MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibndlem2 Structured version   Visualization version   GIF version

Theorem pntibndlem2 27653
Description: Lemma for pntibnd 27655. The main work, after eliminating all the quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypotheses
Ref Expression
pntibnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntibndlem1.1 (𝜑𝐴 ∈ ℝ+)
pntibndlem1.l 𝐿 = ((1 / 4) / (𝐴 + 3))
pntibndlem3.2 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntibndlem3.3 (𝜑𝐵 ∈ ℝ+)
pntibndlem3.k 𝐾 = (exp‘(𝐵 / (𝐸 / 2)))
pntibndlem3.c 𝐶 = ((2 · 𝐵) + (log‘2))
pntibndlem3.4 (𝜑𝐸 ∈ (0(,)1))
pntibndlem3.6 (𝜑𝑍 ∈ ℝ+)
pntibndlem2.10 (𝜑𝑁 ∈ ℕ)
pntibndlem2.5 (𝜑𝑇 ∈ ℝ+)
pntibndlem2.6 (𝜑 → ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](2 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑇 · (𝑥 / (log‘𝑥)))))
pntibndlem2.7 𝑋 = ((exp‘(𝑇 / (𝐸 / 4))) + 𝑍)
pntibndlem2.8 (𝜑𝑀 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
pntibndlem2.9 (𝜑𝑌 ∈ (𝑋(,)+∞))
pntibndlem2.11 (𝜑 → ((𝑌 < 𝑁𝑁 ≤ ((𝑀 / 2) · 𝑌)) ∧ (abs‘((𝑅𝑁) / 𝑁)) ≤ (𝐸 / 2)))
Assertion
Ref Expression
pntibndlem2 (𝜑 → ∃𝑧 ∈ ℝ+ ((𝑌 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Distinct variable groups:   𝑢,𝑎,𝑥,𝑦,𝑧,𝐸   𝑢,𝐿,𝑥,𝑧   𝑁,𝑎,𝑢,𝑥,𝑦,𝑧   𝑢,𝐴,𝑥   𝑢,𝐶,𝑥,𝑦   𝑢,𝑅,𝑥,𝑦,𝑧   𝑧,𝑀   𝑥,𝑇,𝑦   𝑧,𝑌   𝑢,𝑍,𝑥,𝑦   𝜑,𝑢
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑎)   𝐴(𝑦,𝑧,𝑎)   𝐵(𝑥,𝑦,𝑧,𝑢,𝑎)   𝐶(𝑧,𝑎)   𝑅(𝑎)   𝑇(𝑧,𝑢,𝑎)   𝐾(𝑥,𝑦,𝑧,𝑢,𝑎)   𝐿(𝑦,𝑎)   𝑀(𝑥,𝑦,𝑢,𝑎)   𝑋(𝑥,𝑦,𝑧,𝑢,𝑎)   𝑌(𝑥,𝑦,𝑢,𝑎)   𝑍(𝑧,𝑎)

Proof of Theorem pntibndlem2
StepHypRef Expression
1 pntibndlem2.10 . . 3 (𝜑𝑁 ∈ ℕ)
21nnrpd 13097 . 2 (𝜑𝑁 ∈ ℝ+)
3 pntibndlem2.11 . . . . 5 (𝜑 → ((𝑌 < 𝑁𝑁 ≤ ((𝑀 / 2) · 𝑌)) ∧ (abs‘((𝑅𝑁) / 𝑁)) ≤ (𝐸 / 2)))
43simpld 494 . . . 4 (𝜑 → (𝑌 < 𝑁𝑁 ≤ ((𝑀 / 2) · 𝑌)))
54simpld 494 . . 3 (𝜑𝑌 < 𝑁)
6 1red 11291 . . . . . 6 (𝜑 → 1 ∈ ℝ)
7 ioossre 13468 . . . . . . . 8 (0(,)1) ⊆ ℝ
8 pntibnd.r . . . . . . . . 9 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
9 pntibndlem1.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
10 pntibndlem1.l . . . . . . . . 9 𝐿 = ((1 / 4) / (𝐴 + 3))
118, 9, 10pntibndlem1 27651 . . . . . . . 8 (𝜑𝐿 ∈ (0(,)1))
127, 11sselid 4006 . . . . . . 7 (𝜑𝐿 ∈ ℝ)
13 pntibndlem3.4 . . . . . . . 8 (𝜑𝐸 ∈ (0(,)1))
147, 13sselid 4006 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
1512, 14remulcld 11320 . . . . . 6 (𝜑 → (𝐿 · 𝐸) ∈ ℝ)
166, 15readdcld 11319 . . . . 5 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ)
171nnred 12308 . . . . 5 (𝜑𝑁 ∈ ℝ)
1816, 17remulcld 11320 . . . 4 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ)
19 2re 12367 . . . . 5 2 ∈ ℝ
20 remulcl 11269 . . . . 5 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 · 𝑁) ∈ ℝ)
2119, 17, 20sylancr 586 . . . 4 (𝜑 → (2 · 𝑁) ∈ ℝ)
22 pntibndlem3.c . . . . . . . . . 10 𝐶 = ((2 · 𝐵) + (log‘2))
23 pntibndlem3.3 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ+)
2423rpred 13099 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
25 remulcl 11269 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) ∈ ℝ)
2619, 24, 25sylancr 586 . . . . . . . . . . 11 (𝜑 → (2 · 𝐵) ∈ ℝ)
27 2rp 13062 . . . . . . . . . . . . 13 2 ∈ ℝ+
2827a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℝ+)
2928relogcld 26683 . . . . . . . . . . 11 (𝜑 → (log‘2) ∈ ℝ)
3026, 29readdcld 11319 . . . . . . . . . 10 (𝜑 → ((2 · 𝐵) + (log‘2)) ∈ ℝ)
3122, 30eqeltrid 2848 . . . . . . . . 9 (𝜑𝐶 ∈ ℝ)
32 eliooord 13466 . . . . . . . . . . . 12 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
3313, 32syl 17 . . . . . . . . . . 11 (𝜑 → (0 < 𝐸𝐸 < 1))
3433simpld 494 . . . . . . . . . 10 (𝜑 → 0 < 𝐸)
3514, 34elrpd 13096 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
3631, 35rerpdivcld 13130 . . . . . . . 8 (𝜑 → (𝐶 / 𝐸) ∈ ℝ)
3736reefcld 16136 . . . . . . 7 (𝜑 → (exp‘(𝐶 / 𝐸)) ∈ ℝ)
38 pnfxr 11344 . . . . . . 7 +∞ ∈ ℝ*
39 icossre 13488 . . . . . . 7 (((exp‘(𝐶 / 𝐸)) ∈ ℝ ∧ +∞ ∈ ℝ*) → ((exp‘(𝐶 / 𝐸))[,)+∞) ⊆ ℝ)
4037, 38, 39sylancl 585 . . . . . 6 (𝜑 → ((exp‘(𝐶 / 𝐸))[,)+∞) ⊆ ℝ)
41 pntibndlem2.8 . . . . . 6 (𝜑𝑀 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
4240, 41sseldd 4009 . . . . 5 (𝜑𝑀 ∈ ℝ)
43 ioossre 13468 . . . . . 6 (𝑋(,)+∞) ⊆ ℝ
44 pntibndlem2.9 . . . . . 6 (𝜑𝑌 ∈ (𝑋(,)+∞))
4543, 44sselid 4006 . . . . 5 (𝜑𝑌 ∈ ℝ)
4642, 45remulcld 11320 . . . 4 (𝜑 → (𝑀 · 𝑌) ∈ ℝ)
4719a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
48 eliooord 13466 . . . . . . . . . . . . 13 (𝐿 ∈ (0(,)1) → (0 < 𝐿𝐿 < 1))
4911, 48syl 17 . . . . . . . . . . . 12 (𝜑 → (0 < 𝐿𝐿 < 1))
5049simpld 494 . . . . . . . . . . 11 (𝜑 → 0 < 𝐿)
5112, 50elrpd 13096 . . . . . . . . . 10 (𝜑𝐿 ∈ ℝ+)
5251rpge0d 13103 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐿)
5349simprd 495 . . . . . . . . 9 (𝜑𝐿 < 1)
5435rpge0d 13103 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐸)
5533simprd 495 . . . . . . . . 9 (𝜑𝐸 < 1)
5612, 6, 14, 6, 52, 53, 54, 55ltmul12ad 12236 . . . . . . . 8 (𝜑 → (𝐿 · 𝐸) < (1 · 1))
57 1t1e1 12455 . . . . . . . 8 (1 · 1) = 1
5856, 57breqtrdi 5207 . . . . . . 7 (𝜑 → (𝐿 · 𝐸) < 1)
5915, 6, 6, 58ltadd2dd 11449 . . . . . 6 (𝜑 → (1 + (𝐿 · 𝐸)) < (1 + 1))
60 df-2 12356 . . . . . 6 2 = (1 + 1)
6159, 60breqtrrdi 5208 . . . . 5 (𝜑 → (1 + (𝐿 · 𝐸)) < 2)
6216, 47, 2, 61ltmul1dd 13154 . . . 4 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑁) < (2 · 𝑁))
634simprd 495 . . . . . 6 (𝜑𝑁 ≤ ((𝑀 / 2) · 𝑌))
6442recnd 11318 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
6545recnd 11318 . . . . . . 7 (𝜑𝑌 ∈ ℂ)
66 rpcnne0 13075 . . . . . . . 8 (2 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0))
6727, 66mp1i 13 . . . . . . 7 (𝜑 → (2 ∈ ℂ ∧ 2 ≠ 0))
68 div23 11968 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑀 · 𝑌) / 2) = ((𝑀 / 2) · 𝑌))
6964, 65, 67, 68syl3anc 1371 . . . . . 6 (𝜑 → ((𝑀 · 𝑌) / 2) = ((𝑀 / 2) · 𝑌))
7063, 69breqtrrd 5194 . . . . 5 (𝜑𝑁 ≤ ((𝑀 · 𝑌) / 2))
7117, 46, 28lemuldiv2d 13149 . . . . 5 (𝜑 → ((2 · 𝑁) ≤ (𝑀 · 𝑌) ↔ 𝑁 ≤ ((𝑀 · 𝑌) / 2)))
7270, 71mpbird 257 . . . 4 (𝜑 → (2 · 𝑁) ≤ (𝑀 · 𝑌))
7318, 21, 46, 62, 72ltletrd 11450 . . 3 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑁) < (𝑀 · 𝑌))
74 pntibndlem3.2 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
75 pntibndlem3.k . . . . . . . . . . . 12 𝐾 = (exp‘(𝐵 / (𝐸 / 2)))
768, 9, 10, 74, 23, 75, 22, 13, 9, 1pntibndlem2a 27652 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))
7776simp1d 1142 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑢 ∈ ℝ)
782adantr 480 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑁 ∈ ℝ+)
7976simp2d 1143 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑁𝑢)
8077, 78, 79rpgecld 13138 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑢 ∈ ℝ+)
818pntrf 27625 . . . . . . . . . 10 𝑅:ℝ+⟶ℝ
8281ffvelcdmi 7117 . . . . . . . . 9 (𝑢 ∈ ℝ+ → (𝑅𝑢) ∈ ℝ)
8380, 82syl 17 . . . . . . . 8 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑅𝑢) ∈ ℝ)
8483, 80rerpdivcld 13130 . . . . . . 7 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑢) / 𝑢) ∈ ℝ)
8584recnd 11318 . . . . . 6 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑢) / 𝑢) ∈ ℂ)
8685abscld 15485 . . . . 5 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑢) / 𝑢)) ∈ ℝ)
8781ffvelcdmi 7117 . . . . . . . . . . . 12 (𝑁 ∈ ℝ+ → (𝑅𝑁) ∈ ℝ)
882, 87syl 17 . . . . . . . . . . 11 (𝜑 → (𝑅𝑁) ∈ ℝ)
8988, 1nndivred 12347 . . . . . . . . . 10 (𝜑 → ((𝑅𝑁) / 𝑁) ∈ ℝ)
9089adantr 480 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑁) / 𝑁) ∈ ℝ)
9190recnd 11318 . . . . . . . 8 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑁) / 𝑁) ∈ ℂ)
9285, 91subcld 11647 . . . . . . 7 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁)) ∈ ℂ)
9392abscld 15485 . . . . . 6 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) ∈ ℝ)
9491abscld 15485 . . . . . 6 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑁) / 𝑁)) ∈ ℝ)
9593, 94readdcld 11319 . . . . 5 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) + (abs‘((𝑅𝑁) / 𝑁))) ∈ ℝ)
9614adantr 480 . . . . 5 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝐸 ∈ ℝ)
9785, 91abs2difd 15506 . . . . . 6 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) / 𝑢)) − (abs‘((𝑅𝑁) / 𝑁))) ≤ (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))))
9886, 94, 93lesubaddd 11887 . . . . . 6 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((abs‘((𝑅𝑢) / 𝑢)) − (abs‘((𝑅𝑁) / 𝑁))) ≤ (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) ↔ (abs‘((𝑅𝑢) / 𝑢)) ≤ ((abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) + (abs‘((𝑅𝑁) / 𝑁)))))
9997, 98mpbid 232 . . . . 5 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑢) / 𝑢)) ≤ ((abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) + (abs‘((𝑅𝑁) / 𝑁))))
10096rehalfcld 12540 . . . . . . 7 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐸 / 2) ∈ ℝ)
10117adantr 480 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑁 ∈ ℝ)
10277, 101resubcld 11718 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢𝑁) ∈ ℝ)
103102, 78rerpdivcld 13130 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢𝑁) / 𝑁) ∈ ℝ)
104 3re 12373 . . . . . . . . . . . 12 3 ∈ ℝ
105104a1i 11 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 3 ∈ ℝ)
10686, 105readdcld 11319 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) / 𝑢)) + 3) ∈ ℝ)
107103, 106remulcld 11320 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) ∈ ℝ)
108 pntibndlem2.5 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℝ+)
109108rpred 13099 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℝ)
110109adantr 480 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑇 ∈ ℝ)
111 1red 11291 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 1 ∈ ℝ)
112 4nn 12376 . . . . . . . . . . . . . . . . . 18 4 ∈ ℕ
113 nnrp 13068 . . . . . . . . . . . . . . . . . 18 (4 ∈ ℕ → 4 ∈ ℝ+)
114112, 113mp1i 13 . . . . . . . . . . . . . . . . 17 (𝜑 → 4 ∈ ℝ+)
11535, 114rpdivcld 13116 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸 / 4) ∈ ℝ+)
116108, 115rpdivcld 13116 . . . . . . . . . . . . . . 15 (𝜑 → (𝑇 / (𝐸 / 4)) ∈ ℝ+)
117116rpred 13099 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 / (𝐸 / 4)) ∈ ℝ)
118117reefcld 16136 . . . . . . . . . . . . 13 (𝜑 → (exp‘(𝑇 / (𝐸 / 4))) ∈ ℝ)
119118adantr 480 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (exp‘(𝑇 / (𝐸 / 4))) ∈ ℝ)
120 efgt1 16164 . . . . . . . . . . . . . 14 ((𝑇 / (𝐸 / 4)) ∈ ℝ+ → 1 < (exp‘(𝑇 / (𝐸 / 4))))
121116, 120syl 17 . . . . . . . . . . . . 13 (𝜑 → 1 < (exp‘(𝑇 / (𝐸 / 4))))
122121adantr 480 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 1 < (exp‘(𝑇 / (𝐸 / 4))))
123 pntibndlem2.7 . . . . . . . . . . . . . . . 16 𝑋 = ((exp‘(𝑇 / (𝐸 / 4))) + 𝑍)
124 pntibndlem3.6 . . . . . . . . . . . . . . . . . 18 (𝜑𝑍 ∈ ℝ+)
125124rpred 13099 . . . . . . . . . . . . . . . . 17 (𝜑𝑍 ∈ ℝ)
126118, 125readdcld 11319 . . . . . . . . . . . . . . . 16 (𝜑 → ((exp‘(𝑇 / (𝐸 / 4))) + 𝑍) ∈ ℝ)
127123, 126eqeltrid 2848 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℝ)
128118, 124ltaddrpd 13132 . . . . . . . . . . . . . . . 16 (𝜑 → (exp‘(𝑇 / (𝐸 / 4))) < ((exp‘(𝑇 / (𝐸 / 4))) + 𝑍))
129128, 123breqtrrdi 5208 . . . . . . . . . . . . . . 15 (𝜑 → (exp‘(𝑇 / (𝐸 / 4))) < 𝑋)
130 eliooord 13466 . . . . . . . . . . . . . . . . 17 (𝑌 ∈ (𝑋(,)+∞) → (𝑋 < 𝑌𝑌 < +∞))
13144, 130syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 < 𝑌𝑌 < +∞))
132131simpld 494 . . . . . . . . . . . . . . 15 (𝜑𝑋 < 𝑌)
133118, 127, 45, 129, 132lttrd 11451 . . . . . . . . . . . . . 14 (𝜑 → (exp‘(𝑇 / (𝐸 / 4))) < 𝑌)
134118, 45, 17, 133, 5lttrd 11451 . . . . . . . . . . . . 13 (𝜑 → (exp‘(𝑇 / (𝐸 / 4))) < 𝑁)
135134adantr 480 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (exp‘(𝑇 / (𝐸 / 4))) < 𝑁)
136111, 119, 101, 122, 135lttrd 11451 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 1 < 𝑁)
137101, 136rplogcld 26689 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (log‘𝑁) ∈ ℝ+)
138110, 137rerpdivcld 13130 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (log‘𝑁)) ∈ ℝ)
139107, 138readdcld 11319 . . . . . . . 8 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) + (𝑇 / (log‘𝑁))) ∈ ℝ)
140 peano2re 11463 . . . . . . . . . . . 12 ((abs‘((𝑅𝑢) / 𝑢)) ∈ ℝ → ((abs‘((𝑅𝑢) / 𝑢)) + 1) ∈ ℝ)
14186, 140syl 17 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) / 𝑢)) + 1) ∈ ℝ)
142103, 141remulcld 11320 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) ∈ ℝ)
143 chpcl 27185 . . . . . . . . . . . . 13 (𝑢 ∈ ℝ → (ψ‘𝑢) ∈ ℝ)
14477, 143syl 17 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (ψ‘𝑢) ∈ ℝ)
145 chpcl 27185 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (ψ‘𝑁) ∈ ℝ)
146101, 145syl 17 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (ψ‘𝑁) ∈ ℝ)
147144, 146resubcld 11718 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((ψ‘𝑢) − (ψ‘𝑁)) ∈ ℝ)
148147, 78rerpdivcld 13130 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁) ∈ ℝ)
149142, 148readdcld 11319 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)) ∈ ℝ)
150103, 86remulcld 11320 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) ∈ ℝ)
15188adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑅𝑁) ∈ ℝ)
15283, 151resubcld 11718 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑢) − (𝑅𝑁)) ∈ ℝ)
153152recnd 11318 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑢) − (𝑅𝑁)) ∈ ℂ)
154153abscld 15485 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑢) − (𝑅𝑁))) ∈ ℝ)
155154, 78rerpdivcld 13130 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁) ∈ ℝ)
156150, 155readdcld 11319 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁)) ∈ ℝ)
157103, 84remulcld 11320 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) ∈ ℝ)
158157renegcld 11717 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → -(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) ∈ ℝ)
159158recnd 11318 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → -(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) ∈ ℂ)
160152, 78rerpdivcld 13130 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑅𝑢) − (𝑅𝑁)) / 𝑁) ∈ ℝ)
161160recnd 11318 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑅𝑢) − (𝑅𝑁)) / 𝑁) ∈ ℂ)
162159, 161abstrid 15505 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) + (((𝑅𝑢) − (𝑅𝑁)) / 𝑁))) ≤ ((abs‘-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢))) + (abs‘(((𝑅𝑢) − (𝑅𝑁)) / 𝑁))))
16377recnd 11318 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑢 ∈ ℂ)
164101recnd 11318 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑁 ∈ ℂ)
16578rpne0d 13104 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑁 ≠ 0)
166163, 164, 164, 165divsubdird 12109 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢𝑁) / 𝑁) = ((𝑢 / 𝑁) − (𝑁 / 𝑁)))
167164, 165dividd 12068 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑁 / 𝑁) = 1)
168167oveq2d 7464 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢 / 𝑁) − (𝑁 / 𝑁)) = ((𝑢 / 𝑁) − 1))
169166, 168eqtrd 2780 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢𝑁) / 𝑁) = ((𝑢 / 𝑁) − 1))
170169oveq1d 7463 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) = (((𝑢 / 𝑁) − 1) · ((𝑅𝑢) / 𝑢)))
17177, 78rerpdivcld 13130 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 / 𝑁) ∈ ℝ)
172171recnd 11318 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 / 𝑁) ∈ ℂ)
173 1cnd 11285 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 1 ∈ ℂ)
174172, 173, 85subdird 11747 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢 / 𝑁) − 1) · ((𝑅𝑢) / 𝑢)) = (((𝑢 / 𝑁) · ((𝑅𝑢) / 𝑢)) − (1 · ((𝑅𝑢) / 𝑢))))
17580rpcnne0d 13108 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℂ ∧ 𝑢 ≠ 0))
17678rpcnne0d 13108 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
17783recnd 11318 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑅𝑢) ∈ ℂ)
178 dmdcan 12004 . . . . . . . . . . . . . . . . . . 19 (((𝑢 ∈ ℂ ∧ 𝑢 ≠ 0) ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) ∧ (𝑅𝑢) ∈ ℂ) → ((𝑢 / 𝑁) · ((𝑅𝑢) / 𝑢)) = ((𝑅𝑢) / 𝑁))
179175, 176, 177, 178syl3anc 1371 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢 / 𝑁) · ((𝑅𝑢) / 𝑢)) = ((𝑅𝑢) / 𝑁))
18085mullidd 11308 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (1 · ((𝑅𝑢) / 𝑢)) = ((𝑅𝑢) / 𝑢))
181179, 180oveq12d 7466 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢 / 𝑁) · ((𝑅𝑢) / 𝑢)) − (1 · ((𝑅𝑢) / 𝑢))) = (((𝑅𝑢) / 𝑁) − ((𝑅𝑢) / 𝑢)))
182170, 174, 1813eqtrd 2784 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) = (((𝑅𝑢) / 𝑁) − ((𝑅𝑢) / 𝑢)))
183182negeqd 11530 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → -(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) = -(((𝑅𝑢) / 𝑁) − ((𝑅𝑢) / 𝑢)))
18483, 78rerpdivcld 13130 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑢) / 𝑁) ∈ ℝ)
185184recnd 11318 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑢) / 𝑁) ∈ ℂ)
186185, 85negsubdi2d 11663 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → -(((𝑅𝑢) / 𝑁) − ((𝑅𝑢) / 𝑢)) = (((𝑅𝑢) / 𝑢) − ((𝑅𝑢) / 𝑁)))
187183, 186eqtrd 2780 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → -(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) = (((𝑅𝑢) / 𝑢) − ((𝑅𝑢) / 𝑁)))
188151recnd 11318 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑅𝑁) ∈ ℂ)
189177, 188, 164, 165divsubdird 12109 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑅𝑢) − (𝑅𝑁)) / 𝑁) = (((𝑅𝑢) / 𝑁) − ((𝑅𝑁) / 𝑁)))
190187, 189oveq12d 7466 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) + (((𝑅𝑢) − (𝑅𝑁)) / 𝑁)) = ((((𝑅𝑢) / 𝑢) − ((𝑅𝑢) / 𝑁)) + (((𝑅𝑢) / 𝑁) − ((𝑅𝑁) / 𝑁))))
19185, 185, 91npncand 11671 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑅𝑢) / 𝑢) − ((𝑅𝑢) / 𝑁)) + (((𝑅𝑢) / 𝑁) − ((𝑅𝑁) / 𝑁))) = (((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁)))
192190, 191eqtrd 2780 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) + (((𝑅𝑢) − (𝑅𝑁)) / 𝑁)) = (((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁)))
193192fveq2d 6924 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) + (((𝑅𝑢) − (𝑅𝑁)) / 𝑁))) = (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))))
194157recnd 11318 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) ∈ ℂ)
195194absnegd 15498 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢))) = (abs‘(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢))))
196103recnd 11318 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢𝑁) / 𝑁) ∈ ℂ)
197196, 85absmuld 15503 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢))) = ((abs‘((𝑢𝑁) / 𝑁)) · (abs‘((𝑅𝑢) / 𝑢))))
19877, 101subge0d 11880 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (0 ≤ (𝑢𝑁) ↔ 𝑁𝑢))
19979, 198mpbird 257 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 0 ≤ (𝑢𝑁))
200102, 78, 199divge0d 13139 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 0 ≤ ((𝑢𝑁) / 𝑁))
201103, 200absidd 15471 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑢𝑁) / 𝑁)) = ((𝑢𝑁) / 𝑁))
202201oveq1d 7463 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑢𝑁) / 𝑁)) · (abs‘((𝑅𝑢) / 𝑢))) = (((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))))
203195, 197, 2023eqtrd 2784 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢))) = (((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))))
204153, 164, 165absdivd 15504 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑅𝑢) − (𝑅𝑁)) / 𝑁)) = ((abs‘((𝑅𝑢) − (𝑅𝑁))) / (abs‘𝑁)))
20578rprege0d 13106 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁))
206 absid 15345 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) → (abs‘𝑁) = 𝑁)
207205, 206syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘𝑁) = 𝑁)
208207oveq2d 7464 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) − (𝑅𝑁))) / (abs‘𝑁)) = ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁))
209204, 208eqtrd 2780 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑅𝑢) − (𝑅𝑁)) / 𝑁)) = ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁))
210203, 209oveq12d 7466 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢))) + (abs‘(((𝑅𝑢) − (𝑅𝑁)) / 𝑁))) = ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁)))
211162, 193, 2103brtr3d 5197 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) ≤ ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁)))
212102, 147readdcld 11319 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))) ∈ ℝ)
213212, 78rerpdivcld 13130 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))) / 𝑁) ∈ ℝ)
214147recnd 11318 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((ψ‘𝑢) − (ψ‘𝑁)) ∈ ℂ)
215164, 163subcld 11647 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑁𝑢) ∈ ℂ)
216214, 215abstrid 15505 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((ψ‘𝑢) − (ψ‘𝑁)) + (𝑁𝑢))) ≤ ((abs‘((ψ‘𝑢) − (ψ‘𝑁))) + (abs‘(𝑁𝑢))))
2178pntrval 27624 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ℝ+ → (𝑅𝑢) = ((ψ‘𝑢) − 𝑢))
21880, 217syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑅𝑢) = ((ψ‘𝑢) − 𝑢))
2198pntrval 27624 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℝ+ → (𝑅𝑁) = ((ψ‘𝑁) − 𝑁))
22078, 219syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑅𝑁) = ((ψ‘𝑁) − 𝑁))
221218, 220oveq12d 7466 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑢) − (𝑅𝑁)) = (((ψ‘𝑢) − 𝑢) − ((ψ‘𝑁) − 𝑁)))
222144recnd 11318 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (ψ‘𝑢) ∈ ℂ)
223146recnd 11318 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (ψ‘𝑁) ∈ ℂ)
224 subadd4 11580 . . . . . . . . . . . . . . . . . 18 ((((ψ‘𝑢) ∈ ℂ ∧ (ψ‘𝑁) ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → (((ψ‘𝑢) − (ψ‘𝑁)) − (𝑢𝑁)) = (((ψ‘𝑢) + 𝑁) − ((ψ‘𝑁) + 𝑢)))
225 sub4 11581 . . . . . . . . . . . . . . . . . 18 ((((ψ‘𝑢) ∈ ℂ ∧ (ψ‘𝑁) ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → (((ψ‘𝑢) − (ψ‘𝑁)) − (𝑢𝑁)) = (((ψ‘𝑢) − 𝑢) − ((ψ‘𝑁) − 𝑁)))
226 addsub4 11579 . . . . . . . . . . . . . . . . . . 19 ((((ψ‘𝑢) ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ ((ψ‘𝑁) ∈ ℂ ∧ 𝑢 ∈ ℂ)) → (((ψ‘𝑢) + 𝑁) − ((ψ‘𝑁) + 𝑢)) = (((ψ‘𝑢) − (ψ‘𝑁)) + (𝑁𝑢)))
227226an42s 660 . . . . . . . . . . . . . . . . . 18 ((((ψ‘𝑢) ∈ ℂ ∧ (ψ‘𝑁) ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → (((ψ‘𝑢) + 𝑁) − ((ψ‘𝑁) + 𝑢)) = (((ψ‘𝑢) − (ψ‘𝑁)) + (𝑁𝑢)))
228224, 225, 2273eqtr3d 2788 . . . . . . . . . . . . . . . . 17 ((((ψ‘𝑢) ∈ ℂ ∧ (ψ‘𝑁) ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → (((ψ‘𝑢) − 𝑢) − ((ψ‘𝑁) − 𝑁)) = (((ψ‘𝑢) − (ψ‘𝑁)) + (𝑁𝑢)))
229222, 223, 163, 164, 228syl22anc 838 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((ψ‘𝑢) − 𝑢) − ((ψ‘𝑁) − 𝑁)) = (((ψ‘𝑢) − (ψ‘𝑁)) + (𝑁𝑢)))
230221, 229eqtr2d 2781 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((ψ‘𝑢) − (ψ‘𝑁)) + (𝑁𝑢)) = ((𝑅𝑢) − (𝑅𝑁)))
231230fveq2d 6924 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((ψ‘𝑢) − (ψ‘𝑁)) + (𝑁𝑢))) = (abs‘((𝑅𝑢) − (𝑅𝑁))))
232102recnd 11318 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢𝑁) ∈ ℂ)
233 chpwordi 27218 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ 𝑁𝑢) → (ψ‘𝑁) ≤ (ψ‘𝑢))
234101, 77, 79, 233syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (ψ‘𝑁) ≤ (ψ‘𝑢))
235146, 144, 234abssubge0d 15480 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((ψ‘𝑢) − (ψ‘𝑁))) = ((ψ‘𝑢) − (ψ‘𝑁)))
236101, 77, 79abssuble0d 15481 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(𝑁𝑢)) = (𝑢𝑁))
237235, 236oveq12d 7466 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((ψ‘𝑢) − (ψ‘𝑁))) + (abs‘(𝑁𝑢))) = (((ψ‘𝑢) − (ψ‘𝑁)) + (𝑢𝑁)))
238214, 232, 237comraddd 11504 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((ψ‘𝑢) − (ψ‘𝑁))) + (abs‘(𝑁𝑢))) = ((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))))
239216, 231, 2383brtr3d 5197 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑢) − (𝑅𝑁))) ≤ ((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))))
240154, 212, 78, 239lediv1dd 13157 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁) ≤ (((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))) / 𝑁))
241155, 213, 150, 240leadd2dd 11905 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁)) ≤ ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + (((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))) / 𝑁)))
242150recnd 11318 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) ∈ ℂ)
243148recnd 11318 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁) ∈ ℂ)
244242, 196, 243addassd 11312 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((𝑢𝑁) / 𝑁)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)) = ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + (((𝑢𝑁) / 𝑁) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁))))
24586recnd 11318 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑢) / 𝑢)) ∈ ℂ)
246196, 245, 173adddid 11314 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) = ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + (((𝑢𝑁) / 𝑁) · 1)))
247196mulridd 11307 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · 1) = ((𝑢𝑁) / 𝑁))
248247oveq2d 7464 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + (((𝑢𝑁) / 𝑁) · 1)) = ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((𝑢𝑁) / 𝑁)))
249246, 248eqtrd 2780 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) = ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((𝑢𝑁) / 𝑁)))
250249oveq1d 7463 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)) = (((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((𝑢𝑁) / 𝑁)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)))
251232, 214, 164, 165divdird 12108 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))) / 𝑁) = (((𝑢𝑁) / 𝑁) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)))
252251oveq2d 7464 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + (((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))) / 𝑁)) = ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + (((𝑢𝑁) / 𝑁) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁))))
253244, 250, 2523eqtr4d 2790 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)) = ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + (((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))) / 𝑁)))
254241, 253breqtrrd 5194 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁)) ≤ ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)))
25593, 156, 149, 211, 254letrd 11447 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) ≤ ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)))
256 remulcl 11269 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ ((𝑢𝑁) / 𝑁) ∈ ℝ) → (2 · ((𝑢𝑁) / 𝑁)) ∈ ℝ)
25719, 103, 256sylancr 586 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (2 · ((𝑢𝑁) / 𝑁)) ∈ ℝ)
258257, 138readdcld 11319 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((2 · ((𝑢𝑁) / 𝑁)) + (𝑇 / (log‘𝑁))) ∈ ℝ)
259 remulcl 11269 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ ∧ (𝑢𝑁) ∈ ℝ) → (2 · (𝑢𝑁)) ∈ ℝ)
26019, 102, 259sylancr 586 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (2 · (𝑢𝑁)) ∈ ℝ)
261101, 137rerpdivcld 13130 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑁 / (log‘𝑁)) ∈ ℝ)
262110, 261remulcld 11320 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 · (𝑁 / (log‘𝑁))) ∈ ℝ)
263260, 262readdcld 11319 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))) ∈ ℝ)
264 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (ψ‘𝑦) = (ψ‘𝑢))
265264oveq1d 7463 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → ((ψ‘𝑦) − (ψ‘𝑁)) = ((ψ‘𝑢) − (ψ‘𝑁)))
266 oveq1 7455 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑢 → (𝑦𝑁) = (𝑢𝑁))
267266oveq2d 7464 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (2 · (𝑦𝑁)) = (2 · (𝑢𝑁)))
268267oveq1d 7463 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → ((2 · (𝑦𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))) = ((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))))
269265, 268breq12d 5179 . . . . . . . . . . . . . 14 (𝑦 = 𝑢 → (((ψ‘𝑦) − (ψ‘𝑁)) ≤ ((2 · (𝑦𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))) ↔ ((ψ‘𝑢) − (ψ‘𝑁)) ≤ ((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁))))))
270 id 22 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑁𝑥 = 𝑁)
271 oveq2 7456 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑁 → (2 · 𝑥) = (2 · 𝑁))
272270, 271oveq12d 7466 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑁 → (𝑥[,](2 · 𝑥)) = (𝑁[,](2 · 𝑁)))
273 fveq2 6920 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑁 → (ψ‘𝑥) = (ψ‘𝑁))
274273oveq2d 7464 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑁 → ((ψ‘𝑦) − (ψ‘𝑥)) = ((ψ‘𝑦) − (ψ‘𝑁)))
275 oveq2 7456 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑁 → (𝑦𝑥) = (𝑦𝑁))
276275oveq2d 7464 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑁 → (2 · (𝑦𝑥)) = (2 · (𝑦𝑁)))
277 fveq2 6920 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑁 → (log‘𝑥) = (log‘𝑁))
278270, 277oveq12d 7466 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑁 → (𝑥 / (log‘𝑥)) = (𝑁 / (log‘𝑁)))
279278oveq2d 7464 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑁 → (𝑇 · (𝑥 / (log‘𝑥))) = (𝑇 · (𝑁 / (log‘𝑁))))
280276, 279oveq12d 7466 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑁 → ((2 · (𝑦𝑥)) + (𝑇 · (𝑥 / (log‘𝑥)))) = ((2 · (𝑦𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))))
281274, 280breq12d 5179 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑁 → (((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑇 · (𝑥 / (log‘𝑥)))) ↔ ((ψ‘𝑦) − (ψ‘𝑁)) ≤ ((2 · (𝑦𝑁)) + (𝑇 · (𝑁 / (log‘𝑁))))))
282272, 281raleqbidv 3354 . . . . . . . . . . . . . . 15 (𝑥 = 𝑁 → (∀𝑦 ∈ (𝑥[,](2 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑇 · (𝑥 / (log‘𝑥)))) ↔ ∀𝑦 ∈ (𝑁[,](2 · 𝑁))((ψ‘𝑦) − (ψ‘𝑁)) ≤ ((2 · (𝑦𝑁)) + (𝑇 · (𝑁 / (log‘𝑁))))))
283 pntibndlem2.6 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](2 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑇 · (𝑥 / (log‘𝑥)))))
284283adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](2 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑇 · (𝑥 / (log‘𝑥)))))
285 1xr 11349 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ*
286 elioopnf 13503 . . . . . . . . . . . . . . . . 17 (1 ∈ ℝ* → (𝑁 ∈ (1(,)+∞) ↔ (𝑁 ∈ ℝ ∧ 1 < 𝑁)))
287285, 286ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (1(,)+∞) ↔ (𝑁 ∈ ℝ ∧ 1 < 𝑁))
288101, 136, 287sylanbrc 582 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑁 ∈ (1(,)+∞))
289282, 284, 288rspcdva 3636 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ∀𝑦 ∈ (𝑁[,](2 · 𝑁))((ψ‘𝑦) − (ψ‘𝑁)) ≤ ((2 · (𝑦𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))))
29018adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ)
29121adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (2 · 𝑁) ∈ ℝ)
29276simp3d 1144 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))
293 ltle 11378 . . . . . . . . . . . . . . . . . . . 20 (((1 + (𝐿 · 𝐸)) ∈ ℝ ∧ 2 ∈ ℝ) → ((1 + (𝐿 · 𝐸)) < 2 → (1 + (𝐿 · 𝐸)) ≤ 2))
29416, 19, 293sylancl 585 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) < 2 → (1 + (𝐿 · 𝐸)) ≤ 2))
29561, 294mpd 15 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 + (𝐿 · 𝐸)) ≤ 2)
296295adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (1 + (𝐿 · 𝐸)) ≤ 2)
29716adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (1 + (𝐿 · 𝐸)) ∈ ℝ)
29819a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 2 ∈ ℝ)
299297, 298, 78lemul1d 13142 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((1 + (𝐿 · 𝐸)) ≤ 2 ↔ ((1 + (𝐿 · 𝐸)) · 𝑁) ≤ (2 · 𝑁)))
300296, 299mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((1 + (𝐿 · 𝐸)) · 𝑁) ≤ (2 · 𝑁))
30177, 290, 291, 292, 300letrd 11447 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑢 ≤ (2 · 𝑁))
302 elicc2 13472 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ) → (𝑢 ∈ (𝑁[,](2 · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ (2 · 𝑁))))
303101, 291, 302syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ (𝑁[,](2 · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ (2 · 𝑁))))
30477, 79, 301, 303mpbir3and 1342 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑢 ∈ (𝑁[,](2 · 𝑁)))
305269, 289, 304rspcdva 3636 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((ψ‘𝑢) − (ψ‘𝑁)) ≤ ((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))))
306147, 263, 78, 305lediv1dd 13157 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁) ≤ (((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))) / 𝑁))
307260recnd 11318 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (2 · (𝑢𝑁)) ∈ ℂ)
308108adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑇 ∈ ℝ+)
309308rpred 13099 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑇 ∈ ℝ)
310309, 261remulcld 11320 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 · (𝑁 / (log‘𝑁))) ∈ ℝ)
311310recnd 11318 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 · (𝑁 / (log‘𝑁))) ∈ ℂ)
312 divdir 11974 . . . . . . . . . . . . . 14 (((2 · (𝑢𝑁)) ∈ ℂ ∧ (𝑇 · (𝑁 / (log‘𝑁))) ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))) / 𝑁) = (((2 · (𝑢𝑁)) / 𝑁) + ((𝑇 · (𝑁 / (log‘𝑁))) / 𝑁)))
313307, 311, 176, 312syl3anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))) / 𝑁) = (((2 · (𝑢𝑁)) / 𝑁) + ((𝑇 · (𝑁 / (log‘𝑁))) / 𝑁)))
314 2cnd 12371 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 2 ∈ ℂ)
315314, 232, 164, 165divassd 12105 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((2 · (𝑢𝑁)) / 𝑁) = (2 · ((𝑢𝑁) / 𝑁)))
316110recnd 11318 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑇 ∈ ℂ)
317137rpcnne0d 13108 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((log‘𝑁) ∈ ℂ ∧ (log‘𝑁) ≠ 0))
318 div12 11971 . . . . . . . . . . . . . . . . 17 ((𝑇 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ ((log‘𝑁) ∈ ℂ ∧ (log‘𝑁) ≠ 0)) → (𝑇 · (𝑁 / (log‘𝑁))) = (𝑁 · (𝑇 / (log‘𝑁))))
319316, 164, 317, 318syl3anc 1371 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 · (𝑁 / (log‘𝑁))) = (𝑁 · (𝑇 / (log‘𝑁))))
320319oveq1d 7463 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑇 · (𝑁 / (log‘𝑁))) / 𝑁) = ((𝑁 · (𝑇 / (log‘𝑁))) / 𝑁))
321308, 137rpdivcld 13116 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (log‘𝑁)) ∈ ℝ+)
322321rpcnd 13101 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (log‘𝑁)) ∈ ℂ)
323322, 164, 165divcan3d 12075 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑁 · (𝑇 / (log‘𝑁))) / 𝑁) = (𝑇 / (log‘𝑁)))
324320, 323eqtrd 2780 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑇 · (𝑁 / (log‘𝑁))) / 𝑁) = (𝑇 / (log‘𝑁)))
325315, 324oveq12d 7466 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((2 · (𝑢𝑁)) / 𝑁) + ((𝑇 · (𝑁 / (log‘𝑁))) / 𝑁)) = ((2 · ((𝑢𝑁) / 𝑁)) + (𝑇 / (log‘𝑁))))
326313, 325eqtrd 2780 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))) / 𝑁) = ((2 · ((𝑢𝑁) / 𝑁)) + (𝑇 / (log‘𝑁))))
327306, 326breqtrd 5192 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁) ≤ ((2 · ((𝑢𝑁) / 𝑁)) + (𝑇 / (log‘𝑁))))
328148, 258, 142, 327leadd2dd 11905 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)) ≤ ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + ((2 · ((𝑢𝑁) / 𝑁)) + (𝑇 / (log‘𝑁)))))
329142recnd 11318 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) ∈ ℂ)
330257recnd 11318 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (2 · ((𝑢𝑁) / 𝑁)) ∈ ℂ)
331138recnd 11318 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (log‘𝑁)) ∈ ℂ)
332329, 330, 331addassd 11312 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (2 · ((𝑢𝑁) / 𝑁))) + (𝑇 / (log‘𝑁))) = ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + ((2 · ((𝑢𝑁) / 𝑁)) + (𝑇 / (log‘𝑁)))))
333 2cn 12368 . . . . . . . . . . . . . . 15 2 ∈ ℂ
334 mulcom 11270 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ ((𝑢𝑁) / 𝑁) ∈ ℂ) → (2 · ((𝑢𝑁) / 𝑁)) = (((𝑢𝑁) / 𝑁) · 2))
335333, 196, 334sylancr 586 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (2 · ((𝑢𝑁) / 𝑁)) = (((𝑢𝑁) / 𝑁) · 2))
336335oveq2d 7464 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (2 · ((𝑢𝑁) / 𝑁))) = ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((𝑢𝑁) / 𝑁) · 2)))
337141recnd 11318 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) / 𝑢)) + 1) ∈ ℂ)
338196, 337, 314adddid 11314 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · (((abs‘((𝑅𝑢) / 𝑢)) + 1) + 2)) = ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((𝑢𝑁) / 𝑁) · 2)))
339245, 173, 314addassd 11312 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((abs‘((𝑅𝑢) / 𝑢)) + 1) + 2) = ((abs‘((𝑅𝑢) / 𝑢)) + (1 + 2)))
340 1p2e3 12436 . . . . . . . . . . . . . . . 16 (1 + 2) = 3
341340oveq2i 7459 . . . . . . . . . . . . . . 15 ((abs‘((𝑅𝑢) / 𝑢)) + (1 + 2)) = ((abs‘((𝑅𝑢) / 𝑢)) + 3)
342339, 341eqtrdi 2796 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((abs‘((𝑅𝑢) / 𝑢)) + 1) + 2) = ((abs‘((𝑅𝑢) / 𝑢)) + 3))
343342oveq2d 7464 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · (((abs‘((𝑅𝑢) / 𝑢)) + 1) + 2)) = (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)))
344336, 338, 3433eqtr2d 2786 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (2 · ((𝑢𝑁) / 𝑁))) = (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)))
345344oveq1d 7463 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (2 · ((𝑢𝑁) / 𝑁))) + (𝑇 / (log‘𝑁))) = ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) + (𝑇 / (log‘𝑁))))
346332, 345eqtr3d 2782 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + ((2 · ((𝑢𝑁) / 𝑁)) + (𝑇 / (log‘𝑁)))) = ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) + (𝑇 / (log‘𝑁))))
347328, 346breqtrd 5192 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)) ≤ ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) + (𝑇 / (log‘𝑁))))
34893, 149, 139, 255, 347letrd 11447 . . . . . . . 8 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) ≤ ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) + (𝑇 / (log‘𝑁))))
349100rehalfcld 12540 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐸 / 2) / 2) ∈ ℝ)
35077, 297, 78ledivmul2d 13153 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢 / 𝑁) ≤ (1 + (𝐿 · 𝐸)) ↔ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))
351292, 350mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 / 𝑁) ≤ (1 + (𝐿 · 𝐸)))
352 ax-1cn 11242 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
35315adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐿 · 𝐸) ∈ ℝ)
354353recnd 11318 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐿 · 𝐸) ∈ ℂ)
355 addcom 11476 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (𝐿 · 𝐸) ∈ ℂ) → (1 + (𝐿 · 𝐸)) = ((𝐿 · 𝐸) + 1))
356352, 354, 355sylancr 586 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (1 + (𝐿 · 𝐸)) = ((𝐿 · 𝐸) + 1))
357351, 356breqtrd 5192 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 / 𝑁) ≤ ((𝐿 · 𝐸) + 1))
358171, 111, 353lesubaddd 11887 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢 / 𝑁) − 1) ≤ (𝐿 · 𝐸) ↔ (𝑢 / 𝑁) ≤ ((𝐿 · 𝐸) + 1)))
359357, 358mpbird 257 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢 / 𝑁) − 1) ≤ (𝐿 · 𝐸))
360169, 359eqbrtrd 5188 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢𝑁) / 𝑁) ≤ (𝐿 · 𝐸))
3619adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝐴 ∈ ℝ+)
362361rpred 13099 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝐴 ∈ ℝ)
363 fveq2 6920 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑢 → (𝑅𝑥) = (𝑅𝑢))
364 id 22 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑢𝑥 = 𝑢)
365363, 364oveq12d 7466 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → ((𝑅𝑥) / 𝑥) = ((𝑅𝑢) / 𝑢))
366365fveq2d 6924 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → (abs‘((𝑅𝑥) / 𝑥)) = (abs‘((𝑅𝑢) / 𝑢)))
367366breq1d 5176 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → ((abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴 ↔ (abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐴))
36874adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
369367, 368, 80rspcdva 3636 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐴)
37086, 362, 105, 369leadd1dd 11904 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) / 𝑢)) + 3) ≤ (𝐴 + 3))
371103, 200jca 511 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) ∈ ℝ ∧ 0 ≤ ((𝑢𝑁) / 𝑁)))
372 3rp 13063 . . . . . . . . . . . . . . 15 3 ∈ ℝ+
373 rpaddcl 13079 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝐴 + 3) ∈ ℝ+)
374361, 372, 373sylancl 585 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐴 + 3) ∈ ℝ+)
375374rprege0d 13106 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐴 + 3) ∈ ℝ ∧ 0 ≤ (𝐴 + 3)))
376 lemul12b 12151 . . . . . . . . . . . . 13 ((((((𝑢𝑁) / 𝑁) ∈ ℝ ∧ 0 ≤ ((𝑢𝑁) / 𝑁)) ∧ (𝐿 · 𝐸) ∈ ℝ) ∧ (((abs‘((𝑅𝑢) / 𝑢)) + 3) ∈ ℝ ∧ ((𝐴 + 3) ∈ ℝ ∧ 0 ≤ (𝐴 + 3)))) → ((((𝑢𝑁) / 𝑁) ≤ (𝐿 · 𝐸) ∧ ((abs‘((𝑅𝑢) / 𝑢)) + 3) ≤ (𝐴 + 3)) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) ≤ ((𝐿 · 𝐸) · (𝐴 + 3))))
377371, 353, 106, 375, 376syl22anc 838 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) ≤ (𝐿 · 𝐸) ∧ ((abs‘((𝑅𝑢) / 𝑢)) + 3) ≤ (𝐴 + 3)) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) ≤ ((𝐿 · 𝐸) · (𝐴 + 3))))
378360, 370, 377mp2and 698 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) ≤ ((𝐿 · 𝐸) · (𝐴 + 3)))
37935adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝐸 ∈ ℝ+)
380112, 113mp1i 13 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 4 ∈ ℝ+)
381379, 380rpdivcld 13116 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐸 / 4) ∈ ℝ+)
382381rpcnd 13101 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐸 / 4) ∈ ℂ)
383374rpcnd 13101 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐴 + 3) ∈ ℂ)
384374rpne0d 13104 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐴 + 3) ≠ 0)
385382, 383, 384divcan1d 12071 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝐸 / 4) / (𝐴 + 3)) · (𝐴 + 3)) = (𝐸 / 4))
38614recnd 11318 . . . . . . . . . . . . . . . . 17 (𝜑𝐸 ∈ ℂ)
387386adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝐸 ∈ ℂ)
388380rpcnd 13101 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 4 ∈ ℂ)
389380rpne0d 13104 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 4 ≠ 0)
390387, 388, 389divrec2d 12074 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐸 / 4) = ((1 / 4) · 𝐸))
391390oveq1d 7463 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐸 / 4) / (𝐴 + 3)) = (((1 / 4) · 𝐸) / (𝐴 + 3)))
392 4cn 12378 . . . . . . . . . . . . . . . . . 18 4 ∈ ℂ
393 4ne0 12401 . . . . . . . . . . . . . . . . . 18 4 ≠ 0
394392, 393reccli 12024 . . . . . . . . . . . . . . . . 17 (1 / 4) ∈ ℂ
395394a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (1 / 4) ∈ ℂ)
396395, 387, 383, 384div23d 12107 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((1 / 4) · 𝐸) / (𝐴 + 3)) = (((1 / 4) / (𝐴 + 3)) · 𝐸))
39710oveq1i 7458 . . . . . . . . . . . . . . 15 (𝐿 · 𝐸) = (((1 / 4) / (𝐴 + 3)) · 𝐸)
398396, 397eqtr4di 2798 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((1 / 4) · 𝐸) / (𝐴 + 3)) = (𝐿 · 𝐸))
399391, 398eqtr2d 2781 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐿 · 𝐸) = ((𝐸 / 4) / (𝐴 + 3)))
400399oveq1d 7463 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐿 · 𝐸) · (𝐴 + 3)) = (((𝐸 / 4) / (𝐴 + 3)) · (𝐴 + 3)))
401 2ne0 12397 . . . . . . . . . . . . . . 15 2 ≠ 0
402401a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 2 ≠ 0)
403387, 314, 314, 402, 402divdiv1d 12101 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐸 / 2) / 2) = (𝐸 / (2 · 2)))
404 2t2e4 12457 . . . . . . . . . . . . . 14 (2 · 2) = 4
405404oveq2i 7459 . . . . . . . . . . . . 13 (𝐸 / (2 · 2)) = (𝐸 / 4)
406403, 405eqtrdi 2796 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐸 / 2) / 2) = (𝐸 / 4))
407385, 400, 4063eqtr4d 2790 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐿 · 𝐸) · (𝐴 + 3)) = ((𝐸 / 2) / 2))
408378, 407breqtrd 5192 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) ≤ ((𝐸 / 2) / 2))
409117adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (𝐸 / 4)) ∈ ℝ)
410137rpred 13099 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (log‘𝑁) ∈ ℝ)
41178reeflogd 26684 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (exp‘(log‘𝑁)) = 𝑁)
412135, 411breqtrrd 5194 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (exp‘(𝑇 / (𝐸 / 4))) < (exp‘(log‘𝑁)))
413 eflt 16165 . . . . . . . . . . . . . . 15 (((𝑇 / (𝐸 / 4)) ∈ ℝ ∧ (log‘𝑁) ∈ ℝ) → ((𝑇 / (𝐸 / 4)) < (log‘𝑁) ↔ (exp‘(𝑇 / (𝐸 / 4))) < (exp‘(log‘𝑁))))
414409, 410, 413syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑇 / (𝐸 / 4)) < (log‘𝑁) ↔ (exp‘(𝑇 / (𝐸 / 4))) < (exp‘(log‘𝑁))))
415412, 414mpbird 257 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (𝐸 / 4)) < (log‘𝑁))
416409, 410, 415ltled 11438 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (𝐸 / 4)) ≤ (log‘𝑁))
417110, 381, 137, 416lediv23d 13167 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (log‘𝑁)) ≤ (𝐸 / 4))
418417, 406breqtrrd 5194 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (log‘𝑁)) ≤ ((𝐸 / 2) / 2))
419107, 138, 349, 349, 408, 418le2addd 11909 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) + (𝑇 / (log‘𝑁))) ≤ (((𝐸 / 2) / 2) + ((𝐸 / 2) / 2)))
420100recnd 11318 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐸 / 2) ∈ ℂ)
4214202halvesd 12539 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝐸 / 2) / 2) + ((𝐸 / 2) / 2)) = (𝐸 / 2))
422419, 421breqtrd 5192 . . . . . . . 8 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) + (𝑇 / (log‘𝑁))) ≤ (𝐸 / 2))
42393, 139, 100, 348, 422letrd 11447 . . . . . . 7 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) ≤ (𝐸 / 2))
4243simprd 495 . . . . . . . 8 (𝜑 → (abs‘((𝑅𝑁) / 𝑁)) ≤ (𝐸 / 2))
425424adantr 480 . . . . . . 7 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑁) / 𝑁)) ≤ (𝐸 / 2))
42693, 94, 100, 100, 423, 425le2addd 11909 . . . . . 6 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) + (abs‘((𝑅𝑁) / 𝑁))) ≤ ((𝐸 / 2) + (𝐸 / 2)))
4273872halvesd 12539 . . . . . 6 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐸 / 2) + (𝐸 / 2)) = 𝐸)
428426, 427breqtrd 5192 . . . . 5 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) + (abs‘((𝑅𝑁) / 𝑁))) ≤ 𝐸)
42986, 95, 96, 99, 428letrd 11447 . . . 4 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)
430429ralrimiva 3152 . . 3 (𝜑 → ∀𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)
4315, 73, 430jca31 514 . 2 (𝜑 → ((𝑌 < 𝑁 ∧ ((1 + (𝐿 · 𝐸)) · 𝑁) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
432 breq2 5170 . . . . 5 (𝑧 = 𝑁 → (𝑌 < 𝑧𝑌 < 𝑁))
433 oveq2 7456 . . . . . 6 (𝑧 = 𝑁 → ((1 + (𝐿 · 𝐸)) · 𝑧) = ((1 + (𝐿 · 𝐸)) · 𝑁))
434433breq1d 5176 . . . . 5 (𝑧 = 𝑁 → (((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑀 · 𝑌) ↔ ((1 + (𝐿 · 𝐸)) · 𝑁) < (𝑀 · 𝑌)))
435432, 434anbi12d 631 . . . 4 (𝑧 = 𝑁 → ((𝑌 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑀 · 𝑌)) ↔ (𝑌 < 𝑁 ∧ ((1 + (𝐿 · 𝐸)) · 𝑁) < (𝑀 · 𝑌))))
436 id 22 . . . . . 6 (𝑧 = 𝑁𝑧 = 𝑁)
437436, 433oveq12d 7466 . . . . 5 (𝑧 = 𝑁 → (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧)) = (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁)))
438437raleqdv 3334 . . . 4 (𝑧 = 𝑁 → (∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸 ↔ ∀𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
439435, 438anbi12d 631 . . 3 (𝑧 = 𝑁 → (((𝑌 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ((𝑌 < 𝑁 ∧ ((1 + (𝐿 · 𝐸)) · 𝑁) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
440439rspcev 3635 . 2 ((𝑁 ∈ ℝ+ ∧ ((𝑌 < 𝑁 ∧ ((1 + (𝐿 · 𝐸)) · 𝑁) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)) → ∃𝑧 ∈ ℝ+ ((𝑌 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
4412, 431, 440syl2anc 583 1 (𝜑 → ∃𝑧 ∈ ℝ+ ((𝑌 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  wss 3976   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  3c3 12349  4c4 12350  +crp 13057  (,)cioo 13407  [,)cico 13409  [,]cicc 13410  abscabs 15283  expce 16109  logclog 26614  ψcchp 27154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-vma 27159  df-chp 27160
This theorem is referenced by:  pntibndlem3  27654
  Copyright terms: Public domain W3C validator