑦,𝑢,𝑎)   𝑍(𝑧,𝑎)

Proof of Theorem pntibndlem2
StepHypRef Expression
1 pntibndlem2.10 . . 3 (𝜑𝑁 ∈ ℕ)
21nnrpd 13000 . 2 (𝜑𝑁 ∈ ℝ+)
3 pntibndlem2.11 . . . . 5 (𝜑 → ((𝑌 < 𝑁𝑁 ≤ ((𝑀 / 2) · 𝑌)) ∧ (abs‘((𝑅𝑁) / 𝑁)) ≤ (𝐸 / 2)))
43simpld 494 . . . 4 (𝜑 → (𝑌 < 𝑁𝑁 ≤ ((𝑀 / 2) · 𝑌)))
54simpld 494 . . 3 (𝜑𝑌 < 𝑁)
6 1red 11182 . . . . . 6 (𝜑 → 1 ∈ ℝ)
7 ioossre 13375 . . . . . . . 8 (0(,)1) ⊆ ℝ
8 pntibnd.r . . . . . . . . 9 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
9 pntibndlem1.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
10 pntibndlem1.l . . . . . . . . 9 𝐿 = ((1 / 4) / (𝐴 + 3))
118, 9, 10pntibndlem1 27507 . . . . . . . 8 (𝜑𝐿 ∈ (0(,)1))
127, 11sselid 3947 . . . . . . 7 (𝜑𝐿 ∈ ℝ)
13 pntibndlem3.4 . . . . . . . 8 (𝜑𝐸 ∈ (0(,)1))
147, 13sselid 3947 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
1512, 14remulcld 11211 . . . . . 6 (𝜑 → (𝐿 · 𝐸) ∈ ℝ)
166, 15readdcld 11210 . . . . 5 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ)
171nnred 12208 . . . . 5 (𝜑𝑁 ∈ ℝ)
1816, 17remulcld 11211 . . . 4 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ)
19 2re 12267 . . . . 5 2 ∈ ℝ
20 remulcl 11160 . . . . 5 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 · 𝑁) ∈ ℝ)
2119, 17, 20sylancr 587 . . . 4 (𝜑 → (2 · 𝑁) ∈ ℝ)
22 pntibndlem3.c . . . . . . . . . 10 𝐶 = ((2 · 𝐵) + (log‘2))
23 pntibndlem3.3 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ+)
2423rpred 13002 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
25 remulcl 11160 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) ∈ ℝ)
2619, 24, 25sylancr 587 . . . . . . . . . . 11 (𝜑 → (2 · 𝐵) ∈ ℝ)
27 2rp 12963 . . . . . . . . . . . . 13 2 ∈ ℝ+
2827a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℝ+)
2928relogcld 26539 . . . . . . . . . . 11 (𝜑 → (log‘2) ∈ ℝ)
3026, 29readdcld 11210 . . . . . . . . . 10 (𝜑 → ((2 · 𝐵) + (log‘2)) ∈ ℝ)
3122, 30eqeltrid 2833 . . . . . . . . 9 (𝜑𝐶 ∈ ℝ)
32 eliooord 13373 . . . . . . . . . . . 12 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
3313, 32syl 17 . . . . . . . . . . 11 (𝜑 → (0 < 𝐸𝐸 < 1))
3433simpld 494 . . . . . . . . . 10 (𝜑 → 0 < 𝐸)
3514, 34elrpd 12999 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
3631, 35rerpdivcld 13033 . . . . . . . 8 (𝜑 → (𝐶 / 𝐸) ∈ ℝ)
3736reefcld 16061 . . . . . . 7 (𝜑 → (exp‘(𝐶 / 𝐸)) ∈ ℝ)
38 pnfxr 11235 . . . . . . 7 +∞ ∈ ℝ*
39 icossre 13396 . . . . . . 7 (((exp‘(𝐶 / 𝐸)) ∈ ℝ ∧ +∞ ∈ ℝ*) → ((exp‘(𝐶 / 𝐸))[,)+∞) ⊆ ℝ)
4037, 38, 39sylancl 586 . . . . . 6 (𝜑 → ((exp‘(𝐶 / 𝐸))[,)+∞) ⊆ ℝ)
41 pntibndlem2.8 . . . . . 6 (𝜑𝑀 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
4240, 41sseldd 3950 . . . . 5 (𝜑𝑀 ∈ ℝ)
43 ioossre 13375 . . . . . 6 (𝑋(,)+∞) ⊆ ℝ
44 pntibndlem2.9 . . . . . 6 (𝜑𝑌 ∈ (𝑋(,)+∞))
4543, 44sselid 3947 . . . . 5 (𝜑𝑌 ∈ ℝ)
4642, 45remulcld 11211 . . . 4 (𝜑 → (𝑀 · 𝑌) ∈ ℝ)
4719a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
48 eliooord 13373 . . . . . . . . . . . . 13 (𝐿 ∈ (0(,)1) → (0 < 𝐿𝐿 < 1))
4911, 48syl 17 . . . . . . . . . . . 12 (𝜑 → (0 < 𝐿𝐿 < 1))
5049simpld 494 . . . . . . . . . . 11 (𝜑 → 0 < 𝐿)
5112, 50elrpd 12999 . . . . . . . . . 10 (𝜑𝐿 ∈ ℝ+)
5251rpge0d 13006 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐿)
5349simprd 495 . . . . . . . . 9 (𝜑𝐿 < 1)
5435rpge0d 13006 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐸)
5533simprd 495 . . . . . . . . 9 (𝜑𝐸 < 1)
5612, 6, 14, 6, 52, 53, 54, 55ltmul12ad 12131 . . . . . . . 8 (𝜑 → (𝐿 · 𝐸) < (1 · 1))
57 1t1e1 12350 . . . . . . . 8 (1 · 1) = 1
5856, 57breqtrdi 5151 . . . . . . 7 (𝜑 → (𝐿 · 𝐸) < 1)
5915, 6, 6, 58ltadd2dd 11340 . . . . . 6 (𝜑 → (1 + (𝐿 · 𝐸)) < (1 + 1))
60 df-2 12256 . . . . . 6 2 = (1 + 1)
6159, 60breqtrrdi 5152 . . . . 5 (𝜑 → (1 + (𝐿 · 𝐸)) < 2)
6216, 47, 2, 61ltmul1dd 13057 . . . 4 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑁) < (2 · 𝑁))
634simprd 495 . . . . . 6 (𝜑𝑁 ≤ ((𝑀 / 2) · 𝑌))
6442recnd 11209 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
6545recnd 11209 . . . . . . 7 (𝜑𝑌 ∈ ℂ)
66 rpcnne0 12977 . . . . . . . 8 (2 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0))
6727, 66mp1i 13 . . . . . . 7 (𝜑 → (2 ∈ ℂ ∧ 2 ≠ 0))
68 div23 11863 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑀 · 𝑌) / 2) = ((𝑀 / 2) · 𝑌))
6964, 65, 67, 68syl3anc 1373 . . . . . 6 (𝜑 → ((𝑀 · 𝑌) / 2) = ((𝑀 / 2) · 𝑌))
7063, 69breqtrrd 5138 . . . . 5 (𝜑𝑁 ≤ ((𝑀 · 𝑌) / 2))
7117, 46, 28lemuldiv2d 13052 . . . . 5 (𝜑 → ((2 · 𝑁) ≤ (𝑀 · 𝑌) ↔ 𝑁 ≤ ((𝑀 · 𝑌) / 2)))
7270, 71mpbird 257 . . . 4 (𝜑 → (2 · 𝑁) ≤ (𝑀 · 𝑌))
7318, 21, 46, 62, 72ltletrd 11341 . . 3 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑁) < (𝑀 · 𝑌))
74 pntibndlem3.2 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
75 pntibndlem3.k . . . . . . . . . . . 12 𝐾 = (exp‘(𝐵 / (𝐸 / 2)))
768, 9, 10, 74, 23, 75, 22, 13, 9, 1pntibndlem2a 27508 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))
7776simp1d 1142 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑢 ∈ ℝ)
782adantr 480 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑁 ∈ ℝ+)
7976simp2d 1143 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑁𝑢)
8077, 78, 79rpgecld 13041 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑢 ∈ ℝ+)
818pntrf 27481 . . . . . . . . . 10 𝑅:ℝ+⟶ℝ
8281ffvelcdmi 7058 . . . . . . . . 9 (𝑢 ∈ ℝ+ → (𝑅𝑢) ∈ ℝ)
8380, 82syl 17 . . . . . . . 8 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑅𝑢) ∈ ℝ)
8483, 80rerpdivcld 13033 . . . . . . 7 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑢) / 𝑢) ∈ ℝ)
8584recnd 11209 . . . . . 6 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑢) / 𝑢) ∈ ℂ)
8685abscld 15412 . . . . 5 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑢) / 𝑢)) ∈ ℝ)
8781ffvelcdmi 7058 . . . . . . . . . . . 12 (𝑁 ∈ ℝ+ → (𝑅𝑁) ∈ ℝ)
882, 87syl 17 . . . . . . . . . . 11 (𝜑 → (𝑅𝑁) ∈ ℝ)
8988, 1nndivred 12247 . . . . . . . . . 10 (𝜑 → ((𝑅𝑁) / 𝑁) ∈ ℝ)
9089adantr 480 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑁) / 𝑁) ∈ ℝ)
9190recnd 11209 . . . . . . . 8 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑁) / 𝑁) ∈ ℂ)
9285, 91subcld 11540 . . . . . . 7 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁)) ∈ ℂ)
9392abscld 15412 . . . . . 6 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) ∈ ℝ)
9491abscld 15412 . . . . . 6 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑁) / 𝑁)) ∈ ℝ)
9593, 94readdcld 11210 . . . . 5 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) + (abs‘((𝑅𝑁) / 𝑁))) ∈ ℝ)
9614adantr 480 . . . . 5 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝐸 ∈ ℝ)
9785, 91abs2difd 15433 . . . . . 6 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) / 𝑢)) − (abs‘((𝑅𝑁) / 𝑁))) ≤ (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))))
9886, 94, 93lesubaddd 11782 . . . . . 6 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((abs‘((𝑅𝑢) / 𝑢)) − (abs‘((𝑅𝑁) / 𝑁))) ≤ (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) ↔ (abs‘((𝑅𝑢) / 𝑢)) ≤ ((abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) + (abs‘((𝑅𝑁) / 𝑁)))))
9997, 98mpbid 232 . . . . 5 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑢) / 𝑢)) ≤ ((abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) + (abs‘((𝑅𝑁) / 𝑁))))
10096rehalfcld 12436 . . . . . . 7 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐸 / 2) ∈ ℝ)
10117adantr 480 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑁 ∈ ℝ)
10277, 101resubcld 11613 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢𝑁) ∈ ℝ)
103102, 78rerpdivcld 13033 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢𝑁) / 𝑁) ∈ ℝ)
104 3re 12273 . . . . . . . . . . . 12 3 ∈ ℝ
105104a1i 11 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 3 ∈ ℝ)
10686, 105readdcld 11210 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) / 𝑢)) + 3) ∈ ℝ)
107103, 106remulcld 11211 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) ∈ ℝ)
108 pntibndlem2.5 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℝ+)
109108rpred 13002 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℝ)
110109adantr 480 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑇 ∈ ℝ)
111 1red 11182 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 1 ∈ ℝ)
112 4nn 12276 . . . . . . . . . . . . . . . . . 18 4 ∈ ℕ
113 nnrp 12970 . . . . . . . . . . . . . . . . . 18 (4 ∈ ℕ → 4 ∈ ℝ+)
114112, 113mp1i 13 . . . . . . . . . . . . . . . . 17 (𝜑 → 4 ∈ ℝ+)
11535, 114rpdivcld 13019 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸 / 4) ∈ ℝ+)
116108, 115rpdivcld 13019 . . . . . . . . . . . . . . 15 (𝜑 → (𝑇 / (𝐸 / 4)) ∈ ℝ+)
117116rpred 13002 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 / (𝐸 / 4)) ∈ ℝ)
118117reefcld 16061 . . . . . . . . . . . . 13 (𝜑 → (exp‘(𝑇 / (𝐸 / 4))) ∈ ℝ)
119118adantr 480 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (exp‘(𝑇 / (𝐸 / 4))) ∈ ℝ)
120 efgt1 16091 . . . . . . . . . . . . . 14 ((𝑇 / (𝐸 / 4)) ∈ ℝ+ → 1 < (exp‘(𝑇 / (𝐸 / 4))))
121116, 120syl 17 . . . . . . . . . . . . 13 (𝜑 → 1 < (exp‘(𝑇 / (𝐸 / 4))))
122121adantr 480 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 1 < (exp‘(𝑇 / (𝐸 / 4))))
123 pntibndlem2.7 . . . . . . . . . . . . . . . 16 𝑋 = ((exp‘(𝑇 / (𝐸 / 4))) + 𝑍)
124 pntibndlem3.6 . . . . . . . . . . . . . . . . . 18 (𝜑𝑍 ∈ ℝ+)
125124rpred 13002 . . . . . . . . . . . . . . . . 17 (𝜑𝑍 ∈ ℝ)
126118, 125readdcld 11210 . . . . . . . . . . . . . . . 16 (𝜑 → ((exp‘(𝑇 / (𝐸 / 4))) + 𝑍) ∈ ℝ)
127123, 126eqeltrid 2833 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℝ)
128118, 124ltaddrpd 13035 . . . . . . . . . . . . . . . 16 (𝜑 → (exp‘(𝑇 / (𝐸 / 4))) < ((exp‘(𝑇 / (𝐸 / 4))) + 𝑍))
129128, 123breqtrrdi 5152 . . . . . . . . . . . . . . 15 (𝜑 → (exp‘(𝑇 / (𝐸 / 4))) < 𝑋)
130 eliooord 13373 . . . . . . . . . . . . . . . . 17 (𝑌 ∈ (𝑋(,)+∞) → (𝑋 < 𝑌𝑌 < +∞))
13144, 130syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 < 𝑌𝑌 < +∞))
132131simpld 494 . . . . . . . . . . . . . . 15 (𝜑𝑋 < 𝑌)
133118, 127, 45, 129, 132lttrd 11342 . . . . . . . . . . . . . 14 (𝜑 → (exp‘(𝑇 / (𝐸 / 4))) < 𝑌)
134118, 45, 17, 133, 5lttrd 11342 . . . . . . . . . . . . 13 (𝜑 → (exp‘(𝑇 / (𝐸 / 4))) < 𝑁)
135134adantr 480 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (exp‘(𝑇 / (𝐸 / 4))) < 𝑁)
136111, 119, 101, 122, 135lttrd 11342 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 1 < 𝑁)
137101, 136rplogcld 26545 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (log‘𝑁) ∈ ℝ+)
138110, 137rerpdivcld 13033 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (log‘𝑁)) ∈ ℝ)
139107, 138readdcld 11210 . . . . . . . 8 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) + (𝑇 / (log‘𝑁))) ∈ ℝ)
140 peano2re 11354 . . . . . . . . . . . 12 ((abs‘((𝑅𝑢) / 𝑢)) ∈ ℝ → ((abs‘((𝑅𝑢) / 𝑢)) + 1) ∈ ℝ)
14186, 140syl 17 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) / 𝑢)) + 1) ∈ ℝ)
142103, 141remulcld 11211 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) ∈ ℝ)
143 chpcl 27041 . . . . . . . . . . . . 13 (𝑢 ∈ ℝ → (ψ‘𝑢) ∈ ℝ)
14477, 143syl 17 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (ψ‘𝑢) ∈ ℝ)
145 chpcl 27041 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (ψ‘𝑁) ∈ ℝ)
146101, 145syl 17 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (ψ‘𝑁) ∈ ℝ)
147144, 146resubcld 11613 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((ψ‘𝑢) − (ψ‘𝑁)) ∈ ℝ)
148147, 78rerpdivcld 13033 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁) ∈ ℝ)
149142, 148readdcld 11210 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)) ∈ ℝ)
150103, 86remulcld 11211 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) ∈ ℝ)
15188adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑅𝑁) ∈ ℝ)
15283, 151resubcld 11613 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑢) − (𝑅𝑁)) ∈ ℝ)
153152recnd 11209 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑢) − (𝑅𝑁)) ∈ ℂ)
154153abscld 15412 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑢) − (𝑅𝑁))) ∈ ℝ)
155154, 78rerpdivcld 13033 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁) ∈ ℝ)
156150, 155readdcld 11210 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁)) ∈ ℝ)
157103, 84remulcld 11211 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) ∈ ℝ)
158157renegcld 11612 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → -(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) ∈ ℝ)
159158recnd 11209 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → -(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) ∈ ℂ)
160152, 78rerpdivcld 13033 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑅𝑢) − (𝑅𝑁)) / 𝑁) ∈ ℝ)
161160recnd 11209 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑅𝑢) − (𝑅𝑁)) / 𝑁) ∈ ℂ)
162159, 161abstrid 15432 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) + (((𝑅𝑢) − (𝑅𝑁)) / 𝑁))) ≤ ((abs‘-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢))) + (abs‘(((𝑅𝑢) − (𝑅𝑁)) / 𝑁))))
16377recnd 11209 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑢 ∈ ℂ)
164101recnd 11209 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑁 ∈ ℂ)
16578rpne0d 13007 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑁 ≠ 0)
166163, 164, 164, 165divsubdird 12004 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢𝑁) / 𝑁) = ((𝑢 / 𝑁) − (𝑁 / 𝑁)))
167164, 165dividd 11963 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑁 / 𝑁) = 1)
168167oveq2d 7406 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢 / 𝑁) − (𝑁 / 𝑁)) = ((𝑢 / 𝑁) − 1))
169166, 168eqtrd 2765 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢𝑁) / 𝑁) = ((𝑢 / 𝑁) − 1))
170169oveq1d 7405 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) = (((𝑢 / 𝑁) − 1) · ((𝑅𝑢) / 𝑢)))
17177, 78rerpdivcld 13033 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 / 𝑁) ∈ ℝ)
172171recnd 11209 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 / 𝑁) ∈ ℂ)
173 1cnd 11176 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 1 ∈ ℂ)
174172, 173, 85subdird 11642 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢 / 𝑁) − 1) · ((𝑅𝑢) / 𝑢)) = (((𝑢 / 𝑁) · ((𝑅𝑢) / 𝑢)) − (1 · ((𝑅𝑢) / 𝑢))))
17580rpcnne0d 13011 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℂ ∧ 𝑢 ≠ 0))
17678rpcnne0d 13011 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
17783recnd 11209 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑅𝑢) ∈ ℂ)
178 dmdcan 11899 . . . . . . . . . . . . . . . . . . 19 (((𝑢 ∈ ℂ ∧ 𝑢 ≠ 0) ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) ∧ (𝑅𝑢) ∈ ℂ) → ((𝑢 / 𝑁) · ((𝑅𝑢) / 𝑢)) = ((𝑅𝑢) / 𝑁))
179175, 176, 177, 178syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢 / 𝑁) · ((𝑅𝑢) / 𝑢)) = ((𝑅𝑢) / 𝑁))
18085mullidd 11199 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (1 · ((𝑅𝑢) / 𝑢)) = ((𝑅𝑢) / 𝑢))
181179, 180oveq12d 7408 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢 / 𝑁) · ((𝑅𝑢) / 𝑢)) − (1 · ((𝑅𝑢) / 𝑢))) = (((𝑅𝑢) / 𝑁) − ((𝑅𝑢) / 𝑢)))
182170, 174, 1813eqtrd 2769 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) = (((𝑅𝑢) / 𝑁) − ((𝑅𝑢) / 𝑢)))
183182negeqd 11422 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → -(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) = -(((𝑅𝑢) / 𝑁) − ((𝑅𝑢) / 𝑢)))
18483, 78rerpdivcld 13033 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑢) / 𝑁) ∈ ℝ)
185184recnd 11209 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑢) / 𝑁) ∈ ℂ)
186185, 85negsubdi2d 11556 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → -(((𝑅𝑢) / 𝑁) − ((𝑅𝑢) / 𝑢)) = (((𝑅𝑢) / 𝑢) − ((𝑅𝑢) / 𝑁)))
187183, 186eqtrd 2765 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → -(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) = (((𝑅𝑢) / 𝑢) − ((𝑅𝑢) / 𝑁)))
188151recnd 11209 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑅𝑁) ∈ ℂ)
189177, 188, 164, 165divsubdird 12004 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑅𝑢) − (𝑅𝑁)) / 𝑁) = (((𝑅𝑢) / 𝑁) − ((𝑅𝑁) / 𝑁)))
190187, 189oveq12d 7408 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) + (((𝑅𝑢) − (𝑅𝑁)) / 𝑁)) = ((((𝑅𝑢) / 𝑢) − ((𝑅𝑢) / 𝑁)) + (((𝑅𝑢) / 𝑁) − ((𝑅𝑁) / 𝑁))))
19185, 185, 91npncand 11564 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑅𝑢) / 𝑢) − ((𝑅𝑢) / 𝑁)) + (((𝑅𝑢) / 𝑁) − ((𝑅𝑁) / 𝑁))) = (((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁)))
192190, 191eqtrd 2765 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) + (((𝑅𝑢) − (𝑅𝑁)) / 𝑁)) = (((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁)))
193192fveq2d 6865 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) + (((𝑅𝑢) − (𝑅𝑁)) / 𝑁))) = (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))))
194157recnd 11209 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) ∈ ℂ)
195194absnegd 15425 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢))) = (abs‘(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢))))
196103recnd 11209 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢𝑁) / 𝑁) ∈ ℂ)
197196, 85absmuld 15430 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢))) = ((abs‘((𝑢𝑁) / 𝑁)) · (abs‘((𝑅𝑢) / 𝑢))))
19877, 101subge0d 11775 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (0 ≤ (𝑢𝑁) ↔ 𝑁𝑢))
19979, 198mpbird 257 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 0 ≤ (𝑢𝑁))
200102, 78, 199divge0d 13042 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 0 ≤ ((𝑢𝑁) / 𝑁))
201103, 200absidd 15396 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑢𝑁) / 𝑁)) = ((𝑢𝑁) / 𝑁))
202201oveq1d 7405 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑢𝑁) / 𝑁)) · (abs‘((𝑅𝑢) / 𝑢))) = (((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))))
203195, 197, 2023eqtrd 2769 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢))) = (((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))))
204153, 164, 165absdivd 15431 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑅𝑢) − (𝑅𝑁)) / 𝑁)) = ((abs‘((𝑅𝑢) − (𝑅𝑁))) / (abs‘𝑁)))
20578rprege0d 13009 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁))
206 absid 15269 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) → (abs‘𝑁) = 𝑁)
207205, 206syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘𝑁) = 𝑁)
208207oveq2d 7406 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) − (𝑅𝑁))) / (abs‘𝑁)) = ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁))
209204, 208eqtrd 2765 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑅𝑢) − (𝑅𝑁)) / 𝑁)) = ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁))
210203, 209oveq12d 7408 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢))) + (abs‘(((𝑅𝑢) − (𝑅𝑁)) / 𝑁))) = ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁)))
211162, 193, 2103brtr3d 5141 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) ≤ ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁)))
212102, 147readdcld 11210 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))) ∈ ℝ)
213212, 78rerpdivcld 13033 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))) / 𝑁) ∈ ℝ)
214147recnd 11209 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((ψ‘𝑢) − (ψ‘𝑁)) ∈ ℂ)
215164, 163subcld 11540 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑁𝑢) ∈ ℂ)
216214, 215abstrid 15432 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((ψ‘𝑢) − (ψ‘𝑁)) + (𝑁𝑢))) ≤ ((abs‘((ψ‘𝑢) − (ψ‘𝑁))) + (abs‘(𝑁𝑢))))
2178pntrval 27480 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ℝ+ → (𝑅𝑢) = ((ψ‘𝑢) − 𝑢))
21880, 217syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑅𝑢) = ((ψ‘𝑢) − 𝑢))
2198pntrval 27480 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℝ+ → (𝑅𝑁) = ((ψ‘𝑁) − 𝑁))
22078, 219syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑅𝑁) = ((ψ‘𝑁) − 𝑁))
221218, 220oveq12d 7408 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑢) − (𝑅𝑁)) = (((ψ‘𝑢) − 𝑢) − ((ψ‘𝑁) − 𝑁)))
222144recnd 11209 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (ψ‘𝑢) ∈ ℂ)
223146recnd 11209 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (ψ‘𝑁) ∈ ℂ)
224 subadd4 11473 . . . . . . . . . . . . . . . . . 18 ((((ψ‘𝑢) ∈ ℂ ∧ (ψ‘𝑁) ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → (((ψ‘𝑢) − (ψ‘𝑁)) − (𝑢𝑁)) = (((ψ‘𝑢) + 𝑁) − ((ψ‘𝑁) + 𝑢)))
225 sub4 11474 . . . . . . . . . . . . . . . . . 18 ((((ψ‘𝑢) ∈ ℂ ∧ (ψ‘𝑁) ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → (((ψ‘𝑢) − (ψ‘𝑁)) − (𝑢𝑁)) = (((ψ‘𝑢) − 𝑢) − ((ψ‘𝑁) − 𝑁)))
226 addsub4 11472 . . . . . . . . . . . . . . . . . . 19 ((((ψ‘𝑢) ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ ((ψ‘𝑁) ∈ ℂ ∧ 𝑢 ∈ ℂ)) → (((ψ‘𝑢) + 𝑁) − ((ψ‘𝑁) + 𝑢)) = (((ψ‘𝑢) − (ψ‘𝑁)) + (𝑁𝑢)))
227226an42s 661 . . . . . . . . . . . . . . . . . 18 ((((ψ‘𝑢) ∈ ℂ ∧ (ψ‘𝑁) ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → (((ψ‘𝑢) + 𝑁) − ((ψ‘𝑁) + 𝑢)) = (((ψ‘𝑢) − (ψ‘𝑁)) + (𝑁𝑢)))
228224, 225, 2273eqtr3d 2773 . . . . . . . . . . . . . . . . 17 ((((ψ‘𝑢) ∈ ℂ ∧ (ψ‘𝑁) ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → (((ψ‘𝑢) − 𝑢) − ((ψ‘𝑁) − 𝑁)) = (((ψ‘𝑢) − (ψ‘𝑁)) + (𝑁𝑢)))
229222, 223, 163, 164, 228syl22anc 838 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((ψ‘𝑢) − 𝑢) − ((ψ‘𝑁) − 𝑁)) = (((ψ‘𝑢) − (ψ‘𝑁)) + (𝑁𝑢)))
230221, 229eqtr2d 2766 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((ψ‘𝑢) − (ψ‘𝑁)) + (𝑁𝑢)) = ((𝑅𝑢) − (𝑅𝑁)))
231230fveq2d 6865 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((ψ‘𝑢) − (ψ‘𝑁)) + (𝑁𝑢))) = (abs‘((𝑅𝑢) − (𝑅𝑁))))
232102recnd 11209 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢𝑁) ∈ ℂ)
233 chpwordi 27074 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ 𝑁𝑢) → (ψ‘𝑁) ≤ (ψ‘𝑢))
234101, 77, 79, 233syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (ψ‘𝑁) ≤ (ψ‘𝑢))
235146, 144, 234abssubge0d 15407 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((ψ‘𝑢) − (ψ‘𝑁))) = ((ψ‘𝑢) − (ψ‘𝑁)))
236101, 77, 79abssuble0d 15408 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(𝑁𝑢)) = (𝑢𝑁))
237235, 236oveq12d 7408 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((ψ‘𝑢) − (ψ‘𝑁))) + (abs‘(𝑁𝑢))) = (((ψ‘𝑢) − (ψ‘𝑁)) + (𝑢𝑁)))
238214, 232, 237comraddd 11395 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((ψ‘𝑢) − (ψ‘𝑁))) + (abs‘(𝑁𝑢))) = ((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))))
239216, 231, 2383brtr3d 5141 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑢) − (𝑅𝑁))) ≤ ((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))))
240154, 212, 78, 239lediv1dd 13060 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁) ≤ (((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))) / 𝑁))
241155, 213, 150, 240leadd2dd 11800 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁)) ≤ ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + (((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))) / 𝑁)))
242150recnd 11209 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) ∈ ℂ)
243148recnd 11209 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁) ∈ ℂ)
244242, 196, 243addassd 11203 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((𝑢𝑁) / 𝑁)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)) = ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + (((𝑢𝑁) / 𝑁) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁))))
24586recnd 11209 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑢) / 𝑢)) ∈ ℂ)
246196, 245, 173adddid 11205 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) = ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + (((𝑢𝑁) / 𝑁) · 1)))
247196mulridd 11198 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · 1) = ((𝑢𝑁) / 𝑁))
248247oveq2d 7406 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + (((𝑢𝑁) / 𝑁) · 1)) = ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((𝑢𝑁) / 𝑁)))
249246, 248eqtrd 2765 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) = ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((𝑢𝑁) / 𝑁)))
250249oveq1d 7405 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)) = (((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((𝑢𝑁) / 𝑁)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)))
251232, 214, 164, 165divdird 12003 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))) / 𝑁) = (((𝑢𝑁) / 𝑁) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)))
252251oveq2d 7406 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + (((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))) / 𝑁)) = ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + (((𝑢𝑁) / 𝑁) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁))))
253244, 250, 2523eqtr4d 2775 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)) = ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + (((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))) / 𝑁)))
254241, 253breqtrrd 5138 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁)) ≤ ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)))
25593, 156, 149, 211, 254letrd 11338 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) ≤ ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)))
256 remulcl 11160 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ ((𝑢𝑁) / 𝑁) ∈ ℝ) → (2 · ((𝑢𝑁) / 𝑁)) ∈ ℝ)
25719, 103, 256sylancr 587 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (2 · ((𝑢𝑁) / 𝑁)) ∈ ℝ)
258257, 138readdcld 11210 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((2 · ((𝑢𝑁) / 𝑁)) + (𝑇 / (log‘𝑁))) ∈ ℝ)
259 remulcl 11160 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ ∧ (𝑢𝑁) ∈ ℝ) → (2 · (𝑢𝑁)) ∈ ℝ)
26019, 102, 259sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (2 · (𝑢𝑁)) ∈ ℝ)
261101, 137rerpdivcld 13033 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑁 / (log‘𝑁)) ∈ ℝ)
262110, 261remulcld 11211 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 · (𝑁 / (log‘𝑁))) ∈ ℝ)
263260, 262readdcld 11210 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))) ∈ ℝ)
264 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (ψ‘𝑦) = (ψ‘𝑢))
265264oveq1d 7405 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → ((ψ‘𝑦) − (ψ‘𝑁)) = ((ψ‘𝑢) − (ψ‘𝑁)))
266 oveq1 7397 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑢 → (𝑦𝑁) = (𝑢𝑁))
267266oveq2d 7406 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (2 · (𝑦𝑁)) = (2 · (𝑢𝑁)))
268267oveq1d 7405 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → ((2 · (𝑦𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))) = ((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))))
269265, 268breq12d 5123 . . . . . . . . . . . . . 14 (𝑦 = 𝑢 → (((ψ‘𝑦) − (ψ‘𝑁)) ≤ ((2 · (𝑦𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))) ↔ ((ψ‘𝑢) − (ψ‘𝑁)) ≤ ((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁))))))
270 id 22 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑁𝑥 = 𝑁)
271 oveq2 7398 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑁 → (2 · 𝑥) = (2 · 𝑁))
272270, 271oveq12d 7408 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑁 → (𝑥[,](2 · 𝑥)) = (𝑁[,](2 · 𝑁)))
273 fveq2 6861 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑁 → (ψ‘𝑥) = (ψ‘𝑁))
274273oveq2d 7406 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑁 → ((ψ‘𝑦) − (ψ‘𝑥)) = ((ψ‘𝑦) − (ψ‘𝑁)))
275 oveq2 7398 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑁 → (𝑦𝑥) = (𝑦𝑁))
276275oveq2d 7406 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑁 → (2 · (𝑦𝑥)) = (2 · (𝑦𝑁)))
277 fveq2 6861 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑁 → (log‘𝑥) = (log‘𝑁))
278270, 277oveq12d 7408 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑁 → (𝑥 / (log‘𝑥)) = (𝑁 / (log‘𝑁)))
279278oveq2d 7406 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑁 → (𝑇 · (𝑥 / (log‘𝑥))) = (𝑇 · (𝑁 / (log‘𝑁))))
280276, 279oveq12d 7408 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑁 → ((2 · (𝑦𝑥)) + (𝑇 · (𝑥 / (log‘𝑥)))) = ((2 · (𝑦𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))))
281274, 280breq12d 5123 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑁 → (((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑇 · (𝑥 / (log‘𝑥)))) ↔ ((ψ‘𝑦) − (ψ‘𝑁)) ≤ ((2 · (𝑦𝑁)) + (𝑇 · (𝑁 / (log‘𝑁))))))
282272, 281raleqbidv 3321 . . . . . . . . . . . . . . 15 (𝑥 = 𝑁 → (∀𝑦 ∈ (𝑥[,](2 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑇 · (𝑥 / (log‘𝑥)))) ↔ ∀𝑦 ∈ (𝑁[,](2 · 𝑁))((ψ‘𝑦) − (ψ‘𝑁)) ≤ ((2 · (𝑦𝑁)) + (𝑇 · (𝑁 / (log‘𝑁))))))
283 pntibndlem2.6 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](2 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑇 · (𝑥 / (log‘𝑥)))))
284283adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](2 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑇 · (𝑥 / (log‘𝑥)))))
285 1xr 11240 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ*
286 elioopnf 13411 . . . . . . . . . . . . . . . . 17 (1 ∈ ℝ* → (𝑁 ∈ (1(,)+∞) ↔ (𝑁 ∈ ℝ ∧ 1 < 𝑁)))
287285, 286ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (1(,)+∞) ↔ (𝑁 ∈ ℝ ∧ 1 < 𝑁))
288101, 136, 287sylanbrc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑁 ∈ (1(,)+∞))
289282, 284, 288rspcdva 3592 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ∀𝑦 ∈ (𝑁[,](2 · 𝑁))((ψ‘𝑦) − (ψ‘𝑁)) ≤ ((2 · (𝑦𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))))
29018adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ)
29121adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (2 · 𝑁) ∈ ℝ)
29276simp3d 1144 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))
293 ltle 11269 . . . . . . . . . . . . . . . . . . . 20 (((1 + (𝐿 · 𝐸)) ∈ ℝ ∧ 2 ∈ ℝ) → ((1 + (𝐿 · 𝐸)) < 2 → (1 + (𝐿 · 𝐸)) ≤ 2))
29416, 19, 293sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) < 2 → (1 + (𝐿 · 𝐸)) ≤ 2))
29561, 294mpd 15 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 + (𝐿 · 𝐸)) ≤ 2)
296295adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (1 + (𝐿 · 𝐸)) ≤ 2)
29716adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (1 + (𝐿 · 𝐸)) ∈ ℝ)
29819a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 2 ∈ ℝ)
299297, 298, 78lemul1d 13045 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((1 + (𝐿 · 𝐸)) ≤ 2 ↔ ((1 + (𝐿 · 𝐸)) · 𝑁) ≤ (2 · 𝑁)))
300296, 299mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((1 + (𝐿 · 𝐸)) · 𝑁) ≤ (2 · 𝑁))
30177, 290, 291, 292, 300letrd 11338 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑢 ≤ (2 · 𝑁))
302 elicc2 13379 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ) → (𝑢 ∈ (𝑁[,](2 · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ (2 · 𝑁))))
303101, 291, 302syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ (𝑁[,](2 · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ (2 · 𝑁))))
30477, 79, 301, 303mpbir3and 1343 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑢 ∈ (𝑁[,](2 · 𝑁)))
305269, 289, 304rspcdva 3592 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((ψ‘𝑢) − (ψ‘𝑁)) ≤ ((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))))
306147, 263, 78, 305lediv1dd 13060 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁) ≤ (((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))) / 𝑁))
307260recnd 11209 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (2 · (𝑢𝑁)) ∈ ℂ)
308108adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑇 ∈ ℝ+)
309308rpred 13002 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑇 ∈ ℝ)
310309, 261remulcld 11211 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 · (𝑁 / (log‘𝑁))) ∈ ℝ)
311310recnd 11209 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 · (𝑁 / (log‘𝑁))) ∈ ℂ)
312 divdir 11869 . . . . . . . . . . . . . 14 (((2 · (𝑢𝑁)) ∈ ℂ ∧ (𝑇 · (𝑁 / (log‘𝑁))) ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))) / 𝑁) = (((2 · (𝑢𝑁)) / 𝑁) + ((𝑇 · (𝑁 / (log‘𝑁))) / 𝑁)))
313307, 311, 176, 312syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))) / 𝑁) = (((2 · (𝑢𝑁)) / 𝑁) + ((𝑇 · (𝑁 / (log‘𝑁))) / 𝑁)))
314 2cnd 12271 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 2 ∈ ℂ)
315314, 232, 164, 165divassd 12000 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((2 · (𝑢𝑁)) / 𝑁) = (2 · ((𝑢𝑁) / 𝑁)))
316110recnd 11209 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑇 ∈ ℂ)
317137rpcnne0d 13011 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((log‘𝑁) ∈ ℂ ∧ (log‘𝑁) ≠ 0))
318 div12 11866 . . . . . . . . . . . . . . . . 17 ((𝑇 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ ((log‘𝑁) ∈ ℂ ∧ (log‘𝑁) ≠ 0)) → (𝑇 · (𝑁 / (log‘𝑁))) = (𝑁 · (𝑇 / (log‘𝑁))))
319316, 164, 317, 318syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 · (𝑁 / (log‘𝑁))) = (𝑁 · (𝑇 / (log‘𝑁))))
320319oveq1d 7405 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑇 · (𝑁 / (log‘𝑁))) / 𝑁) = ((𝑁 · (𝑇 / (log‘𝑁))) / 𝑁))
321308, 137rpdivcld 13019 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (log‘𝑁)) ∈ ℝ+)
322321rpcnd 13004 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (log‘𝑁)) ∈ ℂ)
323322, 164, 165divcan3d 11970 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑁 · (𝑇 / (log‘𝑁))) / 𝑁) = (𝑇 / (log‘𝑁)))
324320, 323eqtrd 2765 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑇 · (𝑁 / (log‘𝑁))) / 𝑁) = (𝑇 / (log‘𝑁)))
325315, 324oveq12d 7408 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((2 · (𝑢𝑁)) / 𝑁) + ((𝑇 · (𝑁 / (log‘𝑁))) / 𝑁)) = ((2 · ((𝑢𝑁) / 𝑁)) + (𝑇 / (log‘𝑁))))
326313, 325eqtrd 2765 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))) / 𝑁) = ((2 · ((𝑢𝑁) / 𝑁)) + (𝑇 / (log‘𝑁))))
327306, 326breqtrd 5136 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁) ≤ ((2 · ((𝑢𝑁) / 𝑁)) + (𝑇 / (log‘𝑁))))
328148, 258, 142, 327leadd2dd 11800 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)) ≤ ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + ((2 · ((𝑢𝑁) / 𝑁)) + (𝑇 / (log‘𝑁)))))
329142recnd 11209 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) ∈ ℂ)
330257recnd 11209 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (2 · ((𝑢𝑁) / 𝑁)) ∈ ℂ)
331138recnd 11209 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (log‘𝑁)) ∈ ℂ)
332329, 330, 331addassd 11203 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (2 · ((𝑢𝑁) / 𝑁))) + (𝑇 / (log‘𝑁))) = ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + ((2 · ((𝑢𝑁) / 𝑁)) + (𝑇 / (log‘𝑁)))))
333 2cn 12268 . . . . . . . . . . . . . . 15 2 ∈ ℂ
334 mulcom 11161 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ ((𝑢𝑁) / 𝑁) ∈ ℂ) → (2 · ((𝑢𝑁) / 𝑁)) = (((𝑢𝑁) / 𝑁) · 2))
335333, 196, 334sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (2 · ((𝑢𝑁) / 𝑁)) = (((𝑢𝑁) / 𝑁) · 2))
336335oveq2d 7406 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (2 · ((𝑢𝑁) / 𝑁))) = ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((𝑢𝑁) / 𝑁) · 2)))
337141recnd 11209 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) / 𝑢)) + 1) ∈ ℂ)
338196, 337, 314adddid 11205 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · (((abs‘((𝑅𝑢) / 𝑢)) + 1) + 2)) = ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((𝑢𝑁) / 𝑁) · 2)))
339245, 173, 314addassd 11203 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((abs‘((𝑅𝑢) / 𝑢)) + 1) + 2) = ((abs‘((𝑅𝑢) / 𝑢)) + (1 + 2)))
340 1p2e3 12331 . . . . . . . . . . . . . . . 16 (1 + 2) = 3
341340oveq2i 7401 . . . . . . . . . . . . . . 15 ((abs‘((𝑅𝑢) / 𝑢)) + (1 + 2)) = ((abs‘((𝑅𝑢) / 𝑢)) + 3)
342339, 341eqtrdi 2781 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((abs‘((𝑅𝑢) / 𝑢)) + 1) + 2) = ((abs‘((𝑅𝑢) / 𝑢)) + 3))
343342oveq2d 7406 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · (((abs‘((𝑅𝑢) / 𝑢)) + 1) + 2)) = (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)))
344336, 338, 3433eqtr2d 2771 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (2 · ((𝑢𝑁) / 𝑁))) = (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)))
345344oveq1d 7405 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (2 · ((𝑢𝑁) / 𝑁))) + (𝑇 / (log‘𝑁))) = ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) + (𝑇 / (log‘𝑁))))
346332, 345eqtr3d 2767 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + ((2 · ((𝑢𝑁) / 𝑁)) + (𝑇 / (log‘𝑁)))) = ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) + (𝑇 / (log‘𝑁))))
347328, 346breqtrd 5136 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)) ≤ ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) + (𝑇 / (log‘𝑁))))
34893, 149, 139, 255, 347letrd 11338 . . . . . . . 8 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) ≤ ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) + (𝑇 / (log‘𝑁))))
349100rehalfcld 12436 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐸 / 2) / 2) ∈ ℝ)
35077, 297, 78ledivmul2d 13056 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢 / 𝑁) ≤ (1 + (𝐿 · 𝐸)) ↔ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))
351292, 350mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 / 𝑁) ≤ (1 + (𝐿 · 𝐸)))
352 ax-1cn 11133 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
35315adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐿 · 𝐸) ∈ ℝ)
354353recnd 11209 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐿 · 𝐸) ∈ ℂ)
355 addcom 11367 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (𝐿 · 𝐸) ∈ ℂ) → (1 + (𝐿 · 𝐸)) = ((𝐿 · 𝐸) + 1))
356352, 354, 355sylancr 587 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (1 + (𝐿 · 𝐸)) = ((𝐿 · 𝐸) + 1))
357351, 356breqtrd 5136 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 / 𝑁) ≤ ((𝐿 · 𝐸) + 1))
358171, 111, 353lesubaddd 11782 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢 / 𝑁) − 1) ≤ (𝐿 · 𝐸) ↔ (𝑢 / 𝑁) ≤ ((𝐿 · 𝐸) + 1)))
359357, 358mpbird 257 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢 / 𝑁) − 1) ≤ (𝐿 · 𝐸))
360169, 359eqbrtrd 5132 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢𝑁) / 𝑁) ≤ (𝐿 · 𝐸))
3619adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝐴 ∈ ℝ+)
362361rpred 13002 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝐴 ∈ ℝ)
363 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑢 → (𝑅𝑥) = (𝑅𝑢))
364 id 22 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑢𝑥 = 𝑢)
365363, 364oveq12d 7408 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → ((𝑅𝑥) / 𝑥) = ((𝑅𝑢) / 𝑢))
366365fveq2d 6865 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → (abs‘((𝑅𝑥) / 𝑥)) = (abs‘((𝑅𝑢) / 𝑢)))
367366breq1d 5120 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → ((abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴 ↔ (abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐴))
36874adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
369367, 368, 80rspcdva 3592 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐴)
37086, 362, 105, 369leadd1dd 11799 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) / 𝑢)) + 3) ≤ (𝐴 + 3))
371103, 200jca 511 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) ∈ ℝ ∧ 0 ≤ ((𝑢𝑁) / 𝑁)))
372 3rp 12964 . . . . . . . . . . . . . . 15 3 ∈ ℝ+
373 rpaddcl 12982 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝐴 + 3) ∈ ℝ+)
374361, 372, 373sylancl 586 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐴 + 3) ∈ ℝ+)
375374rprege0d 13009 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐴 + 3) ∈ ℝ ∧ 0 ≤ (𝐴 + 3)))
376 lemul12b 12046 . . . . . . . . . . . . 13 ((((((𝑢𝑁) / 𝑁) ∈ ℝ ∧ 0 ≤ ((𝑢𝑁) / 𝑁)) ∧ (𝐿 · 𝐸) ∈ ℝ) ∧ (((abs‘((𝑅𝑢) / 𝑢)) + 3) ∈ ℝ ∧ ((𝐴 + 3) ∈ ℝ ∧ 0 ≤ (𝐴 + 3)))) → ((((𝑢𝑁) / 𝑁) ≤ (𝐿 · 𝐸) ∧ ((abs‘((𝑅𝑢) / 𝑢)) + 3) ≤ (𝐴 + 3)) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) ≤ ((𝐿 · 𝐸) · (𝐴 + 3))))
377371, 353, 106, 375, 376syl22anc 838 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) ≤ (𝐿 · 𝐸) ∧ ((abs‘((𝑅𝑢) / 𝑢)) + 3) ≤ (𝐴 + 3)) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) ≤ ((𝐿 · 𝐸) · (𝐴 + 3))))
378360, 370, 377mp2and 699 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) ≤ ((𝐿 · 𝐸) · (𝐴 + 3)))
37935adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝐸 ∈ ℝ+)
380112, 113mp1i 13 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 4 ∈ ℝ+)
381379, 380rpdivcld 13019 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐸 / 4) ∈ ℝ+)
382381rpcnd 13004 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐸 / 4) ∈ ℂ)
383374rpcnd 13004 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐴 + 3) ∈ ℂ)
384374rpne0d 13007 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐴 + 3) ≠ 0)
385382, 383, 384divcan1d 11966 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝐸 / 4) / (𝐴 + 3)) · (𝐴 + 3)) = (𝐸 / 4))
38614recnd 11209 . . . . . . . . . . . . . . . . 17 (𝜑𝐸 ∈ ℂ)
387386adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝐸 ∈ ℂ)
388380rpcnd 13004 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 4 ∈ ℂ)
389380rpne0d 13007 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 4 ≠ 0)
390387, 388, 389divrec2d 11969 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐸 / 4) = ((1 / 4) · 𝐸))
391390oveq1d 7405 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐸 / 4) / (𝐴 + 3)) = (((1 / 4) · 𝐸) / (𝐴 + 3)))
392 4cn 12278 . . . . . . . . . . . . . . . . . 18 4 ∈ ℂ
393 4ne0 12301 . . . . . . . . . . . . . . . . . 18 4 ≠ 0
394392, 393reccli 11919 . . . . . . . . . . . . . . . . 17 (1 / 4) ∈ ℂ
395394a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (1 / 4) ∈ ℂ)
396395, 387, 383, 384div23d 12002 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((1 / 4) · 𝐸) / (𝐴 + 3)) = (((1 / 4) / (𝐴 + 3)) · 𝐸))
39710oveq1i 7400 . . . . . . . . . . . . . . 15 (𝐿 · 𝐸) = (((1 / 4) / (𝐴 + 3)) · 𝐸)
398396, 397eqtr4di 2783 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((1 / 4) · 𝐸) / (𝐴 + 3)) = (𝐿 · 𝐸))
399391, 398eqtr2d 2766 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐿 · 𝐸) = ((𝐸 / 4) / (𝐴 + 3)))
400399oveq1d 7405 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐿 · 𝐸) · (𝐴 + 3)) = (((𝐸 / 4) / (𝐴 + 3)) · (𝐴 + 3)))
401 2ne0 12297 . . . . . . . . . . . . . . 15 2 ≠ 0
402401a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 2 ≠ 0)
403387, 314, 314, 402, 402divdiv1d 11996 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐸 / 2) / 2) = (𝐸 / (2 · 2)))
404 2t2e4 12352 . . . . . . . . . . . . . 14 (2 · 2) = 4
405404oveq2i 7401 . . . . . . . . . . . . 13 (𝐸 / (2 · 2)) = (𝐸 / 4)
406403, 405eqtrdi 2781 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐸 / 2) / 2) = (𝐸 / 4))
407385, 400, 4063eqtr4d 2775 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐿 · 𝐸) · (𝐴 + 3)) = ((𝐸 / 2) / 2))
408378, 407breqtrd 5136 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) ≤ ((𝐸 / 2) / 2))
409117adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (𝐸 / 4)) ∈ ℝ)
410137rpred 13002 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (log‘𝑁) ∈ ℝ)
41178reeflogd 26540 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (exp‘(log‘𝑁)) = 𝑁)
412135, 411breqtrrd 5138 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (exp‘(𝑇 / (𝐸 / 4))) < (exp‘(log‘𝑁)))
413 eflt 16092 . . . . . . . . . . . . . . 15 (((𝑇 / (𝐸 / 4)) ∈ ℝ ∧ (log‘𝑁) ∈ ℝ) → ((𝑇 / (𝐸 / 4)) < (log‘𝑁) ↔ (exp‘(𝑇 / (𝐸 / 4))) < (exp‘(log‘𝑁))))
414409, 410, 413syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑇 / (𝐸 / 4)) < (log‘𝑁) ↔ (exp‘(𝑇 / (𝐸 / 4))) < (exp‘(log‘𝑁))))
415412, 414mpbird 257 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (𝐸 / 4)) < (log‘𝑁))
416409, 410, 415ltled 11329 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (𝐸 / 4)) ≤ (log‘𝑁))
417110, 381, 137, 416lediv23d 13070 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (log‘𝑁)) ≤ (𝐸 / 4))
418417, 406breqtrrd 5138 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (log‘𝑁)) ≤ ((𝐸 / 2) / 2))
419107, 138, 349, 349, 408, 418le2addd 11804 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) + (𝑇 / (log‘𝑁))) ≤ (((𝐸 / 2) / 2) + ((𝐸 / 2) / 2)))
420100recnd 11209 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐸 / 2) ∈ ℂ)
4214202halvesd 12435 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝐸 / 2) / 2) + ((𝐸 / 2) / 2)) = (𝐸 / 2))
422419, 421breqtrd 5136 . . . . . . . 8 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) + (𝑇 / (log‘𝑁))) ≤ (𝐸 / 2))
42393, 139, 100, 348, 422letrd 11338 . . . . . . 7 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) ≤ (𝐸 / 2))
4243simprd 495 . . . . . . . 8 (𝜑 → (abs‘((𝑅𝑁) / 𝑁)) ≤ (𝐸 / 2))
425424adantr 480 . . . . . . 7 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑁) / 𝑁)) ≤ (𝐸 / 2))
42693, 94, 100, 100, 423, 425le2addd 11804 . . . . . 6 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) + (abs‘((𝑅𝑁) / 𝑁))) ≤ ((𝐸 / 2) + (𝐸 / 2)))
4273872halvesd 12435 . . . . . 6 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐸 / 2) + (𝐸 / 2)) = 𝐸)
428426, 427breqtrd 5136 . . . . 5 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) + (abs‘((𝑅𝑁) / 𝑁))) ≤ 𝐸)
42986, 95, 96, 99, 428letrd 11338 . . . 4 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)
430429ralrimiva 3126 . . 3 (𝜑 → ∀𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)
4315, 73, 430jca31 514 . 2 (𝜑 → ((𝑌 < 𝑁 ∧ ((1 + (𝐿 · 𝐸)) · 𝑁) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
432 breq2 5114 . . . . 5 (𝑧 = 𝑁 → (𝑌 < 𝑧𝑌 < 𝑁))
433 oveq2 7398 . . . . . 6 (𝑧 = 𝑁 → ((1 + (𝐿 · 𝐸)) · 𝑧) = ((1 + (𝐿 · 𝐸)) · 𝑁))
434433breq1d 5120 . . . . 5 (𝑧 = 𝑁 → (((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑀 · 𝑌) ↔ ((1 + (𝐿 · 𝐸)) · 𝑁) < (𝑀 · 𝑌)))
435432, 434anbi12d 632 . . . 4 (𝑧 = 𝑁 → ((𝑌 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑀 · 𝑌)) ↔ (𝑌 < 𝑁 ∧ ((1 + (𝐿 · 𝐸)) · 𝑁) < (𝑀 · 𝑌))))
436 id 22 . . . . . 6 (𝑧 = 𝑁𝑧 = 𝑁)
437436, 433oveq12d 7408 . . . . 5 (𝑧 = 𝑁 → (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧)) = (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁)))
438437raleqdv 3301 . . . 4 (𝑧 = 𝑁 → (∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸 ↔ ∀𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
439435, 438anbi12d 632 . . 3 (𝑧 = 𝑁 → (((𝑌 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ((𝑌 < 𝑁 ∧ ((1 + (𝐿 · 𝐸)) · 𝑁) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
440439rspcev 3591 . 2 ((𝑁 ∈ ℝ+ ∧ ((𝑌 < 𝑁 ∧ ((1 + (𝐿 · 𝐸)) · 𝑁) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)) → ∃𝑧 ∈ ℝ+ ((𝑌 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
4412, 431, 440syl2anc 584 1 (𝜑 → ∃𝑧 ∈ ℝ+ ((𝑌 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  wss 3917   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  2c2 12248  3c3 12249  4c4 12250  +crp 12958  (,)cioo 13313  [,)cico 13315  [,]cicc 13316  abscabs 15207  expce 16034  logclog 26470  ψcchp 27010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-pc 16815  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-vma 27015  df-chp 27016
This theorem is referenced by:  pntibndlem3  27510
  Copyright terms: Public domain W3C validator