MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibndlem2 Structured version   Visualization version   GIF version

Theorem pntibndlem2 26644
Description: Lemma for pntibnd 26646. The main work, after eliminating all the quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypotheses
Ref Expression
pntibnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntibndlem1.1 (𝜑𝐴 ∈ ℝ+)
pntibndlem1.l 𝐿 = ((1 / 4) / (𝐴 + 3))
pntibndlem3.2 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntibndlem3.3 (𝜑𝐵 ∈ ℝ+)
pntibndlem3.k 𝐾 = (exp‘(𝐵 / (𝐸 / 2)))
pntibndlem3.c 𝐶 = ((2 · 𝐵) + (log‘2))
pntibndlem3.4 (𝜑𝐸 ∈ (0(,)1))
pntibndlem3.6 (𝜑𝑍 ∈ ℝ+)
pntibndlem2.10 (𝜑𝑁 ∈ ℕ)
pntibndlem2.5 (𝜑𝑇 ∈ ℝ+)
pntibndlem2.6 (𝜑 → ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](2 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑇 · (𝑥 / (log‘𝑥)))))
pntibndlem2.7 𝑋 = ((exp‘(𝑇 / (𝐸 / 4))) + 𝑍)
pntibndlem2.8 (𝜑𝑀 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
pntibndlem2.9 (𝜑𝑌 ∈ (𝑋(,)+∞))
pntibndlem2.11 (𝜑 → ((𝑌 < 𝑁𝑁 ≤ ((𝑀 / 2) · 𝑌)) ∧ (abs‘((𝑅𝑁) / 𝑁)) ≤ (𝐸 / 2)))
Assertion
Ref Expression
pntibndlem2 (𝜑 → ∃𝑧 ∈ ℝ+ ((𝑌 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Distinct variable groups:   𝑢,𝑎,𝑥,𝑦,𝑧,𝐸   𝑢,𝐿,𝑥,𝑧   𝑁,𝑎,𝑢,𝑥,𝑦,𝑧   𝑢,𝐴,𝑥   𝑢,𝐶,𝑥,𝑦   𝑢,𝑅,𝑥,𝑦,𝑧   𝑧,𝑀   𝑥,𝑇,𝑦   𝑧,𝑌   𝑢,𝑍,𝑥,𝑦   𝜑,𝑢
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑎)   𝐴(𝑦,𝑧,𝑎)   𝐵(𝑥,𝑦,𝑧,𝑢,𝑎)   𝐶(𝑧,𝑎)   𝑅(𝑎)   𝑇(𝑧,𝑢,𝑎)   𝐾(𝑥,𝑦,𝑧,𝑢,𝑎)   𝐿(𝑦,𝑎)   𝑀(𝑥,𝑦,𝑢,𝑎)   𝑋(𝑥,𝑦,𝑧,𝑢,𝑎)   𝑌(𝑥,𝑦,𝑢,𝑎)   𝑍(𝑧,𝑎)

Proof of Theorem pntibndlem2
StepHypRef Expression
1 pntibndlem2.10 . . 3 (𝜑𝑁 ∈ ℕ)
21nnrpd 12699 . 2 (𝜑𝑁 ∈ ℝ+)
3 pntibndlem2.11 . . . . 5 (𝜑 → ((𝑌 < 𝑁𝑁 ≤ ((𝑀 / 2) · 𝑌)) ∧ (abs‘((𝑅𝑁) / 𝑁)) ≤ (𝐸 / 2)))
43simpld 494 . . . 4 (𝜑 → (𝑌 < 𝑁𝑁 ≤ ((𝑀 / 2) · 𝑌)))
54simpld 494 . . 3 (𝜑𝑌 < 𝑁)
6 1red 10907 . . . . . 6 (𝜑 → 1 ∈ ℝ)
7 ioossre 13069 . . . . . . . 8 (0(,)1) ⊆ ℝ
8 pntibnd.r . . . . . . . . 9 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
9 pntibndlem1.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
10 pntibndlem1.l . . . . . . . . 9 𝐿 = ((1 / 4) / (𝐴 + 3))
118, 9, 10pntibndlem1 26642 . . . . . . . 8 (𝜑𝐿 ∈ (0(,)1))
127, 11sselid 3915 . . . . . . 7 (𝜑𝐿 ∈ ℝ)
13 pntibndlem3.4 . . . . . . . 8 (𝜑𝐸 ∈ (0(,)1))
147, 13sselid 3915 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
1512, 14remulcld 10936 . . . . . 6 (𝜑 → (𝐿 · 𝐸) ∈ ℝ)
166, 15readdcld 10935 . . . . 5 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ)
171nnred 11918 . . . . 5 (𝜑𝑁 ∈ ℝ)
1816, 17remulcld 10936 . . . 4 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ)
19 2re 11977 . . . . 5 2 ∈ ℝ
20 remulcl 10887 . . . . 5 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 · 𝑁) ∈ ℝ)
2119, 17, 20sylancr 586 . . . 4 (𝜑 → (2 · 𝑁) ∈ ℝ)
22 pntibndlem3.c . . . . . . . . . 10 𝐶 = ((2 · 𝐵) + (log‘2))
23 pntibndlem3.3 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ+)
2423rpred 12701 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
25 remulcl 10887 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) ∈ ℝ)
2619, 24, 25sylancr 586 . . . . . . . . . . 11 (𝜑 → (2 · 𝐵) ∈ ℝ)
27 2rp 12664 . . . . . . . . . . . . 13 2 ∈ ℝ+
2827a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℝ+)
2928relogcld 25683 . . . . . . . . . . 11 (𝜑 → (log‘2) ∈ ℝ)
3026, 29readdcld 10935 . . . . . . . . . 10 (𝜑 → ((2 · 𝐵) + (log‘2)) ∈ ℝ)
3122, 30eqeltrid 2843 . . . . . . . . 9 (𝜑𝐶 ∈ ℝ)
32 eliooord 13067 . . . . . . . . . . . 12 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
3313, 32syl 17 . . . . . . . . . . 11 (𝜑 → (0 < 𝐸𝐸 < 1))
3433simpld 494 . . . . . . . . . 10 (𝜑 → 0 < 𝐸)
3514, 34elrpd 12698 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
3631, 35rerpdivcld 12732 . . . . . . . 8 (𝜑 → (𝐶 / 𝐸) ∈ ℝ)
3736reefcld 15725 . . . . . . 7 (𝜑 → (exp‘(𝐶 / 𝐸)) ∈ ℝ)
38 pnfxr 10960 . . . . . . 7 +∞ ∈ ℝ*
39 icossre 13089 . . . . . . 7 (((exp‘(𝐶 / 𝐸)) ∈ ℝ ∧ +∞ ∈ ℝ*) → ((exp‘(𝐶 / 𝐸))[,)+∞) ⊆ ℝ)
4037, 38, 39sylancl 585 . . . . . 6 (𝜑 → ((exp‘(𝐶 / 𝐸))[,)+∞) ⊆ ℝ)
41 pntibndlem2.8 . . . . . 6 (𝜑𝑀 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
4240, 41sseldd 3918 . . . . 5 (𝜑𝑀 ∈ ℝ)
43 ioossre 13069 . . . . . 6 (𝑋(,)+∞) ⊆ ℝ
44 pntibndlem2.9 . . . . . 6 (𝜑𝑌 ∈ (𝑋(,)+∞))
4543, 44sselid 3915 . . . . 5 (𝜑𝑌 ∈ ℝ)
4642, 45remulcld 10936 . . . 4 (𝜑 → (𝑀 · 𝑌) ∈ ℝ)
4719a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
48 eliooord 13067 . . . . . . . . . . . . 13 (𝐿 ∈ (0(,)1) → (0 < 𝐿𝐿 < 1))
4911, 48syl 17 . . . . . . . . . . . 12 (𝜑 → (0 < 𝐿𝐿 < 1))
5049simpld 494 . . . . . . . . . . 11 (𝜑 → 0 < 𝐿)
5112, 50elrpd 12698 . . . . . . . . . 10 (𝜑𝐿 ∈ ℝ+)
5251rpge0d 12705 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐿)
5349simprd 495 . . . . . . . . 9 (𝜑𝐿 < 1)
5435rpge0d 12705 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐸)
5533simprd 495 . . . . . . . . 9 (𝜑𝐸 < 1)
5612, 6, 14, 6, 52, 53, 54, 55ltmul12ad 11846 . . . . . . . 8 (𝜑 → (𝐿 · 𝐸) < (1 · 1))
57 1t1e1 12065 . . . . . . . 8 (1 · 1) = 1
5856, 57breqtrdi 5111 . . . . . . 7 (𝜑 → (𝐿 · 𝐸) < 1)
5915, 6, 6, 58ltadd2dd 11064 . . . . . 6 (𝜑 → (1 + (𝐿 · 𝐸)) < (1 + 1))
60 df-2 11966 . . . . . 6 2 = (1 + 1)
6159, 60breqtrrdi 5112 . . . . 5 (𝜑 → (1 + (𝐿 · 𝐸)) < 2)
6216, 47, 2, 61ltmul1dd 12756 . . . 4 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑁) < (2 · 𝑁))
634simprd 495 . . . . . 6 (𝜑𝑁 ≤ ((𝑀 / 2) · 𝑌))
6442recnd 10934 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
6545recnd 10934 . . . . . . 7 (𝜑𝑌 ∈ ℂ)
66 rpcnne0 12677 . . . . . . . 8 (2 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0))
6727, 66mp1i 13 . . . . . . 7 (𝜑 → (2 ∈ ℂ ∧ 2 ≠ 0))
68 div23 11582 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑀 · 𝑌) / 2) = ((𝑀 / 2) · 𝑌))
6964, 65, 67, 68syl3anc 1369 . . . . . 6 (𝜑 → ((𝑀 · 𝑌) / 2) = ((𝑀 / 2) · 𝑌))
7063, 69breqtrrd 5098 . . . . 5 (𝜑𝑁 ≤ ((𝑀 · 𝑌) / 2))
7117, 46, 28lemuldiv2d 12751 . . . . 5 (𝜑 → ((2 · 𝑁) ≤ (𝑀 · 𝑌) ↔ 𝑁 ≤ ((𝑀 · 𝑌) / 2)))
7270, 71mpbird 256 . . . 4 (𝜑 → (2 · 𝑁) ≤ (𝑀 · 𝑌))
7318, 21, 46, 62, 72ltletrd 11065 . . 3 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑁) < (𝑀 · 𝑌))
74 pntibndlem3.2 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
75 pntibndlem3.k . . . . . . . . . . . 12 𝐾 = (exp‘(𝐵 / (𝐸 / 2)))
768, 9, 10, 74, 23, 75, 22, 13, 9, 1pntibndlem2a 26643 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))
7776simp1d 1140 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑢 ∈ ℝ)
782adantr 480 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑁 ∈ ℝ+)
7976simp2d 1141 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑁𝑢)
8077, 78, 79rpgecld 12740 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑢 ∈ ℝ+)
818pntrf 26616 . . . . . . . . . 10 𝑅:ℝ+⟶ℝ
8281ffvelrni 6942 . . . . . . . . 9 (𝑢 ∈ ℝ+ → (𝑅𝑢) ∈ ℝ)
8380, 82syl 17 . . . . . . . 8 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑅𝑢) ∈ ℝ)
8483, 80rerpdivcld 12732 . . . . . . 7 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑢) / 𝑢) ∈ ℝ)
8584recnd 10934 . . . . . 6 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑢) / 𝑢) ∈ ℂ)
8685abscld 15076 . . . . 5 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑢) / 𝑢)) ∈ ℝ)
8781ffvelrni 6942 . . . . . . . . . . . 12 (𝑁 ∈ ℝ+ → (𝑅𝑁) ∈ ℝ)
882, 87syl 17 . . . . . . . . . . 11 (𝜑 → (𝑅𝑁) ∈ ℝ)
8988, 1nndivred 11957 . . . . . . . . . 10 (𝜑 → ((𝑅𝑁) / 𝑁) ∈ ℝ)
9089adantr 480 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑁) / 𝑁) ∈ ℝ)
9190recnd 10934 . . . . . . . 8 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑁) / 𝑁) ∈ ℂ)
9285, 91subcld 11262 . . . . . . 7 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁)) ∈ ℂ)
9392abscld 15076 . . . . . 6 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) ∈ ℝ)
9491abscld 15076 . . . . . 6 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑁) / 𝑁)) ∈ ℝ)
9593, 94readdcld 10935 . . . . 5 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) + (abs‘((𝑅𝑁) / 𝑁))) ∈ ℝ)
9614adantr 480 . . . . 5 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝐸 ∈ ℝ)
9785, 91abs2difd 15097 . . . . . 6 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) / 𝑢)) − (abs‘((𝑅𝑁) / 𝑁))) ≤ (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))))
9886, 94, 93lesubaddd 11502 . . . . . 6 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((abs‘((𝑅𝑢) / 𝑢)) − (abs‘((𝑅𝑁) / 𝑁))) ≤ (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) ↔ (abs‘((𝑅𝑢) / 𝑢)) ≤ ((abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) + (abs‘((𝑅𝑁) / 𝑁)))))
9997, 98mpbid 231 . . . . 5 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑢) / 𝑢)) ≤ ((abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) + (abs‘((𝑅𝑁) / 𝑁))))
10096rehalfcld 12150 . . . . . . 7 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐸 / 2) ∈ ℝ)
10117adantr 480 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑁 ∈ ℝ)
10277, 101resubcld 11333 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢𝑁) ∈ ℝ)
103102, 78rerpdivcld 12732 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢𝑁) / 𝑁) ∈ ℝ)
104 3re 11983 . . . . . . . . . . . 12 3 ∈ ℝ
105104a1i 11 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 3 ∈ ℝ)
10686, 105readdcld 10935 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) / 𝑢)) + 3) ∈ ℝ)
107103, 106remulcld 10936 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) ∈ ℝ)
108 pntibndlem2.5 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℝ+)
109108rpred 12701 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℝ)
110109adantr 480 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑇 ∈ ℝ)
111 1red 10907 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 1 ∈ ℝ)
112 4nn 11986 . . . . . . . . . . . . . . . . . 18 4 ∈ ℕ
113 nnrp 12670 . . . . . . . . . . . . . . . . . 18 (4 ∈ ℕ → 4 ∈ ℝ+)
114112, 113mp1i 13 . . . . . . . . . . . . . . . . 17 (𝜑 → 4 ∈ ℝ+)
11535, 114rpdivcld 12718 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸 / 4) ∈ ℝ+)
116108, 115rpdivcld 12718 . . . . . . . . . . . . . . 15 (𝜑 → (𝑇 / (𝐸 / 4)) ∈ ℝ+)
117116rpred 12701 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 / (𝐸 / 4)) ∈ ℝ)
118117reefcld 15725 . . . . . . . . . . . . 13 (𝜑 → (exp‘(𝑇 / (𝐸 / 4))) ∈ ℝ)
119118adantr 480 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (exp‘(𝑇 / (𝐸 / 4))) ∈ ℝ)
120 efgt1 15753 . . . . . . . . . . . . . 14 ((𝑇 / (𝐸 / 4)) ∈ ℝ+ → 1 < (exp‘(𝑇 / (𝐸 / 4))))
121116, 120syl 17 . . . . . . . . . . . . 13 (𝜑 → 1 < (exp‘(𝑇 / (𝐸 / 4))))
122121adantr 480 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 1 < (exp‘(𝑇 / (𝐸 / 4))))
123 pntibndlem2.7 . . . . . . . . . . . . . . . 16 𝑋 = ((exp‘(𝑇 / (𝐸 / 4))) + 𝑍)
124 pntibndlem3.6 . . . . . . . . . . . . . . . . . 18 (𝜑𝑍 ∈ ℝ+)
125124rpred 12701 . . . . . . . . . . . . . . . . 17 (𝜑𝑍 ∈ ℝ)
126118, 125readdcld 10935 . . . . . . . . . . . . . . . 16 (𝜑 → ((exp‘(𝑇 / (𝐸 / 4))) + 𝑍) ∈ ℝ)
127123, 126eqeltrid 2843 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℝ)
128118, 124ltaddrpd 12734 . . . . . . . . . . . . . . . 16 (𝜑 → (exp‘(𝑇 / (𝐸 / 4))) < ((exp‘(𝑇 / (𝐸 / 4))) + 𝑍))
129128, 123breqtrrdi 5112 . . . . . . . . . . . . . . 15 (𝜑 → (exp‘(𝑇 / (𝐸 / 4))) < 𝑋)
130 eliooord 13067 . . . . . . . . . . . . . . . . 17 (𝑌 ∈ (𝑋(,)+∞) → (𝑋 < 𝑌𝑌 < +∞))
13144, 130syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 < 𝑌𝑌 < +∞))
132131simpld 494 . . . . . . . . . . . . . . 15 (𝜑𝑋 < 𝑌)
133118, 127, 45, 129, 132lttrd 11066 . . . . . . . . . . . . . 14 (𝜑 → (exp‘(𝑇 / (𝐸 / 4))) < 𝑌)
134118, 45, 17, 133, 5lttrd 11066 . . . . . . . . . . . . 13 (𝜑 → (exp‘(𝑇 / (𝐸 / 4))) < 𝑁)
135134adantr 480 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (exp‘(𝑇 / (𝐸 / 4))) < 𝑁)
136111, 119, 101, 122, 135lttrd 11066 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 1 < 𝑁)
137101, 136rplogcld 25689 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (log‘𝑁) ∈ ℝ+)
138110, 137rerpdivcld 12732 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (log‘𝑁)) ∈ ℝ)
139107, 138readdcld 10935 . . . . . . . 8 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) + (𝑇 / (log‘𝑁))) ∈ ℝ)
140 peano2re 11078 . . . . . . . . . . . 12 ((abs‘((𝑅𝑢) / 𝑢)) ∈ ℝ → ((abs‘((𝑅𝑢) / 𝑢)) + 1) ∈ ℝ)
14186, 140syl 17 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) / 𝑢)) + 1) ∈ ℝ)
142103, 141remulcld 10936 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) ∈ ℝ)
143 chpcl 26178 . . . . . . . . . . . . 13 (𝑢 ∈ ℝ → (ψ‘𝑢) ∈ ℝ)
14477, 143syl 17 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (ψ‘𝑢) ∈ ℝ)
145 chpcl 26178 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (ψ‘𝑁) ∈ ℝ)
146101, 145syl 17 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (ψ‘𝑁) ∈ ℝ)
147144, 146resubcld 11333 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((ψ‘𝑢) − (ψ‘𝑁)) ∈ ℝ)
148147, 78rerpdivcld 12732 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁) ∈ ℝ)
149142, 148readdcld 10935 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)) ∈ ℝ)
150103, 86remulcld 10936 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) ∈ ℝ)
15188adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑅𝑁) ∈ ℝ)
15283, 151resubcld 11333 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑢) − (𝑅𝑁)) ∈ ℝ)
153152recnd 10934 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑢) − (𝑅𝑁)) ∈ ℂ)
154153abscld 15076 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑢) − (𝑅𝑁))) ∈ ℝ)
155154, 78rerpdivcld 12732 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁) ∈ ℝ)
156150, 155readdcld 10935 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁)) ∈ ℝ)
157103, 84remulcld 10936 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) ∈ ℝ)
158157renegcld 11332 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → -(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) ∈ ℝ)
159158recnd 10934 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → -(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) ∈ ℂ)
160152, 78rerpdivcld 12732 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑅𝑢) − (𝑅𝑁)) / 𝑁) ∈ ℝ)
161160recnd 10934 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑅𝑢) − (𝑅𝑁)) / 𝑁) ∈ ℂ)
162159, 161abstrid 15096 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) + (((𝑅𝑢) − (𝑅𝑁)) / 𝑁))) ≤ ((abs‘-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢))) + (abs‘(((𝑅𝑢) − (𝑅𝑁)) / 𝑁))))
16377recnd 10934 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑢 ∈ ℂ)
164101recnd 10934 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑁 ∈ ℂ)
16578rpne0d 12706 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑁 ≠ 0)
166163, 164, 164, 165divsubdird 11720 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢𝑁) / 𝑁) = ((𝑢 / 𝑁) − (𝑁 / 𝑁)))
167164, 165dividd 11679 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑁 / 𝑁) = 1)
168167oveq2d 7271 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢 / 𝑁) − (𝑁 / 𝑁)) = ((𝑢 / 𝑁) − 1))
169166, 168eqtrd 2778 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢𝑁) / 𝑁) = ((𝑢 / 𝑁) − 1))
170169oveq1d 7270 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) = (((𝑢 / 𝑁) − 1) · ((𝑅𝑢) / 𝑢)))
17177, 78rerpdivcld 12732 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 / 𝑁) ∈ ℝ)
172171recnd 10934 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 / 𝑁) ∈ ℂ)
173 1cnd 10901 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 1 ∈ ℂ)
174172, 173, 85subdird 11362 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢 / 𝑁) − 1) · ((𝑅𝑢) / 𝑢)) = (((𝑢 / 𝑁) · ((𝑅𝑢) / 𝑢)) − (1 · ((𝑅𝑢) / 𝑢))))
17580rpcnne0d 12710 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℂ ∧ 𝑢 ≠ 0))
17678rpcnne0d 12710 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
17783recnd 10934 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑅𝑢) ∈ ℂ)
178 dmdcan 11615 . . . . . . . . . . . . . . . . . . 19 (((𝑢 ∈ ℂ ∧ 𝑢 ≠ 0) ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) ∧ (𝑅𝑢) ∈ ℂ) → ((𝑢 / 𝑁) · ((𝑅𝑢) / 𝑢)) = ((𝑅𝑢) / 𝑁))
179175, 176, 177, 178syl3anc 1369 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢 / 𝑁) · ((𝑅𝑢) / 𝑢)) = ((𝑅𝑢) / 𝑁))
18085mulid2d 10924 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (1 · ((𝑅𝑢) / 𝑢)) = ((𝑅𝑢) / 𝑢))
181179, 180oveq12d 7273 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢 / 𝑁) · ((𝑅𝑢) / 𝑢)) − (1 · ((𝑅𝑢) / 𝑢))) = (((𝑅𝑢) / 𝑁) − ((𝑅𝑢) / 𝑢)))
182170, 174, 1813eqtrd 2782 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) = (((𝑅𝑢) / 𝑁) − ((𝑅𝑢) / 𝑢)))
183182negeqd 11145 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → -(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) = -(((𝑅𝑢) / 𝑁) − ((𝑅𝑢) / 𝑢)))
18483, 78rerpdivcld 12732 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑢) / 𝑁) ∈ ℝ)
185184recnd 10934 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑢) / 𝑁) ∈ ℂ)
186185, 85negsubdi2d 11278 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → -(((𝑅𝑢) / 𝑁) − ((𝑅𝑢) / 𝑢)) = (((𝑅𝑢) / 𝑢) − ((𝑅𝑢) / 𝑁)))
187183, 186eqtrd 2778 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → -(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) = (((𝑅𝑢) / 𝑢) − ((𝑅𝑢) / 𝑁)))
188151recnd 10934 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑅𝑁) ∈ ℂ)
189177, 188, 164, 165divsubdird 11720 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑅𝑢) − (𝑅𝑁)) / 𝑁) = (((𝑅𝑢) / 𝑁) − ((𝑅𝑁) / 𝑁)))
190187, 189oveq12d 7273 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) + (((𝑅𝑢) − (𝑅𝑁)) / 𝑁)) = ((((𝑅𝑢) / 𝑢) − ((𝑅𝑢) / 𝑁)) + (((𝑅𝑢) / 𝑁) − ((𝑅𝑁) / 𝑁))))
19185, 185, 91npncand 11286 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑅𝑢) / 𝑢) − ((𝑅𝑢) / 𝑁)) + (((𝑅𝑢) / 𝑁) − ((𝑅𝑁) / 𝑁))) = (((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁)))
192190, 191eqtrd 2778 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) + (((𝑅𝑢) − (𝑅𝑁)) / 𝑁)) = (((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁)))
193192fveq2d 6760 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) + (((𝑅𝑢) − (𝑅𝑁)) / 𝑁))) = (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))))
194157recnd 10934 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢)) ∈ ℂ)
195194absnegd 15089 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢))) = (abs‘(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢))))
196103recnd 10934 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢𝑁) / 𝑁) ∈ ℂ)
197196, 85absmuld 15094 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢))) = ((abs‘((𝑢𝑁) / 𝑁)) · (abs‘((𝑅𝑢) / 𝑢))))
19877, 101subge0d 11495 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (0 ≤ (𝑢𝑁) ↔ 𝑁𝑢))
19979, 198mpbird 256 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 0 ≤ (𝑢𝑁))
200102, 78, 199divge0d 12741 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 0 ≤ ((𝑢𝑁) / 𝑁))
201103, 200absidd 15062 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑢𝑁) / 𝑁)) = ((𝑢𝑁) / 𝑁))
202201oveq1d 7270 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑢𝑁) / 𝑁)) · (abs‘((𝑅𝑢) / 𝑢))) = (((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))))
203195, 197, 2023eqtrd 2782 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢))) = (((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))))
204153, 164, 165absdivd 15095 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑅𝑢) − (𝑅𝑁)) / 𝑁)) = ((abs‘((𝑅𝑢) − (𝑅𝑁))) / (abs‘𝑁)))
20578rprege0d 12708 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁))
206 absid 14936 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) → (abs‘𝑁) = 𝑁)
207205, 206syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘𝑁) = 𝑁)
208207oveq2d 7271 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) − (𝑅𝑁))) / (abs‘𝑁)) = ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁))
209204, 208eqtrd 2778 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑅𝑢) − (𝑅𝑁)) / 𝑁)) = ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁))
210203, 209oveq12d 7273 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘-(((𝑢𝑁) / 𝑁) · ((𝑅𝑢) / 𝑢))) + (abs‘(((𝑅𝑢) − (𝑅𝑁)) / 𝑁))) = ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁)))
211162, 193, 2103brtr3d 5101 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) ≤ ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁)))
212102, 147readdcld 10935 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))) ∈ ℝ)
213212, 78rerpdivcld 12732 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))) / 𝑁) ∈ ℝ)
214147recnd 10934 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((ψ‘𝑢) − (ψ‘𝑁)) ∈ ℂ)
215164, 163subcld 11262 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑁𝑢) ∈ ℂ)
216214, 215abstrid 15096 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((ψ‘𝑢) − (ψ‘𝑁)) + (𝑁𝑢))) ≤ ((abs‘((ψ‘𝑢) − (ψ‘𝑁))) + (abs‘(𝑁𝑢))))
2178pntrval 26615 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ℝ+ → (𝑅𝑢) = ((ψ‘𝑢) − 𝑢))
21880, 217syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑅𝑢) = ((ψ‘𝑢) − 𝑢))
2198pntrval 26615 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℝ+ → (𝑅𝑁) = ((ψ‘𝑁) − 𝑁))
22078, 219syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑅𝑁) = ((ψ‘𝑁) − 𝑁))
221218, 220oveq12d 7273 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑅𝑢) − (𝑅𝑁)) = (((ψ‘𝑢) − 𝑢) − ((ψ‘𝑁) − 𝑁)))
222144recnd 10934 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (ψ‘𝑢) ∈ ℂ)
223146recnd 10934 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (ψ‘𝑁) ∈ ℂ)
224 subadd4 11195 . . . . . . . . . . . . . . . . . 18 ((((ψ‘𝑢) ∈ ℂ ∧ (ψ‘𝑁) ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → (((ψ‘𝑢) − (ψ‘𝑁)) − (𝑢𝑁)) = (((ψ‘𝑢) + 𝑁) − ((ψ‘𝑁) + 𝑢)))
225 sub4 11196 . . . . . . . . . . . . . . . . . 18 ((((ψ‘𝑢) ∈ ℂ ∧ (ψ‘𝑁) ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → (((ψ‘𝑢) − (ψ‘𝑁)) − (𝑢𝑁)) = (((ψ‘𝑢) − 𝑢) − ((ψ‘𝑁) − 𝑁)))
226 addsub4 11194 . . . . . . . . . . . . . . . . . . 19 ((((ψ‘𝑢) ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ ((ψ‘𝑁) ∈ ℂ ∧ 𝑢 ∈ ℂ)) → (((ψ‘𝑢) + 𝑁) − ((ψ‘𝑁) + 𝑢)) = (((ψ‘𝑢) − (ψ‘𝑁)) + (𝑁𝑢)))
227226an42s 657 . . . . . . . . . . . . . . . . . 18 ((((ψ‘𝑢) ∈ ℂ ∧ (ψ‘𝑁) ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → (((ψ‘𝑢) + 𝑁) − ((ψ‘𝑁) + 𝑢)) = (((ψ‘𝑢) − (ψ‘𝑁)) + (𝑁𝑢)))
228224, 225, 2273eqtr3d 2786 . . . . . . . . . . . . . . . . 17 ((((ψ‘𝑢) ∈ ℂ ∧ (ψ‘𝑁) ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → (((ψ‘𝑢) − 𝑢) − ((ψ‘𝑁) − 𝑁)) = (((ψ‘𝑢) − (ψ‘𝑁)) + (𝑁𝑢)))
229222, 223, 163, 164, 228syl22anc 835 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((ψ‘𝑢) − 𝑢) − ((ψ‘𝑁) − 𝑁)) = (((ψ‘𝑢) − (ψ‘𝑁)) + (𝑁𝑢)))
230221, 229eqtr2d 2779 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((ψ‘𝑢) − (ψ‘𝑁)) + (𝑁𝑢)) = ((𝑅𝑢) − (𝑅𝑁)))
231230fveq2d 6760 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((ψ‘𝑢) − (ψ‘𝑁)) + (𝑁𝑢))) = (abs‘((𝑅𝑢) − (𝑅𝑁))))
232102recnd 10934 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢𝑁) ∈ ℂ)
233 chpwordi 26211 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ 𝑁𝑢) → (ψ‘𝑁) ≤ (ψ‘𝑢))
234101, 77, 79, 233syl3anc 1369 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (ψ‘𝑁) ≤ (ψ‘𝑢))
235146, 144, 234abssubge0d 15071 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((ψ‘𝑢) − (ψ‘𝑁))) = ((ψ‘𝑢) − (ψ‘𝑁)))
236101, 77, 79abssuble0d 15072 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(𝑁𝑢)) = (𝑢𝑁))
237235, 236oveq12d 7273 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((ψ‘𝑢) − (ψ‘𝑁))) + (abs‘(𝑁𝑢))) = (((ψ‘𝑢) − (ψ‘𝑁)) + (𝑢𝑁)))
238214, 232, 237comraddd 11119 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((ψ‘𝑢) − (ψ‘𝑁))) + (abs‘(𝑁𝑢))) = ((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))))
239216, 231, 2383brtr3d 5101 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑢) − (𝑅𝑁))) ≤ ((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))))
240154, 212, 78, 239lediv1dd 12759 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁) ≤ (((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))) / 𝑁))
241155, 213, 150, 240leadd2dd 11520 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁)) ≤ ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + (((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))) / 𝑁)))
242150recnd 10934 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) ∈ ℂ)
243148recnd 10934 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁) ∈ ℂ)
244242, 196, 243addassd 10928 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((𝑢𝑁) / 𝑁)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)) = ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + (((𝑢𝑁) / 𝑁) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁))))
24586recnd 10934 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑢) / 𝑢)) ∈ ℂ)
246196, 245, 173adddid 10930 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) = ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + (((𝑢𝑁) / 𝑁) · 1)))
247196mulid1d 10923 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · 1) = ((𝑢𝑁) / 𝑁))
248247oveq2d 7271 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + (((𝑢𝑁) / 𝑁) · 1)) = ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((𝑢𝑁) / 𝑁)))
249246, 248eqtrd 2778 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) = ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((𝑢𝑁) / 𝑁)))
250249oveq1d 7270 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)) = (((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((𝑢𝑁) / 𝑁)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)))
251232, 214, 164, 165divdird 11719 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))) / 𝑁) = (((𝑢𝑁) / 𝑁) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)))
252251oveq2d 7271 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + (((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))) / 𝑁)) = ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + (((𝑢𝑁) / 𝑁) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁))))
253244, 250, 2523eqtr4d 2788 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)) = ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + (((𝑢𝑁) + ((ψ‘𝑢) − (ψ‘𝑁))) / 𝑁)))
254241, 253breqtrrd 5098 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · (abs‘((𝑅𝑢) / 𝑢))) + ((abs‘((𝑅𝑢) − (𝑅𝑁))) / 𝑁)) ≤ ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)))
25593, 156, 149, 211, 254letrd 11062 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) ≤ ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)))
256 remulcl 10887 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ ((𝑢𝑁) / 𝑁) ∈ ℝ) → (2 · ((𝑢𝑁) / 𝑁)) ∈ ℝ)
25719, 103, 256sylancr 586 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (2 · ((𝑢𝑁) / 𝑁)) ∈ ℝ)
258257, 138readdcld 10935 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((2 · ((𝑢𝑁) / 𝑁)) + (𝑇 / (log‘𝑁))) ∈ ℝ)
259 remulcl 10887 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ ∧ (𝑢𝑁) ∈ ℝ) → (2 · (𝑢𝑁)) ∈ ℝ)
26019, 102, 259sylancr 586 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (2 · (𝑢𝑁)) ∈ ℝ)
261101, 137rerpdivcld 12732 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑁 / (log‘𝑁)) ∈ ℝ)
262110, 261remulcld 10936 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 · (𝑁 / (log‘𝑁))) ∈ ℝ)
263260, 262readdcld 10935 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))) ∈ ℝ)
264 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (ψ‘𝑦) = (ψ‘𝑢))
265264oveq1d 7270 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → ((ψ‘𝑦) − (ψ‘𝑁)) = ((ψ‘𝑢) − (ψ‘𝑁)))
266 oveq1 7262 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑢 → (𝑦𝑁) = (𝑢𝑁))
267266oveq2d 7271 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (2 · (𝑦𝑁)) = (2 · (𝑢𝑁)))
268267oveq1d 7270 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → ((2 · (𝑦𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))) = ((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))))
269265, 268breq12d 5083 . . . . . . . . . . . . . 14 (𝑦 = 𝑢 → (((ψ‘𝑦) − (ψ‘𝑁)) ≤ ((2 · (𝑦𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))) ↔ ((ψ‘𝑢) − (ψ‘𝑁)) ≤ ((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁))))))
270 id 22 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑁𝑥 = 𝑁)
271 oveq2 7263 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑁 → (2 · 𝑥) = (2 · 𝑁))
272270, 271oveq12d 7273 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑁 → (𝑥[,](2 · 𝑥)) = (𝑁[,](2 · 𝑁)))
273 fveq2 6756 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑁 → (ψ‘𝑥) = (ψ‘𝑁))
274273oveq2d 7271 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑁 → ((ψ‘𝑦) − (ψ‘𝑥)) = ((ψ‘𝑦) − (ψ‘𝑁)))
275 oveq2 7263 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑁 → (𝑦𝑥) = (𝑦𝑁))
276275oveq2d 7271 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑁 → (2 · (𝑦𝑥)) = (2 · (𝑦𝑁)))
277 fveq2 6756 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑁 → (log‘𝑥) = (log‘𝑁))
278270, 277oveq12d 7273 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑁 → (𝑥 / (log‘𝑥)) = (𝑁 / (log‘𝑁)))
279278oveq2d 7271 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑁 → (𝑇 · (𝑥 / (log‘𝑥))) = (𝑇 · (𝑁 / (log‘𝑁))))
280276, 279oveq12d 7273 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑁 → ((2 · (𝑦𝑥)) + (𝑇 · (𝑥 / (log‘𝑥)))) = ((2 · (𝑦𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))))
281274, 280breq12d 5083 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑁 → (((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑇 · (𝑥 / (log‘𝑥)))) ↔ ((ψ‘𝑦) − (ψ‘𝑁)) ≤ ((2 · (𝑦𝑁)) + (𝑇 · (𝑁 / (log‘𝑁))))))
282272, 281raleqbidv 3327 . . . . . . . . . . . . . . 15 (𝑥 = 𝑁 → (∀𝑦 ∈ (𝑥[,](2 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑇 · (𝑥 / (log‘𝑥)))) ↔ ∀𝑦 ∈ (𝑁[,](2 · 𝑁))((ψ‘𝑦) − (ψ‘𝑁)) ≤ ((2 · (𝑦𝑁)) + (𝑇 · (𝑁 / (log‘𝑁))))))
283 pntibndlem2.6 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](2 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑇 · (𝑥 / (log‘𝑥)))))
284283adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](2 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑇 · (𝑥 / (log‘𝑥)))))
285 1xr 10965 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ*
286 elioopnf 13104 . . . . . . . . . . . . . . . . 17 (1 ∈ ℝ* → (𝑁 ∈ (1(,)+∞) ↔ (𝑁 ∈ ℝ ∧ 1 < 𝑁)))
287285, 286ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (1(,)+∞) ↔ (𝑁 ∈ ℝ ∧ 1 < 𝑁))
288101, 136, 287sylanbrc 582 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑁 ∈ (1(,)+∞))
289282, 284, 288rspcdva 3554 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ∀𝑦 ∈ (𝑁[,](2 · 𝑁))((ψ‘𝑦) − (ψ‘𝑁)) ≤ ((2 · (𝑦𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))))
29018adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ)
29121adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (2 · 𝑁) ∈ ℝ)
29276simp3d 1142 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))
293 ltle 10994 . . . . . . . . . . . . . . . . . . . 20 (((1 + (𝐿 · 𝐸)) ∈ ℝ ∧ 2 ∈ ℝ) → ((1 + (𝐿 · 𝐸)) < 2 → (1 + (𝐿 · 𝐸)) ≤ 2))
29416, 19, 293sylancl 585 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) < 2 → (1 + (𝐿 · 𝐸)) ≤ 2))
29561, 294mpd 15 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 + (𝐿 · 𝐸)) ≤ 2)
296295adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (1 + (𝐿 · 𝐸)) ≤ 2)
29716adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (1 + (𝐿 · 𝐸)) ∈ ℝ)
29819a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 2 ∈ ℝ)
299297, 298, 78lemul1d 12744 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((1 + (𝐿 · 𝐸)) ≤ 2 ↔ ((1 + (𝐿 · 𝐸)) · 𝑁) ≤ (2 · 𝑁)))
300296, 299mpbid 231 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((1 + (𝐿 · 𝐸)) · 𝑁) ≤ (2 · 𝑁))
30177, 290, 291, 292, 300letrd 11062 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑢 ≤ (2 · 𝑁))
302 elicc2 13073 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ) → (𝑢 ∈ (𝑁[,](2 · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ (2 · 𝑁))))
303101, 291, 302syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ (𝑁[,](2 · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ (2 · 𝑁))))
30477, 79, 301, 303mpbir3and 1340 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑢 ∈ (𝑁[,](2 · 𝑁)))
305269, 289, 304rspcdva 3554 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((ψ‘𝑢) − (ψ‘𝑁)) ≤ ((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))))
306147, 263, 78, 305lediv1dd 12759 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁) ≤ (((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))) / 𝑁))
307260recnd 10934 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (2 · (𝑢𝑁)) ∈ ℂ)
308108adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑇 ∈ ℝ+)
309308rpred 12701 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑇 ∈ ℝ)
310309, 261remulcld 10936 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 · (𝑁 / (log‘𝑁))) ∈ ℝ)
311310recnd 10934 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 · (𝑁 / (log‘𝑁))) ∈ ℂ)
312 divdir 11588 . . . . . . . . . . . . . 14 (((2 · (𝑢𝑁)) ∈ ℂ ∧ (𝑇 · (𝑁 / (log‘𝑁))) ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))) / 𝑁) = (((2 · (𝑢𝑁)) / 𝑁) + ((𝑇 · (𝑁 / (log‘𝑁))) / 𝑁)))
313307, 311, 176, 312syl3anc 1369 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))) / 𝑁) = (((2 · (𝑢𝑁)) / 𝑁) + ((𝑇 · (𝑁 / (log‘𝑁))) / 𝑁)))
314 2cnd 11981 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 2 ∈ ℂ)
315314, 232, 164, 165divassd 11716 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((2 · (𝑢𝑁)) / 𝑁) = (2 · ((𝑢𝑁) / 𝑁)))
316110recnd 10934 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝑇 ∈ ℂ)
317137rpcnne0d 12710 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((log‘𝑁) ∈ ℂ ∧ (log‘𝑁) ≠ 0))
318 div12 11585 . . . . . . . . . . . . . . . . 17 ((𝑇 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ ((log‘𝑁) ∈ ℂ ∧ (log‘𝑁) ≠ 0)) → (𝑇 · (𝑁 / (log‘𝑁))) = (𝑁 · (𝑇 / (log‘𝑁))))
319316, 164, 317, 318syl3anc 1369 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 · (𝑁 / (log‘𝑁))) = (𝑁 · (𝑇 / (log‘𝑁))))
320319oveq1d 7270 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑇 · (𝑁 / (log‘𝑁))) / 𝑁) = ((𝑁 · (𝑇 / (log‘𝑁))) / 𝑁))
321308, 137rpdivcld 12718 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (log‘𝑁)) ∈ ℝ+)
322321rpcnd 12703 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (log‘𝑁)) ∈ ℂ)
323322, 164, 165divcan3d 11686 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑁 · (𝑇 / (log‘𝑁))) / 𝑁) = (𝑇 / (log‘𝑁)))
324320, 323eqtrd 2778 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑇 · (𝑁 / (log‘𝑁))) / 𝑁) = (𝑇 / (log‘𝑁)))
325315, 324oveq12d 7273 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((2 · (𝑢𝑁)) / 𝑁) + ((𝑇 · (𝑁 / (log‘𝑁))) / 𝑁)) = ((2 · ((𝑢𝑁) / 𝑁)) + (𝑇 / (log‘𝑁))))
326313, 325eqtrd 2778 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((2 · (𝑢𝑁)) + (𝑇 · (𝑁 / (log‘𝑁)))) / 𝑁) = ((2 · ((𝑢𝑁) / 𝑁)) + (𝑇 / (log‘𝑁))))
327306, 326breqtrd 5096 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁) ≤ ((2 · ((𝑢𝑁) / 𝑁)) + (𝑇 / (log‘𝑁))))
328148, 258, 142, 327leadd2dd 11520 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)) ≤ ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + ((2 · ((𝑢𝑁) / 𝑁)) + (𝑇 / (log‘𝑁)))))
329142recnd 10934 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) ∈ ℂ)
330257recnd 10934 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (2 · ((𝑢𝑁) / 𝑁)) ∈ ℂ)
331138recnd 10934 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (log‘𝑁)) ∈ ℂ)
332329, 330, 331addassd 10928 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (2 · ((𝑢𝑁) / 𝑁))) + (𝑇 / (log‘𝑁))) = ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + ((2 · ((𝑢𝑁) / 𝑁)) + (𝑇 / (log‘𝑁)))))
333 2cn 11978 . . . . . . . . . . . . . . 15 2 ∈ ℂ
334 mulcom 10888 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ ((𝑢𝑁) / 𝑁) ∈ ℂ) → (2 · ((𝑢𝑁) / 𝑁)) = (((𝑢𝑁) / 𝑁) · 2))
335333, 196, 334sylancr 586 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (2 · ((𝑢𝑁) / 𝑁)) = (((𝑢𝑁) / 𝑁) · 2))
336335oveq2d 7271 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (2 · ((𝑢𝑁) / 𝑁))) = ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((𝑢𝑁) / 𝑁) · 2)))
337141recnd 10934 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) / 𝑢)) + 1) ∈ ℂ)
338196, 337, 314adddid 10930 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · (((abs‘((𝑅𝑢) / 𝑢)) + 1) + 2)) = ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((𝑢𝑁) / 𝑁) · 2)))
339245, 173, 314addassd 10928 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((abs‘((𝑅𝑢) / 𝑢)) + 1) + 2) = ((abs‘((𝑅𝑢) / 𝑢)) + (1 + 2)))
340 1p2e3 12046 . . . . . . . . . . . . . . . 16 (1 + 2) = 3
341340oveq2i 7266 . . . . . . . . . . . . . . 15 ((abs‘((𝑅𝑢) / 𝑢)) + (1 + 2)) = ((abs‘((𝑅𝑢) / 𝑢)) + 3)
342339, 341eqtrdi 2795 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((abs‘((𝑅𝑢) / 𝑢)) + 1) + 2) = ((abs‘((𝑅𝑢) / 𝑢)) + 3))
343342oveq2d 7271 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · (((abs‘((𝑅𝑢) / 𝑢)) + 1) + 2)) = (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)))
344336, 338, 3433eqtr2d 2784 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (2 · ((𝑢𝑁) / 𝑁))) = (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)))
345344oveq1d 7270 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (2 · ((𝑢𝑁) / 𝑁))) + (𝑇 / (log‘𝑁))) = ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) + (𝑇 / (log‘𝑁))))
346332, 345eqtr3d 2780 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + ((2 · ((𝑢𝑁) / 𝑁)) + (𝑇 / (log‘𝑁)))) = ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) + (𝑇 / (log‘𝑁))))
347328, 346breqtrd 5096 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 1)) + (((ψ‘𝑢) − (ψ‘𝑁)) / 𝑁)) ≤ ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) + (𝑇 / (log‘𝑁))))
34893, 149, 139, 255, 347letrd 11062 . . . . . . . 8 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) ≤ ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) + (𝑇 / (log‘𝑁))))
349100rehalfcld 12150 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐸 / 2) / 2) ∈ ℝ)
35077, 297, 78ledivmul2d 12755 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢 / 𝑁) ≤ (1 + (𝐿 · 𝐸)) ↔ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))
351292, 350mpbird 256 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 / 𝑁) ≤ (1 + (𝐿 · 𝐸)))
352 ax-1cn 10860 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
35315adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐿 · 𝐸) ∈ ℝ)
354353recnd 10934 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐿 · 𝐸) ∈ ℂ)
355 addcom 11091 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (𝐿 · 𝐸) ∈ ℂ) → (1 + (𝐿 · 𝐸)) = ((𝐿 · 𝐸) + 1))
356352, 354, 355sylancr 586 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (1 + (𝐿 · 𝐸)) = ((𝐿 · 𝐸) + 1))
357351, 356breqtrd 5096 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 / 𝑁) ≤ ((𝐿 · 𝐸) + 1))
358171, 111, 353lesubaddd 11502 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢 / 𝑁) − 1) ≤ (𝐿 · 𝐸) ↔ (𝑢 / 𝑁) ≤ ((𝐿 · 𝐸) + 1)))
359357, 358mpbird 256 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢 / 𝑁) − 1) ≤ (𝐿 · 𝐸))
360169, 359eqbrtrd 5092 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑢𝑁) / 𝑁) ≤ (𝐿 · 𝐸))
3619adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝐴 ∈ ℝ+)
362361rpred 12701 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝐴 ∈ ℝ)
363 fveq2 6756 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑢 → (𝑅𝑥) = (𝑅𝑢))
364 id 22 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑢𝑥 = 𝑢)
365363, 364oveq12d 7273 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → ((𝑅𝑥) / 𝑥) = ((𝑅𝑢) / 𝑢))
366365fveq2d 6760 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → (abs‘((𝑅𝑥) / 𝑥)) = (abs‘((𝑅𝑢) / 𝑢)))
367366breq1d 5080 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → ((abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴 ↔ (abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐴))
36874adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
369367, 368, 80rspcdva 3554 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐴)
37086, 362, 105, 369leadd1dd 11519 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘((𝑅𝑢) / 𝑢)) + 3) ≤ (𝐴 + 3))
371103, 200jca 511 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) ∈ ℝ ∧ 0 ≤ ((𝑢𝑁) / 𝑁)))
372 3rp 12665 . . . . . . . . . . . . . . 15 3 ∈ ℝ+
373 rpaddcl 12681 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝐴 + 3) ∈ ℝ+)
374361, 372, 373sylancl 585 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐴 + 3) ∈ ℝ+)
375374rprege0d 12708 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐴 + 3) ∈ ℝ ∧ 0 ≤ (𝐴 + 3)))
376 lemul12b 11762 . . . . . . . . . . . . 13 ((((((𝑢𝑁) / 𝑁) ∈ ℝ ∧ 0 ≤ ((𝑢𝑁) / 𝑁)) ∧ (𝐿 · 𝐸) ∈ ℝ) ∧ (((abs‘((𝑅𝑢) / 𝑢)) + 3) ∈ ℝ ∧ ((𝐴 + 3) ∈ ℝ ∧ 0 ≤ (𝐴 + 3)))) → ((((𝑢𝑁) / 𝑁) ≤ (𝐿 · 𝐸) ∧ ((abs‘((𝑅𝑢) / 𝑢)) + 3) ≤ (𝐴 + 3)) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) ≤ ((𝐿 · 𝐸) · (𝐴 + 3))))
377371, 353, 106, 375, 376syl22anc 835 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) ≤ (𝐿 · 𝐸) ∧ ((abs‘((𝑅𝑢) / 𝑢)) + 3) ≤ (𝐴 + 3)) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) ≤ ((𝐿 · 𝐸) · (𝐴 + 3))))
378360, 370, 377mp2and 695 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) ≤ ((𝐿 · 𝐸) · (𝐴 + 3)))
37935adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝐸 ∈ ℝ+)
380112, 113mp1i 13 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 4 ∈ ℝ+)
381379, 380rpdivcld 12718 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐸 / 4) ∈ ℝ+)
382381rpcnd 12703 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐸 / 4) ∈ ℂ)
383374rpcnd 12703 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐴 + 3) ∈ ℂ)
384374rpne0d 12706 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐴 + 3) ≠ 0)
385382, 383, 384divcan1d 11682 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝐸 / 4) / (𝐴 + 3)) · (𝐴 + 3)) = (𝐸 / 4))
38614recnd 10934 . . . . . . . . . . . . . . . . 17 (𝜑𝐸 ∈ ℂ)
387386adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 𝐸 ∈ ℂ)
388380rpcnd 12703 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 4 ∈ ℂ)
389380rpne0d 12706 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 4 ≠ 0)
390387, 388, 389divrec2d 11685 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐸 / 4) = ((1 / 4) · 𝐸))
391390oveq1d 7270 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐸 / 4) / (𝐴 + 3)) = (((1 / 4) · 𝐸) / (𝐴 + 3)))
392 4cn 11988 . . . . . . . . . . . . . . . . . 18 4 ∈ ℂ
393 4ne0 12011 . . . . . . . . . . . . . . . . . 18 4 ≠ 0
394392, 393reccli 11635 . . . . . . . . . . . . . . . . 17 (1 / 4) ∈ ℂ
395394a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (1 / 4) ∈ ℂ)
396395, 387, 383, 384div23d 11718 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((1 / 4) · 𝐸) / (𝐴 + 3)) = (((1 / 4) / (𝐴 + 3)) · 𝐸))
39710oveq1i 7265 . . . . . . . . . . . . . . 15 (𝐿 · 𝐸) = (((1 / 4) / (𝐴 + 3)) · 𝐸)
398396, 397eqtr4di 2797 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((1 / 4) · 𝐸) / (𝐴 + 3)) = (𝐿 · 𝐸))
399391, 398eqtr2d 2779 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐿 · 𝐸) = ((𝐸 / 4) / (𝐴 + 3)))
400399oveq1d 7270 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐿 · 𝐸) · (𝐴 + 3)) = (((𝐸 / 4) / (𝐴 + 3)) · (𝐴 + 3)))
401 2ne0 12007 . . . . . . . . . . . . . . 15 2 ≠ 0
402401a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → 2 ≠ 0)
403387, 314, 314, 402, 402divdiv1d 11712 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐸 / 2) / 2) = (𝐸 / (2 · 2)))
404 2t2e4 12067 . . . . . . . . . . . . . 14 (2 · 2) = 4
405404oveq2i 7266 . . . . . . . . . . . . 13 (𝐸 / (2 · 2)) = (𝐸 / 4)
406403, 405eqtrdi 2795 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐸 / 2) / 2) = (𝐸 / 4))
407385, 400, 4063eqtr4d 2788 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐿 · 𝐸) · (𝐴 + 3)) = ((𝐸 / 2) / 2))
408378, 407breqtrd 5096 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) ≤ ((𝐸 / 2) / 2))
409117adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (𝐸 / 4)) ∈ ℝ)
410137rpred 12701 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (log‘𝑁) ∈ ℝ)
41178reeflogd 25684 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (exp‘(log‘𝑁)) = 𝑁)
412135, 411breqtrrd 5098 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (exp‘(𝑇 / (𝐸 / 4))) < (exp‘(log‘𝑁)))
413 eflt 15754 . . . . . . . . . . . . . . 15 (((𝑇 / (𝐸 / 4)) ∈ ℝ ∧ (log‘𝑁) ∈ ℝ) → ((𝑇 / (𝐸 / 4)) < (log‘𝑁) ↔ (exp‘(𝑇 / (𝐸 / 4))) < (exp‘(log‘𝑁))))
414409, 410, 413syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝑇 / (𝐸 / 4)) < (log‘𝑁) ↔ (exp‘(𝑇 / (𝐸 / 4))) < (exp‘(log‘𝑁))))
415412, 414mpbird 256 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (𝐸 / 4)) < (log‘𝑁))
416409, 410, 415ltled 11053 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (𝐸 / 4)) ≤ (log‘𝑁))
417110, 381, 137, 416lediv23d 12769 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (log‘𝑁)) ≤ (𝐸 / 4))
418417, 406breqtrrd 5098 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑇 / (log‘𝑁)) ≤ ((𝐸 / 2) / 2))
419107, 138, 349, 349, 408, 418le2addd 11524 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) + (𝑇 / (log‘𝑁))) ≤ (((𝐸 / 2) / 2) + ((𝐸 / 2) / 2)))
420100recnd 10934 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝐸 / 2) ∈ ℂ)
4214202halvesd 12149 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (((𝐸 / 2) / 2) + ((𝐸 / 2) / 2)) = (𝐸 / 2))
422419, 421breqtrd 5096 . . . . . . . 8 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((((𝑢𝑁) / 𝑁) · ((abs‘((𝑅𝑢) / 𝑢)) + 3)) + (𝑇 / (log‘𝑁))) ≤ (𝐸 / 2))
42393, 139, 100, 348, 422letrd 11062 . . . . . . 7 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) ≤ (𝐸 / 2))
4243simprd 495 . . . . . . . 8 (𝜑 → (abs‘((𝑅𝑁) / 𝑁)) ≤ (𝐸 / 2))
425424adantr 480 . . . . . . 7 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑁) / 𝑁)) ≤ (𝐸 / 2))
42693, 94, 100, 100, 423, 425le2addd 11524 . . . . . 6 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) + (abs‘((𝑅𝑁) / 𝑁))) ≤ ((𝐸 / 2) + (𝐸 / 2)))
4273872halvesd 12149 . . . . . 6 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((𝐸 / 2) + (𝐸 / 2)) = 𝐸)
428426, 427breqtrd 5096 . . . . 5 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → ((abs‘(((𝑅𝑢) / 𝑢) − ((𝑅𝑁) / 𝑁))) + (abs‘((𝑅𝑁) / 𝑁))) ≤ 𝐸)
42986, 95, 96, 99, 428letrd 11062 . . . 4 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)
430429ralrimiva 3107 . . 3 (𝜑 → ∀𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)
4315, 73, 430jca31 514 . 2 (𝜑 → ((𝑌 < 𝑁 ∧ ((1 + (𝐿 · 𝐸)) · 𝑁) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
432 breq2 5074 . . . . 5 (𝑧 = 𝑁 → (𝑌 < 𝑧𝑌 < 𝑁))
433 oveq2 7263 . . . . . 6 (𝑧 = 𝑁 → ((1 + (𝐿 · 𝐸)) · 𝑧) = ((1 + (𝐿 · 𝐸)) · 𝑁))
434433breq1d 5080 . . . . 5 (𝑧 = 𝑁 → (((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑀 · 𝑌) ↔ ((1 + (𝐿 · 𝐸)) · 𝑁) < (𝑀 · 𝑌)))
435432, 434anbi12d 630 . . . 4 (𝑧 = 𝑁 → ((𝑌 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑀 · 𝑌)) ↔ (𝑌 < 𝑁 ∧ ((1 + (𝐿 · 𝐸)) · 𝑁) < (𝑀 · 𝑌))))
436 id 22 . . . . . 6 (𝑧 = 𝑁𝑧 = 𝑁)
437436, 433oveq12d 7273 . . . . 5 (𝑧 = 𝑁 → (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧)) = (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁)))
438437raleqdv 3339 . . . 4 (𝑧 = 𝑁 → (∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸 ↔ ∀𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
439435, 438anbi12d 630 . . 3 (𝑧 = 𝑁 → (((𝑌 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ((𝑌 < 𝑁 ∧ ((1 + (𝐿 · 𝐸)) · 𝑁) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
440439rspcev 3552 . 2 ((𝑁 ∈ ℝ+ ∧ ((𝑌 < 𝑁 ∧ ((1 + (𝐿 · 𝐸)) · 𝑁) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)) → ∃𝑧 ∈ ℝ+ ((𝑌 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
4412, 431, 440syl2anc 583 1 (𝜑 → ∃𝑧 ∈ ℝ+ ((𝑌 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  wss 3883   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  2c2 11958  3c3 11959  4c4 11960  +crp 12659  (,)cioo 13008  [,)cico 13010  [,]cicc 13011  abscabs 14873  expce 15699  logclog 25615  ψcchp 26147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-vma 26152  df-chp 26153
This theorem is referenced by:  pntibndlem3  26645
  Copyright terms: Public domain W3C validator